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ABSTRACT In recent past 2D metal trihalides have evolved as useful gapless semiconductor due to their
physical properties like low dimensional magnetism and thermo electric performance. Such highly appre-
ciable physical properties of these material are because enormous natural properties like half-metallicity,
polarization, spin-orbit coupling impacts, layered structure and low cost. Layered formation of these
materials provides an opportunity for the field of mathematical chemistry for identification of patterns and
computation of mathematical properties. This article is dedicated to compute vertex-edge-degree based
topological characterization of 2D trihalides. General mathematical expressions of several vertex-edge-
degree based topological indices are presented in terms of research outcomes so they can be effectively
used in future industrial projects.

INDEX TERMS Degree, topological descriptors, metal trihalides network.

I. INTRODUCTION
Recently, 2D graphene materials have gotten impressive con-
sideration inferable from their novel electrical, thermal and
mechanical properties [1]–[3]. Animated by such scans for
novel 2D materials, a few investigation have been done on
other two dimensional novel materials with surprising electri-
cal, attractive and topological properties, for example, hexag-
onal boron nitride, progress metal dichalcogenides, transition
metal and heavy main fundamental gathering trihalides with
uncommon Dirac half-metallicity, novel topological spin-
tronic properties emerging from enormous spin-orbit cou-
pling of heavy particles and inalienable charge [4]–[11].
Also these 2Dmaterials find different applications in various
regions for example, optoelectronics, spintronics, room tem-
perature radiation finders, chemical and biological sensors,
supercapacitors, etc., [12]–[17] attributable to their wide band
holes, stoping force, strange attractive properties emerging
from open-shell d orbitals and spinorbit coupling all of which
add to their novel properties and upgraded usefulness [4].
Dissimilar to the restrictions of 2D graphene for example,
inadmissible band holes and too enormous a gap in boron
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nitride [18] the heavier progress metal and bismuth halides
with layered structures show wanted band holes, attractive
properties and Curie temperatures that are appropriate for a
few down to earth applications.

A portion of the ferromagnetic 2D materials with huge
surface territory are promising contender for treating harmful
tumors through magnetically coordinated medication con-
veyance joined with hyperthermia as close to infrared light
has penchant to destroy the tumor cells without causing
critical obtrusive reactions. Consequently such procedures
are more preferred contrasted with the regular strategies
like medical procedure and chemotherapy inferable from
their harmful reactions. It has been seen that chromium tri-
halidesCrX3 are perfect applicants due to their biocompatible
nature [9]. Bismuth triiodide (BiI3) is another less poisonous
heavy metal halide which is utilized for room temperature
γ -ray discovery on account of its higher Curie temperature
and appropriate band hole [19] and these materials too dis-
cover possible applications in photonics and photovoltaic
sunlight based cells [16], [20]. Recently theoretical exami-
nations have highlighted its featured as a 2D material with
promising optoelectronic properties [15], [20].

Chemical graph theory manages the investigation of
topological properties of atoms/molecules wherein we first
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proselyte the structure of the molecules into a diagram
and then assess its topological descriptors. A few inves-
tigations have uncovered structure property relations of
molecules and materials, that is physico-chemical properties
are personally identified with the fundamental topologi-
cal characteristic of molecules structures [21], [22]. In this
way, scientific relations that give topological descriptors of
molecules and 2D materials can anticipate their physico-
chemical properties, and in this manner such structure-
property relations discover various applications in a few area,
for example, anticipate toxicology and PC helped tranquilize
revelation [23]–[25].

Topological descriptors which are obtained from the basic
network of the 2D materials can give significant relation-
ships to properties of these materials through quantita-
tive structure activity, property and toxicity relationships
(QSAR/QSPR/QSTR) obtained from the topological system
of these materials [26]–[28]. For instance, polarizability and
magnetic properties of these materials associate with the
topological molecular structure descriptors. In the previ-
ous decades, a few investigations were coordinated towards
the progress of topological descriptors due to their signifi-
cance [30]–[34]. In any case, the majority of these investi-
gations do exclude loads to bonds and vertices as the basic
topology is treated inside basic graph theory that doesn’t
modify among bonds and heteroatoms.

Almost after 44 years, this methodology was returned to
in Ref. [35] wherein a basic formula model is proposed
instilling the compound qualities of atoms and bonds in the
molecular diagram by associating every vertex and edge with
certain weights that are obtained by any atomic or bond
property counts along these lines redesigning the chemical
diagram theoretical model of the molecule. Therefore, this
basic formula-based weightedmolecular diagram [35] gives a
superior model to break down the characteristics of molecule,
as it consolidates the chemical data in regards to the sort of
atoms and the idea of the bond alongside the topology of
the given molecular structure. In the current investigation as
we are dealing 2D metal halides, we propose a novel way
to deal with characterizing their properties through ve-degree
topological descriptors.

