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ABSTRACT Motivation: The localization of objects in images is a longstanding objective within the
field of image processing. Most current techniques are based on machine learning approaches, which
typically require careful annotation of training samples in the form of expensive bounding box labels.
The need for such large-scale annotation has only been exacerbated by the widespread adoption of deep
learning techniques within the image processing community: deep learning is notoriously data-hungry.
Method: In this work, we attack this problem directly by providing a new method for learning to localize
objects with limited annotation: most training images can simply be annotated with their whole image
labels (and no bounding box), with only a small fraction marked with bounding boxes. The training is
driven by a novel loss function, which is a continuous relaxation of a well-defined discrete formulation of
weakly supervised learning. Care is taken to ensure that the loss is numerically well-posed. Additionally,
we propose a neural network architecture which accounts for both patch dependence, through the use
of Conditional Random Field layers, and shift-invariance, through the inclusion of anti-aliasing filters.
Results: We demonstrate our method on the task of localizing thoracic diseases in chest X-ray images,
achieving state-of-the-art performance on the ChestX-ray14 dataset. We further show that with a modicum
of additional effort our technique can be extended from object localization to object detection, attaining high
quality results on the Kaggle RSNA Pneumonia Detection Challenge.Conclusion: The technique presented
in this paper has the potential to enable high accuracy localization in regimes in which annotated data is
either scarce or expensive to acquire. Future work will focus on applying the ideas presented in this paper to
the realm of semantic segmentation.

INDEX TERMS Weakly supervised learning, object localization, deep learning, X-ray, limited annotation.

I. INTRODUCTION
Large-scale labelled datasets are one of the key ingredients
in many recent algorithms in image processing and com-
puter vision. The combination of such datasets with deep
learning techniques has resulted in state-of-the-art (SOTA)
algorithms in many tasks, including classification, detection,
and segmentation. However, a problematic aspect of the stan-
dard deep learning approach is the cost of labelling, particu-
larly in localization tasks – either detection or segmentation.
In the case of detection, one wishes to find an object in an
image by placing a bounding box around it; in the more
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fine-grained task of segmentation, one wishes to localize
an object with pixel-level granularity. Generally, in order
to use deep learning to perform either of these tasks in
standard fashion, one requires a fair amount of images with
annotations that mirror the desired output: bounding boxes
in the case of detection, and pixel-level masks in the case
of segmentation. The major problem is that collecting such
annotations can be very expensive. Indeed, these annotations
are much more expensive than their counterparts in the cor-
responding classification task, in which the annotator must
simply specify a label for the image.

Our goal in this paper is to learn to perform localization
with considerably fewer annotated examples. In particular,
we consider the following setting: only a very small number

67620 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6057-8117
https://orcid.org/0000-0001-7354-0129
https://orcid.org/0000-0001-5161-9311


E. Rozenberg et al.: Learning to Localize Objects Using Limited Annotation

of examples have bounding box or segmentationmask labels,
while relatively cheap whole image (i.e., classification-style)
labels are available for each image in the dataset. Algo-
rithms that successfully solve this kind of problem havewide
applicability in computer vision, but would show perhaps
their strongest impact in medical imaging. This is due to the
fact that while annotation is expensive generally, it is even
more costly in the medical setting where the annotator must
generally be a physician.

A particular application which might benefit from this
approach is the detection of thoracic diseases within chest
X-rays. In general, this kind of detection is known to be
a complicated task for radiologists, as a scan can poten-
tially contain varying patterns each of which matches sev-
eral different pathologies. Indeed, there can be considerable
variability in the interpretation of chest radiographs, even
amongst experts [1], leading to lower reliability of these
findings [2], [3]. Thus, systems based on computer-aided
diagnosis (CAD) are desirable, as they can perform automatic
detection of disease and pathologies in a consistent way, and
perhaps with greater accuracy than human experts. To this
end, Rajpurkar et al. proposed a deep-learning-based algo-
rithm [4] which outperforms radiologists in disease classifi-
cation on the ChestX-ray14 dataset [5]. However, as noted
above, standard CAD systems are costly to train due to the
need for large amounts of annotation.

In formulating a localization algorithm trained with lim-
ited annotation, our point of departure is the approach of
Li et al. [6]. This approach is in the spirit of multiple
instance learning and has achieved SOTA results on the
ChestX-ray14 dataset. However, the method has a number of
shortcomings, both in terms of the underlying probabilistic
model – which, for example, assumes patch independence –
as well in terms of the numerical problems that arise from
the formulation. To address these shortcomings, we propose
a new technique which resolves these problems through
the introduction of a novel loss function as well as a new
architecture.

In particular, the main contributions of this paper are as
follows:

1) We propose a novel loss function for object localization
with limited annotation. This loss is a continuous relax-
ation of a well-defined discrete formulation of weakly
supervised learning, and is numerically well-posed.

2) We propose a new architecture for localization
which accounts for both patch dependence and shift-
invariance, through the inclusion of Conditional Ran-
dom Field (CRF) layers and anti-aliasing filters,
respectively.

3) We validate our technique on the problem of localiz-
ing thoracic diseases in chest X-rays, achieving SOTA
performance on the ChestX-ray14 dataset.

4) We show to how to extend our localization technique to
the problem of object detection.

The remainder of the paper is organized as follows.
Section II reviews related work. Section III formulates the

problem of localization with limited annotation and reviews
the approach of Li et al. [6]. Section IV describes our novel
loss function, focusing on its advantageous numerical proper-
ties. Section V proposes the new network architecture, detail-
ing both the CRF layers and anti-aliasing filters. Section VI
discusses various aspects of the algorithm’s implementation.
Section VII presents the experiments, including a discussion
of the data, results and ablation studies. Section VIII con-
cludes the paper.

We note that a preliminary version of this paper was
presented at the Machine Learning for Health Workshop at
NeurIPS 2019 [7].

II. RELATED WORK
Thoracic Disease Localization: As our results are demon-
strated on the ChestX-ray14 dataset of Wang et al. [5],
we begin with a brief discussion of this dataset and
corresponding algorithmic research. The dataset is a col-
lection of over 100K front-view X-ray images. Using auto-
matic extraction methods from the associated radiological
reports based on natural language processing, each image is
labelled with up to 14 different thoracic pathology classes;
in addition, a small number of images with pathologies are
manually annotated with bounding boxes for a subset of 8
of the 14 diseases. Together with the release of the dataset,
Wang et al. [5] presented the first benchmark for classifica-
tion and localization by a weakly supervised convolutional
neural network (CNN) architecture. This benchmark only
used the whole image labels for training and ignored the
bounding box annotations.

Following the release of the dataset and initial bench-
mark, several works proposed more sophisticated net-
works for more accurate classification or localization results.
Yao et al. [8] leveraged the inter-dependencies among all
14 diseases using long short-term memory (LSTM) network
for disease identification, outperforming Wang et al. [5]
on 13 of 14 classes. Rajpurkar et al. [4] proposed classi-
fying multiple thoracic pathologies by using a 121-layer
Dense Convolutional Network (DenseNet) [9], yielding
SOTA results for the classification task for all 14 diseases.
Unlike both previous methods, which do not exploit any
of the bounding box annotations, Li et al. [6] took advan-
tage of these annotations to simultaneously perform disease
identification and localization through the same underlying
model. Although their method did not surpass other methods
on the classification task, they did achieve a new SOTA
for localization. Subsequent works [10], [11] have focused
on improving the SOTA in classification; by contrast, our
focus is localization rather than classification, so we shall not
elaborate further on these results.
Object Detection: Another generally related area of inter-

est is object detection. Current SOTA object detectors are of
two types: two-stage or single-stage. The two-stage family is
represented by the ‘‘regions with CNN features’’ (R-CNN)
framework [12], comprised of a region proposal stage fol-
lowed by the application of a classifier to each of these
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candidate proposals. This architecture, through a sequence of
advances [13]–[15], consistently achieves SOTA results on
the challenging COCO benchmark [16]. The initial single-
stage detectors, such as YOLO [17] and SSD [18], exhibited
greater run-time speed at the expense of some accuracy. More
recently Lin et al. proposed RetinaNet [19], whose training is
based on the ‘‘focal loss’’; this network was able to match
the speed of previous single-stage detectors while surpassing
the accuracy of all existing SOTA two-stage detectors. These
detection approaches, however, are not aimed at tasks that
contain a small number of annotated examples, as in our
setting of interest, and are often prone to low accuracy on such
datasets. Other works have directly addressed the challenging
task of weakly supervised object detection: by leveraging
prior knowledge to impose constraints or regularizers on
the model architecture [20], [21]; through the use of rein-
forcement learning to gradually mine desirable object regions
under a region searching paradigm [22]; and by integrating
multiple instance learning and self-paced learning within the
same framework [23].
Multiple Instance Learning: We also note the multiple

instance learning (MIL) literature [24] as a type of weakly
supervised learning. MIL is a very promising approach to
the setting in which the goal is to localize or detect objects
within images, but only whole image labels are available
for training purposes. The approach treats an image as a
bag of patches (instances); the image is considered negative
if all of the patches are negative and positive if at least
one patch is labeled positive. A variety of applications are
possible using this approach. Recent applications include a
progressive learning framework for weakly supervised object
detection [25], localization of action segments in video [26],
and algorithms within the fields of geoscience and remote
sensing [27], [28]. The approach has also been adopted in
medical imaging. In particular, several studies have com-
bined MIL with CNNs, utilizing local patch information in
weakly supervised tasks. For example, Yan et al. [29] have
used the MIL framework to reveal which local regions are
discriminative, using patches to better localize body part
identifiers in CT slices, without manual annotations, and with
only image-level labelling. Zhu et al. [30] have eliminated
the need for costly annotation of training data using Deep
MIL for mass classification based on whole mammograms.
Hou et al. [31] have trained a CNN classifier that aggregates
patch-level predictions to automatically locate discriminative
patches within a whole slide tissue image, by formulating a
novel Expectation-Maximization (EM)MIL based algorithm.
Schwab et al. [32] took advantage of MIL to improve the
explainability of their detection algorithm, by jointly per-
forming classification and localization of critical findings in
X-rays. In our work, in order to incorporate examples that are
labelled for a classification task (i.e. with whole image labels)
and do not possess bounding box annotations, we utilize the
MIL approach to enforce a variant of the constraint that a
positive image must contain at least one patch that belongs
to the corresponding disease.

Conditional Random Fields: Finally, we mention Con-
ditional Random Fields (CRFs) that are often used for
structured prediction. Unlike standard classifiers that pre-
dict labels for each pixel/patch without explicit regard for
the labels of other pixels/patches, the CRF explicitly takes
account of the neighboring samples by means of a graphical
model. Dealing with dense graphs was initially consid-
ered problematic from a complexity point of view, but a
novel and efficient solution to this problem was proposed
by Krähenbühl and Koltun [33]. In this work, the pairwise
edge potentials are defined by a linear combination of Gaus-
sian kernels. In a more recent version, the edge potentials
are learned parametrically [34]. In either case, the CRF
is optimized via a series of mean-field iterations. In sub-
sequent years, other densely connected CRFs that can be
learned end-to-end as part of neural networks have been
reported with corresponding improved accuracy and com-
plexity. For example, Chen et al. [35], [36] proposed append-
ing a fully connected CRF to the final network layer, yielding
improvements in semantic segmentation accuracy. In another
instance, Bhatkalkar et al. [37] presented a way to improve
the performance of a CNN for optical disk segmentation in
fundus images by the inclusion of CRFs in the model. Finally,
we note that the main problem of incorporating CRFs into
neural networks is the slow training and inference speeds
that result; more recent works have addressed this important
issue [38], [39].