Zhong and Ediz [36], [37] defined Harmonic index and
most of work is done by using classical degree concept.
Recently, Chellali et al. [38] introduced new degree concepts
namely, ‘‘ve-degree and ev-degree’’. The relation between
‘‘classical degree-based’’ and ‘‘ve-degree and ev-degree’’ can
be seen in [39]–[42] and found that ‘‘ve-degree Zagreb index’’
has stronger result and the ‘‘classical Zagreb index’’.

II. ve-DEGREE TOPOLOGICAL DESCRIPTORS
Let G be a simple connected graph with vertex sets V (G) and
edge sets E(G). The degree of a vertex x1, denoted by ξ (x1),
is the number of edges that are incident to the x1. The open
neighborhood of x1 is defined as N (x1) = {x2 ∈ V (G) :
x1x2 ∈ E(G)} and closed neighborhood N [x1] = N (x1)∪{x1}
[38]. The ve-degree, denoted by ξve(x1), of any vertex x1 ∈ V

FIGURE 1. The metal trihalides MX3 (a) Unit cell of MX3 (b) monolayer of
MX3.

is the number of different edges that are incident to any vertex
from the N [x1]. For details see [37]–[41].
We define general ve-degree topological invariant T(G) as

follows:

T(G) =
∑

x1x2∈E(G)

ψ(ξve(x1), ξve(x2)). (1)

• If ψ(ξve(x1), ξve(x2)) = (ξve(x1)+ ξve(x2))λ, then T(G)
represents the first ve-degree Zagreb β index (M1

βve(G))
and ve-degree sum-connectivity index (χve(G)) for λ =
1 and λ = − 1

2 , respectively.
• If ψ(ξve(x1), ξve(x2)) = (ξve(x1)× ξve(x2))θ , then T(G)
represents the second ve-degree Zagreb index (M2

ve(G))
and ve-degree Randic index (Rve(G)) for θ = 1 and θ =
−

1
2 , respectively.

Similarly if ψ(ξve(x1), ξve(x2)) =

(
ξve(x1)+ξve(x2)−2
ξve(x1)×ξve(x2)

) 1
2
,

2(ξve(x1)×ξve(x2))
1
2

ξve(x1)+ξve(x2)
, 2

ξve(x1)+ξve(x2)
, we obtained ve-degree

atom-bond connectivity (ABCve(G)), geometric-arithmetic
(GAve(G)), harmonic (Hve(G)) descriptors, respectively.

III. STRUCTURES OF METAL TRIHALIDES
In this section, we discuss metal trihalides and derive their
explanatory general expressions to determine the ve-degree
topological descriptors. The unit cell of metal trihalides is
depicted in Figure 1(a) where every M atom bonded to six
X atoms to shape an octahedral coordination and the mono-
layers of trihalide structures are appeared in Figure 1(b).

Stacking such monolayers on head of one another struc-
tures the mass material and different stacking polytypes,
for example, rhombohedral and monoclinic likewise exist.
We discuss the paralellogram, hexagonal and triangular stack-
ing of metal trihalides [43], [44] as shown in Figures 2–4.

IV. MAIN RESULTS
In this section, we determined the first ve-degree Zagreb
β index, second ve-degree Zagreb β index, ve-degree
atom-bond connectivity (ABCve) index, ve-degree geometric-
arithmetic (GAve) index, ve-degree Randic index, ve-degree
sum-connectivity (χve) index and ve-degree harmonic (Hve)
for metal trihalides. We give a general result for each metal
trihalides, which are used to obtained any ve-degree topo-
logical descriptors. Vetrík [45] introduced a new method to
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FIGURE 2. The paralellogram shaped metal trihalides PMX3.

FIGURE 3. The hexagonal shaped metal trihalides HMX3.

FIGURE 4. The triangular shaped metal trihalides TMX3.

calculate the topological indices and also in [46], we follow
the same technique in this paper.

A. PARALELLOGRAM SHAPED METAL TRIHALIDES
We presents a formula, which can be used to obtain any
ve-degree topological descriptors for paralellogram shaped
metal trihalides PMX3.
Lemma 1: Let PMX3 be a paralellogram shaped metal

trihalides. Then

T(PMX3)

= 12lwψ(12, 12)+4 (ψ(6, 10)+2ψ(10, 12)) (l+w)

+ 4 (ψ(6, 10)+ 2ψ(10, 12)− 3ψ(12, 12)) .

Proof: The graph PMX3 contains 8lw+ 10l + 10w+ 2
vertices and 12lw+12l+12w edges. The each vertex ofPMX3
has ve-degree 6, 10 or 12, can be partitioned according to their

degrees and ve-degrees. Let

Vj
vei = {x1 ∈ V (PMX3) : d(x1) = j, ξ (x1) = i}.