In our particular case, we are interested in localization.
Thus, wewould like to introduce the same spatial dependency
between patches in an explicit manner. To this end, we rely
on the recent pixel-adaptive convolution (PAC) approach of
Su et al. [39], due to its simplicity, excellent performance, and
ability to learn end-to-end in an efficient manner.

FIGURE 1. Base model overview [6]. Input images are processed by a
CNN, extracting their feature maps. The latter are then resized and
processed by two subsequent convolutional layers to finally output a
P × P × K tensor of patch scores.

III. PROBLEM FORMULATION
A. THE BASE MODEL
As our starting point, we take the approach of Li et al. [6],
which proposes a technique for the classification and
localization of abnormalities in radiological images. This
approach is very appealing in that it allows for localization
to be achieved with a very limited number of bounding
box annotations. We now give a brief summary of the tech-
nique. The architecture used in [6] is shown in Figure 1.
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A preact-ResNet network [40], with the final classification
layer and global pooling layer removed, is used as the back-
bone; this part of the architecture encodes the images into a
set of C feature maps. These feature maps are subsequently
divided into aP×P grid of patches. Through an application of
two convolutional layers (including batch normalization and
ReLU activation), the number of channels is modified to K ,
where K is the number of possible disease types. A per-patch
probability score for each disease class is then derived by the
application of a sigmoid function; this is denoted pkj , where
the probability is that the jth patch of the image belongs to
class k . Note that a sigmoid function is applied, rather than a
softmax, as a particular patch may belong to more than one
disease.

As mentioned above, it is assumed that some images have
bounding box annotations, while most do not. Let us define
some terms: the image is x; for a disease k , the label yk = 1
if the disease is present, yk = 0 otherwise; if the disease k is
annotated with a bounding box bk , then ak = 1, otherwise
ak = 0. We note that in practice, the bounding box bk is
produced by mapping the manually annotated bounding box
coordinates to their nearest locations on the P× P grid. As a
result, bk is a subset of the P2 patches. Now, the loss function
can then be broken into two cases, in terms of whether a
bounding box annotation is supplied or not. In the case in
which there is a bounding box for a disease of class k , i.e.
ak = 1, the annotated loss is taken to be

Lkann = − log p(yk = 1|x, bk ) (1)

where p(yk = 1|x, bk ) denotes the probability that disease k
is within bounding box bk of image x, and is given by

p(yk = 1|x, bk ) =
∏
j∈bk

pkj
∏
j∈b̄k

(1− pkj ) (2)

and b̄k is the complement of bounding box bk . The above
formula is simply the standard formula for combining inde-
pendent patch probabilities. In the case in which no bounding
box is supplied, i.e. ak = 0, the unannotated loss is

Lkun = −y
k log p(yk = 1|x)− (1− yk ) log(1− p(yk = 1|x))

(3)

where

p(yk = 1|x) = 1−
∏
j

(1− pkj ) (4)

The latter probability is simply the probability that there is at
least one patch with disease k , again assuming independence
of patches. Finally, the overall loss per image is

L =
∑
k

(
λann akLkann + (1− ak )Lkun

)
(5)

We refer to this model – the architecture and the loss – as
the base model. It was shown to attain SOTA performance in
terms of localization on the NIH Chest X-ray dataset [5].

B. ISSUES WITH THE BASE MODEL
The probabilistic formulation of Li et al. is a nice approach
to localization tasks with a very limited number of bounding
box annotations. In spite of this, there are several issues with
the technique that limit its performance:
(i) Single Patch⇒ Positive Declaration: In Equation (4)

of the above derivation for the unannotated loss, only a
single patch needs to be positive for a positive disease
detection within the image. In general, this assumption
is prone to false positives. One would like for multiple
patches to be present for a declaration; in particular,
a single positive detection could easily be caused by
noise. We would, therefore, like to do away with this
assumption, by using a novel loss function.

(ii) Numerical Issues: The paper refers to a particular
numerical problem that results from the multiplica-
tion of many small numbers, as in Equations (2), (4).
This numerical underflow is fatal to the approach,
and the problem is circumvented in [6] through a
series of unjustified heuristics as they normalized the
patch probabilities from [0,1] to [0.98,1]; resulting in
patch-level ‘‘probability scores’’ that do not necessarily
reflect the meaning of probability anymore. We pro-
pose a formulation of the loss in which these issues
never arise.

(iii) Patch Independence: In both Equations (2) and (4),
the probabilities of each patch containing an object of a
particular class (pkj ) are treated as independent between
patches. This is not correct in practice as we would like
to integrate more elaborate terms that model contextual
relationships between object/patch classes. We solve
this through the use of a Conditional Random Field
model.

(iv) Lack of Shift-Invariance: As has been pointed out
by Zhang [41], modern CNNs are not technically
shift-invariant. In order to improve the performance of
the localization, one can, therefore, address this issue
through the addition of anti-aliasing filters prior to
downsampling, as suggested in [41].

To summarize, our technique is related to the base model
but is differentiated in two key ways:
• The use of a novel loss function, which addresses many
of the aforementioned issues.

• Modifications to the architecture, specifically (a) the
incorporation of Conditional Random Field layers and
(b) the inclusion of anti-aliasing filters.

We now elaborate on each of these, in turn.

IV. THE NEW LOSS FUNCTION
A. NOTATION
As described above, the output of the basemodel is a tensor of
shape the of P×P×K ; we will continue to denote the output
as pkj , the probability is that the j-th patch of the image belongs
to class k . This output will then be fed into a series of layers
that implement a CRF model, with pkj representing the unary
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terms in the CRF. The output of the CRF is denoted as zkj .
We will discuss the details of the CRF model in Section V;
for now, we may think of zkj as a sharper estimate of whether
a particular disease k is present in patch j. zk indicates the
length P2 vector of all patch values for a given disease k .

B. THE LOSS FUNCTION: FIRST PASS
We first consider an annotated example with ak = 1, i.e. one
with a bounding box. As described previously , bk , which
consists of a subset of the patches, contains an object of
class k . In this case, the following loss function is natural:

Lkann=−I[z
k contains a blob of size ≥ τ k |bk | within bk

AND contains blobs of total size≤ρk |b̄k | within b̄k ]

(6)

where I[·] is the indicator function; τ k , ρk ∈ [0, 1] are thresh-
olds; and b̄k is the complement of the bounding box bk . A blob
may be made precise as a connected component; however,
this will not lead to a nice differentiable loss. So we make
the following continuous relaxation of the above discrete
formulation:

Lkann = −σ (1
T (I[bk ]� zk )− τ k |bk |)

· σ (ρk |b̄k | − 1T (I[b̄k ]� zk )) (7)

where I[bk ] is now an indicator function on the bounding box;
� is the Hadamard product; 1 is the vector of all 1’s; and σ is a
sigmoid function, i.e. a smooth approximation to the indicator
function. What this says is that there must be a total of τ k |bk |
patches within bk which detect class k; the relaxation is that
the total no longer has to be in a single connected component.
This is a reasonable relaxation, especially since the CRF
already encourages smoothness. In addition, we require that
there be fewer than ρk |b̄k | patches outside of bk which detect
class k .

Note that this logic extends in a straightforward manner
to the case of an unannotated example with ak = 0, when
there is no bounding box specified. In the case of a positive
example (i.e. one in which disease k is present), the loss is
simply

Lkun|pos = −σ (1
T zk − τ̂ k ) (8)

so that the threshold τ̂ k now has a meaning in absolute terms,
i.e. the absolute number of patches vs. the number of patches
relative to the size of a bounding box. In the case of a negative
example – where disease k is absent – we have an equation
analogous to (8):

Lkun|neg = −σ (ρ̂
k
− 1T zk ) (9)

where ρ̂k is another threshold, whose meaning is in terms of
the absolute number of patches, similar to τ̂ k . Finally, we can
combine Equations (8) and (9) to get

Lkun = −y
kσ (1T zk − τ̂ k )− (1− yk )σ (ρ̂k − 1T zk ) (10)

C. ADDRESSING ISSUES (I) AND (II)
The above formulation addresses Issues (i) and (ii) raised in
Section III. Regarding Issue (i), Equation (8) requires more
than a single patch in order to make a positive declaration; the
number of patches must be equal to τ̂ k , which is a per-class
parameter that can be chosen. Regarding Issue (ii), neither
Equations (7) or (10) involve themultiplication ofmany small
values; indeed, both are well-posed from a numerical point of
view.

D. DEALING WITH VANISHING GRADIENTS
Due to the presence of sigmoid functions in Equations (7)
and (10), in practice, we experience issues of vanishing gradi-
ents during training. We propose the following remedy, based
on a different relaxation. We replace Equation (7) with

Lkann = |b
k
|
−1 ReLU(τ k |bk | − 1T (I[bk ]� zk ))
+ |b̄k |−1 ReLU(1T (I[b̄k ]� zk )− ρk |b̄k |) (11)

Note that there are three fundamental differences between
Equations (7) and (11). First, we have replaced the sigmoid
functions, σ , with ReLU functions; this has the effect of
still leading to minimal loss (in this case, zero) once the
constraints are satisfied, but leads to more nicely behaved
gradients. Second, we have replaced the multiplication with
addition. Once sigmoids have been replaced by ReLU’s,
the notion of a ‘‘fuzzy AND’’ relaxation is no longer rele-
vant; in this case, an addition makes more sense, and again
leads to better-behaved gradients. Finally, sigmoids are scaled
between 0 and 1, whereas ReLU’s can grow without bound;
this necessitates the insertion of a scaling factor of |bk |−1 and
|b̄k |−1, to ensure that the two terms in the sum are properly
balanced.
Similarly, for unannotated examples we replace

Equation (10) with:

Lkun = yk ReLU(τ̂ k − 1T zk )+ (1− yk ) ReLU(1T zk − ρ̂k )

(12)

The thresholds τ k , τ̂ k , ρk , ρ̂k can be treated as param-
eters of the network, that can be optimized during train-
ing, or can be considered hyperparameters. Note that the
losses described in Equations (11) and (12) do not suffer from
any numerical issues. This is due to the fact that they are
not the product of many individual probabilities; rather, they
aggregate information across patches in such a way that the
resulting loss is numerically stable.

E. BALANCING FACTORS AND THE FINAL LOSS FUNCTION
There are two sources of data imbalance to account for. The
first is the large imbalance of negative (non-diseased) vs.
positive (diseased) examples in the data. To deal with this,
we modify Equation (12) slightly, to read

Lkun = yk ReLU(τ̂ k − 1T zk )+ γ (1− yk ) ReLU(1T zk− ρ̂k )

(13)
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where γ is the ratio of positive to negative examples in the
data. The latter de-emphasizes negative examples relative to
the positive examples.