It means that the setVj
vei contains the vertices of degree jwith

ve-degree i. The set of vertices with respect to their degrees
and ve-degrees are as follows:

V1
ve6 = {x1 ∈ V(PMX3) : d(x1) = 1, ξ (x1) = 6}

V2
ve12 = {x1 ∈ V(PMX3) : d(x1) = 2, ξ (x1) = 12}

V6
ve10 = {x1 ∈ V(PMX3) : d(x1) = 6, ξ (x1) = 10}

V6
ve12 = {x1 ∈ V(PMX3) : d(x1) = 6, ξ (x1) = 12}

Since, |V1
ve6 | = 4l + 4w + 4, |V2

ve12 | = 6lw + 4l + 4w −
2, |V6

ve10 | = 2l + 2w + 2 and |V6
ve12 | = 12lw − 2. Let us

partitioned the edges of PMX3 according to its degrees and
ve-degrees. Let

41,6
ve6,10 = {x1x2 ∈ E(PMX3) : d(x1) = 1, d(x2) = 6,

× ξ (x1) = 6, ξ (x2) = 10}

42,6
ve10,12 = {x1x2 ∈ E(PMX3) : d(x1) = 2, d(x2) = 6,

× ξ (x1) = 10, ξ (x2) = 12}

42,6
ve12,12 = {x1x2 ∈ E(PMX3) : d(x1) = 2, d(x2) = 6,

× ξ (x1) = 12, ξ (x2) = 12}

Note that E(PMX3) = 41,6
ve6,10 ∪ 4

2,6
ve10,12 ∪ 4

2,6
ve12,12 and

|41,6
ve6,10 | = 4l+4w+4, |42,6

ve10,12 | = 8l+8w+8, |42,6
ve12,12 | =

12lw− 12. Hence,

T(PMX3) =
∑

x1x2∈E(PMX3)
ψ(ξ (x1), ξ (x2))

=

∑
x1x2∈4

1,6
ve6,10

ψ(6, 10)+
∑

x1x2∈4
2,6
ve10,12

ψ(10, 12)

+

∑
x1x2∈4

2,6
ve12,12

ψ(12, 12)

= (4l+4w+4)ψ(6, 10)+(8l+8w+8)ψ(10, 12)
+ (12lw− 12)ψ(12, 12).

After simplification, we get

T(PMX3)

= 12lwψ(12, 12)+ 4 (ψ(6, 10)+ 2ψ(10, 12)) (l + w)

+ 4 (ψ(6, 10)+ 2ψ(10, 12)− 3ψ(12, 12)) .

Theorem 1: Let PMX3 be a paralellogram shaped metal
trihalides. Then the first ve-degree Zagreb β index:

M1
βve(PMX3) = 288 lw+ 240 l + 240w− 48

the second ve-degree Zagreb index:

M2
ve(PMX3) = 1728 lw+ 1200 l + 1200w− 528

the ve-degree Randic index:

Rve(PMX3) = lw+ 4

(√
15+

√
30

30

)
(l + w)

+
2
√
15+ 2

√
30− 15

15
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the ve-degree atom-bond connectivity index:

ABCve(PMX3) =
√
22 lw+ 4

(√
210+ 10

√
6

30

)
(l + w)

+
2
√
210+ 20

√
6− 15

√
22

15
the ve-degree geometric-arithmetic index:

GAve(PMX3) = 12 lw+ 4

(√
15
4
+

4
√
30

11

)
(l + w)

+
√
15+

16
11

√
30− 12

the ve-degree harmonic index:

Hve(PMX3) = lw+
27
22

l +
27
22

w+
5
22

the ve-degree sum-connectivity index:

χve(PMX3) = lw
√
6+ 4

(
1
4
+

√
22
11

)
(l + w)

+ 1+
4
√
22

11
−
√
6.

Proof: For M1
βve(PMX3) which is the first ve-degree

Zagreb β index of PMX3, we have ψ(ξve(x1), ξve(x2)) =
ξve(x1) + ξve(x2), therefore ψ(12, 12) = 24, ψ(6, 10) = 16
and ψ(10, 12) = 22. Thus by Lemma 1,

M1
βve(PMX3)

= 12lw(24)+ 4 (16+ 44) (l + w)+ 4 (16+ 44− 72)

= 288 lw+ 240 l + 240w− 48.

For M2
ve(PMX3) which is the second ve-degree Zagreb

index of PMX3, we have ψ(ξve(x1), ξve(x2)) = ξve(x1) ×
ξve(x2), therefore ψ(12, 12) = 144, ψ(6, 10) = 60 and
ψ(10, 12) = 120. Thus by Lemma 1,

M2
ve(PMX3)

= 12lw(144)+ 4 (60+ 240) (l + w)+ 4 (60+ 240− 432)

= 1728 lw+ 1200 l + 1200w− 528.