The second form of imbalance we must account for is that
between the annotated and unannotated examples, in case
both are used in training. In practice, there are usually
many more unannotated examples available. However, this
is already accounted for by the factor λann in Equation (5),
which is set to a value greater than one. Combining our own
annotated and unannotated losses in Equations (11) and (13),
respectively, using Equation (5), we arrive at the final form
of the per-example loss:

L(x, y, a, b) =
∑
k

Lk (x, y, a, b) (14)

where

Lk = λann ak
[
|bk |−1 ReLU(τ k |bk | − 1T (I[bk ]� zk (x)))

+ |b̄k |−1 ReLU(1T (I[b̄k ]� zk (x))− ρk |b̄k |)
]

+ (1− ak )
[
yk ReLU(τ̂ k − 1T zk (x)) (15)

+ γ (1− yk ) ReLU(1T zk (x)− ρ̂k )
]

and the dependence of the z variables on the image x has been
made explicit.

V. ARCHITECTURAL MODIFICATIONS
A. CRF MODEL
As mentioned in Issue (iii) in Section III, we would like to
do away with the assumption of patch independence. Indeed,
in our derivation of Equation (15), we did not make use of
such assumptions. However, to further bolster the dependence
between neighboring patches, we introduce a CRF model
into our network. The CRF introduces, in an explicit manner,
a spatial dependency between patches. The effect of the CRF
is to increase the confidence for a given patch’s predicted
label, and thereby to improve localization. There are sev-
eral choices amongst neural network-compatible CRFs; we
choose the recent pixel-adaptive convolution (PAC) approach
of Su et al. [39], due to its simplicity and excellent perfor-
mance. We thus integrate the PAC-CRF modification to our
base network and train the model end-to-end.

Given the patch probability outputs pkj of the base model,
the unary potentials of the CRF are simply taken as the
ψ

(u)
j (k) = pkj . Thus, in the absence of neighbor dependence,

the CRF will simply choose zkj = pkj . Neighbour dependence
may be introduced through pairwise potentials. As in [39],
we take this potential to be ψ (p)

jl (kj, kl) = G(fj, fl)Wkjkl
(ξj − ξl), where f are a set of learnable features on the P× P
grid;G is a fixedGaussian kernel; ξj is the pixel coordinates of
patch j; andW is the inter-class compatibility function, which
varies across different spatial offsets, and is also learned.
The pairwise connections are defined over a fixed window�

FIGURE 2. The network architecture. In the diagram, the image is x ; for a
disease k , the label yk = 1 if the disease is present, yk = 0 otherwise; if
the disease k is annotated with a bounding box bk , then ak = 1,
otherwise ak = 0. (y and a are one-hot vectors.) Our network consists of
two branches: the upper one has the same architecture as in Figure 1,
though modified with shift-invariant anti-aliasing filters, and computes
the unary terms of the CRF model. The lower branch extracts features
from the input images to form a feature-tensor of the same size (P × P)
as the unary terms, which are used in the pairwise terms. Both enter into
the PAC-CRF [39], outputting a P × P × K tensor of patch scores
{zk (x)}Kk=1 for the input image x . The latter are used to calculate the loss
function in equations (14) and (15).

around each patch. As our unary model outputs a P× P× K
tensor, we insert two 2D convolution layers immediately
prior to the PAC-CRF model ; each such layer is followed
by a rectified linear unit and batch-normalization. The output
of this part of the network is a tensor with the same size as
the input image. Please refer to Figure 2.

B. ANTI-ALIASING
An important property of any model whose goal is to per-
form localization or segmentation is that the output of the
model should be shift-invariant with regard to its input.
However, as Zhang [41] has noted, standard CNNs use
downsampling layers while ignoring sampling theorem, and
are therefore not shift-invariant; this is in spite of the fact
that CNNs are commonly used as the backbone of many
localization/segmentation tasks. To circumvent this problem,
an anti-aliasing filter is required prior to every downsampling
part of the network. In particular, Zhang [41] proposed the
insertion of a blur kernel as a low-pass filter prior to each
downsampling step in the network, and thereby demonstrated
an increased accuracy across several commonly used archi-
tectures and tasks. Following [41], we thus modify the back-
bone of our base model and integrate such low-pass filters
as part of the preact-ResNet network [40]. This effectively
addresses Issue (iv) in Section III.

VI. IMPLEMENTATION DETAILS
The flow of our overall training regime is illustrated in
Algorithm 1 and Figure 3; we now describe the training
procedure in more detail. In Stage I, we train the unary terms
using the model without the PAC-CRF until convergence.
Once Stage I is complete, we freeze this model; in Stage II,
we train only the PAC-CRF part. It then remains to learn
the per-class thresholds τ k , τ̂ k , ρk , ρ̂k . These thresholds are
related to the empirical distribution of the areas occupied by
the corresponding pathology within the image. It is natural
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Algorithm 1 Training procedure

Initialize and freeze the per-class thresholds: τ k , τ̂ k , ρk , ρ̂k

Stage I:

• Train the model without PAC-CRF to obtain unary terms
→ ψ

(u)
j (k)

Stage II:

• Freeze ψ (u)
j (k)

• Train PAC-CRF module to obtain patch probabilities
→ zkj

while per-class thresholds have not converged do
Freeze the model and train τ k , τ̂ k , ρk , ρ̂k

Freeze τ k , τ̂ k , ρk , ρ̂k and repeat Stage II
end

FIGURE 3. The stages of the training regime described in Algorithm 1. For
reference, the overall architecture of the network is shown in detail
in Figure 2. For each stage, the blocks marked in orange are those whose
parameters are optimized within that stage. By contrast, the blocks
marked in gray have their parameters frozen (i.e. not optimized) for that
stage. The block marked in blue represents the post-processing stage of
upsampling at inference time.

to treat those thresholds as parameters of the network, which
can be optimized during training, thereby allowing them to
adapt to the area distributions. Unfortunately, this quickly
leads to the degenerate solution, i.e: τ, τ̂ → 0, ρ → 1 and
ρ̂ → P2. In order to avoid reaching the degenerate solution,
we employ the following procedure: we begin by freezing the
thresholds, and training only the network weights; we then
freeze the network weights, and find the optimal thresholds;
we continue to alternate this procedure until convergence.
At inference time we simply use the trained model to obtain
patch probability scores of the objects, and then use bilinear
upsampling to scale back to the image dimensions.