For Rve(PMX3) which is the ve-degree Randic index of
PMX3, we have ψ(ξve(x1), ξve(x2)) = (ξve(x1)× ξve(x2))−

1
2 ,

therefore ψ(12, 12) = 1
12 , ψ(6, 10) =

1
√
60

and ψ(10, 12) =
1
√
120

. Thus by Lemma 1,

Rve(PMX3)

= 12lw(
1
12

)+ 4
(

1
√
60
+

2
√
120

)
(l + w)

+ 4
(

1
√
60
+

2
√
120
−

3
12

)
= lw+ 4

(√
15+

√
30

30

)
(l + w)

+
2
√
15+ 2

√
30− 15

15
.

For ABCve(PMX3) which is the ve-degree atom-bond con-
nectivity index of PMX3, we have ψ(ξve(x1), ξve(x2)) =(
ξve(x1)+ξve(x2)−2
ξve(x1)×ξve(x2)

) 1
2
, therefore ψ(12, 12) =

√
22
144 ,

ψ(6, 10) =
√

14
60 and ψ(10, 12) =

√
20
120 . Thus by Lemma 1,

ABCve(PMX3)

= 12lw

√
22
144
+ 4

(√
14
60
+ 2

√
20
120

)
(l + w)

+ 4

(√
14
60
+ 2

√
20
120
− 3

√
22
144

)

=
√
22 lw+ 4

(√
210+ 10

√
6

30

)
(l + w)

+
2
√
210+ 20

√
6− 15

√
22

15
.

For GAve(PMX3) which is the ve-degree geometric-
arithmetic index of PMX3, we have ψ(ξve(x1), ξve(x2)) =
2(ξve(x1)×ξve(x2))

1
2

ξve(x1)+ξve(x2)
, therefore ψ(12, 12) = 1, ψ(6, 10) = 2

√
60

16

and ψ(10, 12) = 2
√
120
22 . Thus by Lemma 1,

GAve(PMX3) = 12lw+ 4

(
2
√
60

16
+ 2

2
√
120
22

)
(l + w)

+ 4

(
2
√
60

16
+

4
√
120
22

− 3

)

= 12 lw+ 4

(√
15
4
+

4
√
30

11

)
(l + w)

+
√
15+

16
11

√
30− 12.

For Hve(PMX3) which is the ve-degree harmonic index of
PMX3, we haveψ(ξve(x1), ξve(x2)) = 2

ξve(x1)+ξve(x2)
, therefore

ψ(12, 12) = 1
12 , ψ(6, 10) =

1
8 and ψ(10, 12) = 1

11 . Thus by
Lemma 1,

Hve(PMX3) = 12lw
1
12
+ 4

(
1
8
+

2
11

)
(l + w)

+ 4
(
1
8
+

2
11
−

3
12

)
= lw+

27
22

l +
27
22

w+
5
22
.

For χve(PMX3) which is the ve-degree sum-connectivity
index of PMX3, we have ψ(ξve(x1), ξve(x2)) =

(ξve(x1)+ ξve(x2))−
1
2 , therefore ψ(12, 12) =

1
√
24
,

ψ(6, 10) = 1
√
16

and ψ(10, 12) = 1
√
22
. Thus by Lemma 1,

χve(PMX3) = 12lw
1
√
24
+ 4

(
1
√
16
+

2
√
22

)
(l + w)

+ 4
(

1
√
16
+

2
√
22
−

3
√
24

)
= lw

√
6+ 4

(
1
4
+

√
22
11

)
(l + w)+ 1

+
4
√
22

11
−
√
6.
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B. HEXAGONAL SHAPED METAL TRIHALIDES
We presents a formula, which can be used to obtain any
ve-degree topological descriptors for hexagonal shaped metal
trihalides HMX3.
Lemma 2: Let HMX3 be a hexagonal shaped metal tri-

halides. Then

T(HMX3) = 36m2ψ(12, 12)

+ 12m (ψ(6, 10)− 3ψ(12, 12)+ 2ψ(10, 12)) .

Proof: The graph HMX3 contains 24m2
+ 6m vertices

and 36m2 edges. The each vertex of HMX3 has ve-degree 6,
10 or 12, can be partitioned according to their degrees and
ve-degrees. Let

Vj
vei = {x1 ∈ V (HMX3) : d(x1) = j, ξ (x1) = i}.

It means that the setVj
vei contains the vertices of degree jwith

ve-degree i. The set of vertices with respect to their degrees
and ve-degrees are as follows:

V1
ve6 = {x1 ∈ V(HMX3) : d(x1) = 1, ξ (x1) = 6}

V2
ve12 = {x1 ∈ V(HMX3) : d(x1) = 2, ξ (x1) = 12}

V6
ve10 = {x1 ∈ V(HMX3) : d(x1) = 6, ξ (x1) = 10}

V6
ve12 = {x1 ∈ V(HMX3) : d(x1) = 6, ξ (x1) = 12}

Since, |V1
ve6 | = 12m, |V2

ve12 | = 18m2
− 6m, |V6

ve10 | = 6m
and |V6

ve12 | = 6m2
−6m. Let us partitioned the edges ofHMX3

according to its degrees and ve-degrees. Let

41,6
ve6,10 = {x1x2 ∈ E(HMX3) : d(x1) = 1, d(x2) = 6,

× ξ (x1) = 6, ξ (x2) = 10}

42,6
ve10,12 = {x1x2 ∈ E(HMX3) : d(x1) = 2, d(x2) = 6,

× ξ (x1) = 10, ξ (x2) = 12}

42,6
ve12,12 = {x1x2 ∈ E(HMX3) : d(x1) = 2, d(x2) = 12,

× ξ (x1) = 12, ξ (x2) = 12}

Note that E(HMX3) = 41,6
ve6,10 ∪ 4

2,6
ve10,12 ∪ 4

2,6
ve12,12 and

|41,6
ve6,10 | = 12m, |42,6

ve10,12 | = 24m, |42,6
ve12,12 | = 36m2

− 36m.
Hence,

T(HMX3) =
∑

x1x2∈E(HMX3)
ψ(ξ (x1), ξ (x2))

=

∑
x1x2∈4

1,6
ve6,10

ψ(6, 10)+
∑

x1x2∈4
2,6
ve10,12

ψ(10, 12)

+

∑
x1x2∈4

2,6
ve12,12

ψ(12, 12)

= (12m)ψ(6, 10)+ (24m)ψ(10, 12)

+ (36m2
− 36m)ψ(12, 12).

After simplification, we get

T(HMX3) = 36m2ψ(12, 12)

+ 12m(ψ(6, 10)− 3ψ(12, 12)+ 2ψ(10, 12)).

Theorem 2: Let HMX3 be a hexagonal shaped metal tri-
halides. Then the first ve-degree Zagreb β index:

M1
βve(HMX3) = 864m2

− 144m

the second ve-degree Zagreb index:

M2
ve(HMX3) = 5184m2

− 1584m

the ve-degree Randic index:

Rve(HMX3) = 3m2
+ 12m

(√
15+

√
30

30
−

1
4

)
the ve-degree atom-bond connectivity index:

ABCve(HMX3)=3
√
22m2

+12m

(√
210+10

√
6

30
−

√
22
4

)
the ve-degree geometric-arithmetic index:

GAve(HMX3) = 36m2
+ 12m

(√
15
4
+

4
√
30

11
− 3

)
the ve-degree harmonic index:

Hve(HMX3) = 3m2
+

15
22

m

the ve-degree sum-connectivity index:

χve(HMX3) = 3
√
6m2
+ 12m

(
1−
√
6

4
+

√
22
11

)
.

Proof: For M1
βve(HMX3) which is the first ve-degree

Zagreb β index of HMX3, we have ψ(ξve(x1), ξve(x2)) =
ξve(x1) + ξve(x2), therefore ψ(12, 12) = 24, ψ(6, 10) = 16
and ψ(10, 12) = 22. Thus by Lemma 1,

M1
βve(HMX3) = 36m2(24)+ 12m (16− 3(24)+ 2(22))

= 864m2
− 144m.

ForM2
ve(HMX3) which is the second ve-degree Zagreb index

of HMX3, we have ψ(ξve(x1), ξve(x2)) = ξve(x1) × ξve(x2),
therefore ψ(12, 12) = 144, ψ(6, 10) = 60 and ψ(10, 12) =
120. Thus by Lemma 1,

M2
ve(HMX3) = 36m2(144)+ 12m (60− 3(144)+ 2(120))

= 5184m2
− 1584m.

For Rve(HMX3) which is the ve-degree Randic index of
HMX3, we haveψ(ξve(x1), ξve(x2)) = (ξve(x1)× ξve(x2))−

1
2 ,

therefore ψ(12, 12) = 1
12 , ψ(6, 10) =

1
√
60

and ψ(10, 12) =
1
√
120

. Thus by Lemma 1,

Rve(HMX3) = 36m2 1
12
+ 12m

(
1
√
60
− 3

1
12
+ 2

1
√
120

)
= 3m2

+ 12m

(√
15+

√
30

30
−

1
4

)
.