We now discuss the complexity of various parts of our
model, as expressed in terms of the number of parameters.
The entire model contains 35M parameters. The dominant
component is the ResNet50 model, which is responsible for
23M parameters. The next largest component derives from
the convolutional layers which are appended to the end of the
ResNet model and are responsible for the unary terms, see the
upper branch in Figure 2; these account for 10M parameters.
The remainder of the parameters (2M) are due to the pairwise
terms (lower branch in Figure 2) and the PAC CRF model.
The latter number is quite small, which is especially true
when the patch grid is of low resolution, which is the case in
all of our experiments (we use 20×20). Finally, note that the
inclusion of anti-aliasing filters does not add any parameters.
In terms of the computational complexity (i.e. algorithm run-
time), the same conclusions apply: nearly all of the run-time
is due to the use of the ResNet backbone, while the CRF adds
a negligible computation overhead.

VII. EXPERIMENTS
A. DATASET
We have evaluated our model on the NIH Chest X-ray
dataset [5]. The NIH Chest X-ray dataset consists
of 112,120 frontal-view X-ray images with a resolution of
1024 × 1024, and annotated with 14 disease labels (each
image can have multiple labels). 60,361 of the images
(about 54%) are labelled as having ‘‘no finding’’; out of
the remaining 51,759 images which have at least one dis-
ease label, only 880 images have bounding box annotations.
To summarize: only 0.8% of images in the dataset possess
bounding boxes.

Images can have more than one label or one bounding box,
so there are 81,176 class labels and a total of 984 labelled
bounding boxes. The 984 bounding boxes annotations are
only given for 8 of the 14 disease types. Refer to Table 1 for
further details.

TABLE 1. The distribution of class-labels and bounding-box annotations
for each disease in the NIH Chest X-ray dataset. No-finding is the case in
which no disease was detected.

B. MODEL SETTINGS
We use ResNet-50 as the backbone of our model, and take
P = 20 for a 20 × 20 patch grid. Both of these selections
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are made to ensure a fair comparison vis-a-vis Li’s model [6],
which has produced SOTA results for localization on the NIH
Chest X-ray dataset. More specifically, our backbone is a
preact-ResNet-50 network [40] (as in [6]). We initialize the
network weights based on ImageNet [42] pre-training and
then allow them to evolve as training proceeds. The images
are 1024× 1024, but we have resized them to 512× 512 for
faster processing; we have also normalized the image range
to [−1, 1], as we found this led to faster convergence.We take
the batch size to be 48. Hyperparameter tuning yields the
following settings: λann = 70, an exponentially decaying
learning rate initialized to 0.001, and use of the ADAM
optimizer [43] accompanied by a weight decay regularization
coefficient equal to 0.01. Finally, for the PAC-CRF module
we use a 19 × 19 PAC filter, to accommodate the 20 × 20
patch grid resolution.

C. EVALUATION METRICS
We are interested in localization accuracy, so we evaluate
solely over annotated examples. We use Intersection-over-
Union (IoU) and Intersection-over-Region (IoR) to measure
localization accuracy. A patch is taken to be positive, i.e. the
disease k is present in patch j, if its value is greater than 0.5:
zkj ≥ 0.5. The union of all positive patches is the detected
region. The IoU and IoR can then be computed between the
ground truth bounding box and the detected region.

A localization is taken to be correct if IoU ≥ T or IoR ≥ T
for given threshold T ; following the practice of [6], we use
T = 0.1. Performance statistics are then computed over
5-fold cross-validation of the annotated examples.

D. EVALUATION METHODOLOGY
We compare our results with those of Li et al. [6], which
represent the SOTA for the localization task on the NIH
Chest X-ray dataset; and those of Wang et al. [5], that pre-
sented the first benchmark for this task. We examine three
separate settings: (a) the model is trained using only 80%
of the annotated examples, with the 80% representing the
training part of the fold; (b) and (c) the model is trained
using 80% of the annotated examples as described in (a),
as well as 10% or 20%, respectively, of the unannotated
examples, representing about 10k or 20K examples (selected
randomly).More specifically, in settings (b) and (c) themodel
is pre-trained for the unary terms of setting (a), and then all
parameters are allowed to evolve as training proceeds. In all
three settings, the results are evaluated on the remaining 20%
of the annotated examples of each fold. This specificationwas
chosen to agree with that of [6] and to make a relatively fair
comparison with [5] that evaluated over the entire annotated
dataset – since we use 5-fold cross-validation, the complete
set of annotated images has been evaluated. Note that the
division of images is made at the patient level, keeping unique
patients in each fold.

We also compare our localization results with a state of
the art detection network RetinaNet [19] on the same NIH
Chest X-ray dataset. RetinaNet exploits only the annotated

examples and is not generally intended to exploit the positive
unannotated examples to improve detection. Thus RetinaNet
results are compared with ours only for setting (a) – for anno-
tated samples only (i.e 0% unannotated samples). The imple-
mentation [44] we used for RetinaNet leads to very similar
results as those presented in [19]. We allowed 100 detections
per image, while selecting the bounding box with the highest
score for each class to measure the IoU and IoR accura-
cies. Training was stopped at the epoch which possessed
the best average validation results over all five folds, i.e.
before overfitting the training data. We chose the remainder
of the parameters according to the optimal settings in [19]: for
example, the focal parameter γ was set to 2, and theweighting
factor α was set to 0.25.