For ABCve(HMX3) which is the ve-degree atom-bond con-
nectivity index of HMX3, we have ψ(ξve(x1), ξve(x2)) =(
ξve(x1)+ξve(x2)−2
ξve(x1)×ξve(x2)

) 1
2
, therefore ψ(12, 12) =

√
22
144 ,
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ψ(6, 10) =
√

14
60 and ψ(10, 12) =

√
20
120 . Thus by

Lemma 1,

ABCve(HMX3)

= 36m2

√
22
144
+ 12m

(√
14
60
− 3

√
22
144
+ 2

√
20
120

)

= 3
√
22m2

+ 12m

(√
210+ 10

√
6

30
−

√
22
4

)
.

For GAve(HMX3) which is the ve-degree geometric-
arithmetic index of HMX3, we have ψ(ξve(x1), ξve(x2)) =
2(ξve(x1)×ξve(x2))

1
2

ξve(x1)+ξve(x2)
, therefore ψ(12, 12) = 1, ψ(6, 10) = 2

√
60

16

and ψ(10, 12) = 2
√
120
22 . Thus by Lemma 1,

GAve(HMX3) = 36m2
+ 12m

(
2
√
60

16
− 3+ 2

2
√
120
22

)

= 36m2
+ 12m

(√
15
4
+

4
√
30

11
− 3

)
.

For Hve(HMX3) which is the ve-degree harmonic index of
HMX3, we haveψ(ξve(x1), ξve(x2)) = 2

ξve(x1)+ξve(x2)
, therefore

ψ(12, 12) = 1
12 , ψ(6, 10) =

1
8 and ψ(10, 12) = 1

11 . Thus by
Lemma 1,

Hve(HMX3) = 36m2 1
12
+ 12m

(
1
8
− 3

1
12
+ 2

1
11

)
= 3m2

+
15
22

m.

For χve(HMX3) which is the ve-degree sum-connectivity
index of HMX3, we have ψ(ξve(x1), ξve(x2)) =

(ξve(x1)+ ξve(x2))−
1
2 , therefore ψ(12, 12) =

1
√
24
,

ψ(6, 10) = 1
√
16

and ψ(10, 12) = 1
√
22
. Thus by Lemma 1,

χve(HMX3) = 36m2 1
√
24
+ 12m

(
1
√
16
−3

1
√
24
+2

1
√
22

)
= 3
√
6m2
+ 12m

(
1−
√
6

4
+

√
22
11

)
.

V. TRIANGULAR SHAPED METAL TRIHALIDES
We presents a formula, which can be used to obtain any
ve-degree topological descriptors for triangular shaped metal
trihalides TMX3.
Lemma 3: Let TMX3 be a triangular shaped metal tri-

halides. Then

T(TMX3)

= 6m2ψ(12, 12)+6m (ψ(6, 10)+2ψ(10, 12)+ψ(12, 12))

+ 6 (ψ(6, 10)+ 2ψ(10, 12)− 2ψ(12, 12)) .

Proof: The graph TMX3 contains 4m2
+19m+7 vertices

and 6m2
+ 24m + 6 edges. The each vertex of TMX3 has

ve-degree 6, 10 or 12, can be partitioned according to their
degrees and ve-degrees. Let

Vj
vei = {x1 ∈ V (TMX3) : d(x1) = j, ξ (x1) = i}.

It means that the setVj
vei contains the vertices of degree jwith

ve-degree i. The set of vertices with respect to their degrees
and ve-degrees are as follows:

V1
ve6 = {x1 ∈ V(TMX3) : d(x1) = 1, ξ (x1) = 6}

V2
ve12 = {x1 ∈ V(TMX3) : d(x1) = 2, ξ (x1) = 12}

V6
ve10 = {x1 ∈ V(TMX3) : d(x1) = 6, ξ (x1) = 10}

V6
ve12 = {x1 ∈ V(TMX3) : d(x1) = 6, ξ (x1) = 12}

Since, |V1
ve6 | = 6m + 6, |V2

ve12 | = 3m2
+ 9m, |V6

ve10 | =

3m+3 and |V6
ve12 | = m2

+m−2. Let us partitioned the edges
of TMX3 according to its degrees and ve-degrees. Let

41,6
ve6,10 = {x1x2 ∈ E(TMX3) : d(x1) = 1, d(x2) = 6,

× ξ (x1) = 6, ξ (x2) = 10}

42,6
ve10,12 = {x1x2 ∈ E(TMX3) : d(x1) = 2, d(x2) = 6,

× ξ (x1) = 10, ξ (x2) = 12}

42,6
ve12,12 = {x1x2 ∈ E(TMX3) : d(x1) = 2, d(x2) = 12,

× ξ (x1) = 12, ξ (x2) = 12}

Note that E(TMX3) = 41,6
ve6,10 ∪ 4

2,6
ve10,12 ∪ 4

2,6
ve12,12 and

|41,6
ve6,10 | = 6m + 6, |42,6

ve10,12 | = 12m + 12, |42,6
ve12,12 | =

6m2
+ 6m− 12. Hence,

T(TMX3) =
∑

x1x2∈E(TMX3)
ψ(ξ (x1), ξ (x2))

=

∑
x1x2∈4

1,6
ve6,10

ψ(6, 10)+
∑

x1x2∈4
2,6
ve10,12

ψ(10, 12)

+

∑
x1x2∈4

2,6
ve12,12

ψ(12, 12)

= (6m+ 6)ψ(6, 10)+ (12m+ 12)ψ(10, 12)

+ (6m2
+ 6m− 12)ψ(12, 12).

After simplification, we get

T(TMX3)

= 6m2ψ(12, 12)+6m(ψ(6, 10)+2ψ(10, 12)+ψ(12, 12))

+ 6(ψ(6, 10)+ 2ψ(10, 12)− 2ψ(12, 12)).

Theorem 3: Let TMX3 be a triangular shaped metal tri-
halides. Then the first ve-degree Zagreb β index:

M1
βve(TMX3) = 144m2

+ 504m+ 72

the second ve-degree Zagreb index:

M2
ve(TMX3) = 864m2

+ 2664m+ 72

the ve-degree Randic index:

Rve(TMX3) =
1
2
m2
+ 6m

(√
15+

√
30

30
+

1
12

)

+

√
15+

√
30− 5

5
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the ve-degree atom-bond connectivity index:

ABCve(TMX3)=

√
22
2

m2
+ 6m

(√
210+10

√
6

30
+

√
22
12

)

+

√
210
5
+ 2
√
6−
√
22

the ve-degree geometric-arithmetic index:

GAve(TMX3) = 6m2
+ 6m

(√
15
4
+

4
√
30

11
+ 1

)

+
3
√
15
2
+

24
√
30

11
− 12

the ve-degree harmonic index:

Hve(TMX3) =
1
2
m2
+

103
44

m+
37
44

the ve-degree sum-connectivity index:

χve(TMX3) =

√
6
2
m2
+ 6m

(
1
4
+

√
22
11
+

√
6

12

)

+
3
2
+

6
√
22

11
−
√
6.

Proof: For M1
βve(TMX3) which is the first ve-degree

Zagreb β index of TMX3, we have ψ(ξve(x1), ξve(x2)) =
ξve(x1) + ξve(x2), therefore ψ(12, 12) = 24, ψ(6, 10) = 16
and ψ(10, 12) = 22. Thus by Lemma 1,

M1
βve(HMX3)

= 6m2(24)+6m (16+2(22)+24)+6 (16+2(22)−2(24))

= 144m2
+ 504m+ 72.

For M2
ve(TMX3) which is the second ve-degree Zagreb

index of TMX3, we have ψ(ξve(x1), ξve(x2)) = ξve(x1) ×
ξve(x2), therefore ψ(12, 12) = 144, ψ(6, 10) = 60 and
ψ(10, 12) = 120. Thus by Lemma 1,

M2
ve(TMX3) = 6m2(144)+6m (60+ 2(120)+144)

+ 6 (60+ 2(120)− 2(144))

= 864m2
+ 2664m+ 72.

For Rve(TMX3) which is the ve-degree Randic index of
TMX3, we have ψ(ξve(x1), ξve(x2)) = (ξve(x1)× ξve(x2))−

1
2 ,

therefore ψ(12, 12) = 1
12 , ψ(6, 10) =

1
√
60

and ψ(10, 12) =
1
√
120

. Thus by Lemma 1,

Rve(TMX3) = 6m2 1
12
+ 6m

(
1
√
60
+

2
√
120
+

1
12

)
+ 6

(
1
√
60
+

2
√
120
−

2
12

)
=

1
2
m2
+ 6m

(√
15+

√
30

30
+

1
12

)

+

√
15+

√
30− 5

5
.

TABLE 1. Numerical representation of ve-degree results for PMX3.

For ABCve(TMX3) which is the ve-degree atom-bond con-
nectivity index of TMX3, we have ψ(ξve(x1), ξve(x2)) =(
ξve(x1)+ξve(x2)−2
ξve(x1)×ξve(x2)

) 1
2
, therefore ψ(12, 12) =

√
22
144 ,

ψ(6, 10) =
√

14
60 and ψ(10, 12) =

√
20
120 . Thus by Lemma 1,

ABCve(TMX3)

= 6m2

√
22
144
+ 6m

(√
14
60
+ 2

√
20
120
+

√
22
144

)

+ 6

(√
14
60
+ 2

√
20
120
− 2

√
22
144

)

=

√
22
2

m2
+ 6m

(√
210+ 10

√
6

30
+

√
22
12

)

+

√
210
5
+ 2
√
6−
√
22.