E. RESULTS
Overall Results: In Table 2 we present two versions of the
localization accuracy, with the first based on IoU and the sec-
ond based on IoR. The standard deviation of the reported
results is shown whenever they are given in their work; best
results are shown in bold. Our method outperforms that of
Li et al., Wang et al. and presents superior results vs. Reti-
naNet. In particular, we outperform Li et al. for every disease
class, for both IoU and IoR, as well as for both settings in
common - with no extra unannotated data added, and with
20% unannotated data.

Examining our IoU accuracy more closely as compared
to that of Li et al., Table 2 reveals several patterns. First,
we perform considerably better than Li et al. when no unan-
notated data is added; for example, the accuracy on Atelec-
tasis and Mass is nearly double that of Li et al., whereas the
performance on Nodule is five times better. Second, with the
addition of unannotated data, the gaps narrow – for example,
Nodule is now slightly less than double, and many other dis-
ease classes have a smaller gap – but the gap is still present for
each disease class. We hypothesize that our improvement is
less in most cases simply because the algorithm trained with
no unannotated data already has a fairly high performance;
thus, the marginal benefit of adding the unannotated data is
smaller.

We also present superior results over RetinaNet, as well
as more stable results with regard to standard deviation.
Wang et al. [5] did not train with annotated samples but only
used the annotated examples for validation; this may explain
why they achieve poorer results. It may also give a good indi-
cation as to how crucial a small dataset of annotated examples
can be to significantly improving localization results.
The Role of Unannotated Data: In examining our own

results, wemay see that the addition of unannotated data often
helps, but does not always do so. In particular, comparing
0% to 20% shows that there is an increase in localization
accuracy for four of the eight diseases – Infiltration, Mass,
Nodule, Pneumothorax – while two diseases, Cardiomegaly
and Pneumonia, undergo little or no change. The remaining
two, Atelectasis and Effusion, actually suffer a decrease in
accuracy due to the addition of the extra unannotated data.
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TABLE 2. IoU and IoR disease localization accuracy, with 5-fold cross-validation (cv). 80% of the annotated (ann[%]) examples were used for training,
in addition to either 0%, 10% or 20% of the unannotated (un[%]) examples (selected randomly).

In examining the data in Table 1, the solution to this
puzzle becomes apparent: Atelectasis and Effusion have the
largest number of annotated examples out of the eight dis-
ease classes, with 18.3%, 15.6% out of the 984 bounding
boxes annotations. This explains why they have quite high
localization accuracies to begin with, when no unannotated
data has been added (0.818 and 0.882, respectively); and
why the addition of extra unannotated examples does not
increase accuracy. On the flip side, Nodule andMass have the
smallest number of annotated examples, with 8% and 8.6%
out of the 984 bounding boxes annotations, which explains
why adding unannotated data helps the most in these cases.
It is interesting to note that Pneumonia has high accuracy
and a decent number of annotated examples, 12.2%; the
main reason it differs from Atelectasis and Effusion is that
it also has a relatively small number of unannotated exam-
ples, 1,431 out of all unannotated examples, compared to
11,559 and 13,317 respectively for Atelectasis and Effusion.
Thus, the addition of a relatively small number of unannotated
examples does not have a strong influence on the accuracy
of Pneumonia detection. We note that the IoR data is fairly
similar to the IoU data, and most of the observations above
hold in this case as well. The exception is Nodule, for which
we see a decrease in IoR as we increase the unannotated
examples, due to the very small size of the pathology.

Interestingly, despite the fact that the 984 bounding box
annotations are only given for 8 of the 14 disease types,
we have noticed that for the case in which we incorporate
unannotated examples during training, we obtain superior
results by learning on the full complement of 14 disease types.

This seems to imply some interesting interdependence
amongst disease classes.
Qualitative Examples and Failure Modes: Qualitative

examples of the algorithm’s localizations are shown in
Figure 4, where each column represents different pathology,
and the last row demonstrates failure modes. These images
show good localization results for a highly varied distribution
of examples; there is generally a good fit to the bounding
box positions, while not overfitting to the bounding boxes’
rectangular structure. Some examples are also shown for
the case of multiple-class annotations, which the algorithm
handles without difficulty.

Regarding the failure modes, i.e. IoU < 0.1, we see a
variety of different issues: examples where the position of
the disease is incorrectly detected and examples where the
area of the disease is too large. We hypothesize that the main
reason stems from the small number of annotated examples
used for training. In such a case, when the algorithm is unable
to correctly identify the location of the disease, the most
statistically probable location is chosen. This may lead to
a wider localization area covering one or two of the lungs,
or cause a bias with localizing the disease. It is possible that
using augmentation may do away with this kind of overfitting
and reduce these occurrences.
The Per-Class Thresholds: We now discuss the optimal

thresholds. For all classes k , τ k and ρk converged to 1 and
0.05 respectively; the former encourages high patch values
around the disease and the latter encourages low values out-
side of the bounding box. Similarly, for all classes k , ρ̂k

converged to 0, encouraging low patch values within X-ray
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FIGURE 4. Examples of localized pathologies on test images. The colored blob is the result of our localization algorithms (prior to thresholding), while the
ground truth is marked by a bounding box. Each column represents a different pathology, indicated in the caption. In images where two diseases are
present, there is a double annotation. The last row demonstrates failure modes.

images that do not contain any disease. This is quite intuitive:
in the former case, the network is willing to tolerate some
appearance of the disease outside of the bounding box; in
contrast, in the latter case no disease is present, and the
network would prefer to see absolutely no positive patches
anywhere. One can similarly explain the value of τ k con-
verging to 1: our accuracy is measured via the IoU and IoR
metrics, both of which encourage positive labelling within the
entire bounding box.