For GAve(TMX3) which is the ve-degree geometric-
arithmetic index of TMX3, we have ψ(ξve(x1), ξve(x2)) =
2(ξve(x1)×ξve(x2))

1
2

ξve(x1)+ξve(x2)
, therefore ψ(12, 12) = 1, ψ(6, 10) = 2

√
60

16

and ψ(10, 12) = 2
√
120
22 . Thus by Lemma 1,

GAve(TMX3) = 6m2
+ 6m

(
2
√
60

16
+ 2

2
√
120
22

+ 1

)

+ 6

(
2
√
60

16
+ 2

2
√
120
22

− 2

)

= 6m2
+ 6m

(√
15
4
+

4
√
30

11
+ 1

)

+
3
√
15
2
+

24
√
30

11
− 12.

For Hve(TMX3) which is the ve-degree harmonic index of
TMX3, we haveψ(ξve(x1), ξve(x2)) = 2

ξve(x1)+ξve(x2)
, therefore

ψ(12, 12) = 1
12 , ψ(6, 10) =

1
8 and ψ(10, 12) = 1

11 . Thus by
Lemma 1,

Hve(TMX3) = 6m2 1
12
+ 6m

(
1
8
+ 2

1
11
+

1
12

)
+ 6

(
1
8
+ 2

1
11
− 2

1
12

)
=

1
2
m2
+

103
44

m+
37
44
.
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TABLE 2. Numerical representation of ve-degree results for HMX3.

TABLE 3. Numerical representation of ve-degree results for TMX3.

FIGURE 5. The first ve-degree Zagreb α index for HMX3 and TMX3.

For χve(TMX3) which is the ve-degree sum-connectivity
index of TMX3, we have ψ(ξve(x1), ξve(x2)) =

(ξve(x1)+ ξve(x2))−
1
2 , therefore ψ(12, 12) =

1
√
24
,

ψ(6, 10) = 1
√
16

and ψ(10, 12) = 1
√
22
. Thus by Lemma 1,

χve(TMX3) = 6m2 1
√
24
+ 6m

(
1
√
16
+

2
√
22
+

1
√
24

)
+ 6

(
1
√
16
+

2
√
22
−

2
√
24

)
=

√
6
2
m2
+ 6m

(
1
4
+

√
22
11
+

√
6

12

)

+
3
2
+

6
√
22

11
−
√
6.

VI. NUMERICAL RESULTS AND DISCUSSION
OF METAL TRIHALIDES
In this section we present numerical results related to
the ve-degree topological descriptors for metal trihalides.

FIGURE 6. The second ve-degree Zagreb index for HMX3 and TMX3.

FIGURE 7. The ve-degree Randic index for HMX3 and TMX3.

FIGURE 8. The ve-degree atom-bond connectivity index for HMX3 and
TMX3.

We have used different values of l, w and m to compute
numerical tables for the ve-degree indices such as the first
ve-degree Zagreb β index, the second ve-degree Zagreb
index, ve-degree Randic index, ve-degree atom-bond connec-
tivity (ABCve) index, ve-degree geometric-arithmetic (GAve)
index, ve-degree harmonic (Hve) index and ve-degree sum-
connectivity (χve) for themetal trihalides, (see Tables 1 2, 3).
Moreover, we have drawn the graphical representation based
on the above numerical computation in Figures 5–11 for

VOLUME 9, 2021 65337



F. A. Abolaban et al.: Computation of Vertex-Edge Degree Based Topological Descriptors

FIGURE 9. The ve-degree geometric-arithmetic index for HMX3 and TMX3.

FIGURE 10. The ve-degree harmonic index for HMX3 and TMX3.

FIGURE 11. The ve-degree sum-connectivity index for HMX3 and TMX3.

HMX3 & TMX3 to study the behavior of above computed
topological descriptors.

VII. CONCLUSION
The study of graphs and networks through topological
descriptors is important to understand their underlying
topologies. Such investigations have a wide range of appli-
cations in cheminformatics, bioinformatics and biomedicine
fields, where various graph invariants based assessments are
used to deal with several challenging schemes. In the analysis
of the quantitative structure property relationships (QSPRs)
and the quantitative structure-activity relationships (QSARs),

graph invariants are important tools to approximate and predi-
cate the properties of the biological and chemical compounds.
More preciously in this paper, we have computed results
ve-degree indices such as the first ve-degree Zagreb β index,
the second ve-degree Zagreb index, ve-degree Randic index,
ve-degree atom-bond connectivity (ABCve) index, ve-degree
geometric-arithmetic (GAve) index, ve-degree harmonic (Hve)
index and ve-degree sum-connectivity (χve) for themetal tri-
halides. Also the graphical comparison between the ve-degree
indices for hexagonal and triangular shaped metal trihalides
are shown in Figures 5–11.
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