The τ̂ k values converged to more interesting values that
are specific to each disease; at convergence, the τ̂ values of
Atelectasis, Cardiomegaly, Effusion, Infiltrate, Mass, Nod-
ule, Pneumonia, and Pneumothorax are 37, 80, 41, 63, 41,
10, 41 and 30 respectively.1 These values are related to the
empirical distribution of the areas occupied by the corre-
sponding pathology within the image. Indeed, the τ̂ k values
are actually very close to the mean area of their bounding
boxes (measured on a 20× 20 patch grid) and therefore pos-
sess information regarding the average size of the disease. For
example, note the τ̂ values for two diseases, Cardiomegaly
(80) and Nodule (10); these values accord with empirical
reality, as Cardiomegaly is known to be relatively larger than
other diseases while Nodule is relatively smaller.

F. ABLATION STUDY: THE ROLE OF THE CRF MODEL
In Table 3 we measure the influence of adding the CRF sub-
model into our model and compare localization accuracy with

1For the remaining six pathologies, each of which has zero images anno-
tated with bounding boxes, the τ̂ values each converged to 40.

and without it. The results confirm our hypothesis: having
spatial dependence between patches and dependence between
channels (diseases) leads to an increase in the patch-score
confidence for the predicted label. Indeed, we see that the
accuracy improves with the CRF model in all cases.

Figure 5 compares the localization outcome with and with-
out adding the CRF model. It can be seen that the CRF model
is crucial for better localization performance. In particular:
in the case of Effusion, Mass and Pneumonia it eliminates
irrelevant segments; in the case of Nodule and Pneumothorax,
it refines the localization of the disease; and in the case
of Atelectasis and Infiltrate, it more accurately detects the
disease.

G. EXTENSION TO DISEASE DETECTION - A PROOF
OF PRINCIPLE
With slight modification, our proposed method can be
extended to performing traditional detection with bounding
boxes (rather than localization) of diseases in chest X-ray
images. The goal of this extension is to demonstrate the
ability of our model to find rectangular chunks that are spa-
tially well separated. This extension is essentially a proof of
principle, as the focus of our work is and remains localization.
Nevertheless, it is instructive to see the system in action on a
parallel task.

We evaluate our algorithm on a dataset in which the goal is
to detect a single disease, namely Pneumonia, whose details
we describe shortly. Given the fact that we are now interested
in detection, and specifically detection of a single disease,
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TABLE 3. The influence of the CRF model. IoU and IoR disease localization accuracy, with 5-fold cross-validation (cv). 80% of the annotated (ann[%])
examples were used for training, with 0% unannotated examples. +/− denote including/not including the CRF model.

FIGURE 5. Comparison of localized pathologies on test images with (upper row) or without (lower row) CRF included. The colored blob is the result of our
localization algorithm, while the ground truth is marked by a green bounding box. Each column represents a different pathology, indicated in the caption.

we make three modifications to the structure of our model.
(1) We change the parameters of the output tensor – the patch
grid is set to 128 × 128 to improve detection separability,
and we take the number of channels to be K = 4. This
128×128×4 output tensor is then summed over the channel
domain, resulting in a localization heatmap. (2) The threshold
indicating a patch in the localization heatmap to be positive,
i.e. indicating the presence of pneumonia, is increased to
0.995. The latter number was chosen by a validation proce-
dure. (3) We use ResNet-101 as the backbone, which showed
slightly better performance on the detection task.

The remaining parts of the architecture, including all
hyperparameters, remain unchanged. The network is trained
for 50 epochs with batch size of 27. To convert the binary
mask into bounding boxes, a simple non-tunable algo-
rithm [45] is applied. Finally, the confidence level for each
bounding box is derived by averaging the patch scores within
the box by its area.

The dataset we use for evaluation is the Kaggle RSNA
Pneumonia Detection Challenge dataset [46], which com-
prises 26,684 chest X-ray images. Each image may contain a
number of annotations to indicate the presence of pneumonia;
an image is considered positive if one or more annotations are
present. The dataset also includes an independent private test
set with 3,000 images and a published private leaderboard.
The challenge evaluates the performance using the mean
average precision (mAP) score with different intersection
over union (IoU) thresholds; the threshold values range from
0.4 to 0.75 with a step size of 0.05. A score of 1 means a good

overlap between the derived bounding boxes and the ground
truth. A score of 0 can be due to either a false positive or a
detection with insufficient overlap, i.e. all detections have
bounding boxes with IoU less than 0.4 with a ground truth
object. The bounding boxes are evaluated in order of their
confidence levels. We use 80% of the public data for training
while the remaining 20% is used for validation.

In general, our algorithm was not designed to deal with
a dataset like the RSNA Kaggle Challenge for two rea-
sons. First, as we have already emphasized, our algorithm
is designed to be a localization algorithm rather than a
detection algorithm. That is, it generates blobs with arbitrary
shape rather than rectangular bounding boxes. Second, our
algorithm focuses on the scenario of weak supervision; the
RSNA Kaggle Challenge, by contrast, is not concerned with
weak supervision, as all positive images have a bounding
box. As a result, our algorithm is not perfectly suited to
the RSNA Kaggle Challenge dataset. Nevertheless, we were
able to demonstrate good performance on this dataset, and
confirmed that the algorithm is indeed able to generate boxes
that are spatially well separated, thereby identifying multiple
locations of the disease.

Figure 6 show qualitative examples of our detection results.
It shows the localization heatmap (prior to thresholding) and
the resulting bounding boxes for several example images
from the validation set. These images display a wide range of
mAP scores, and a varying number of annotations. Observe
that although our algorithm is not perfectly suited to this
kind of task, it demonstrates good localization performance:
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FIGURE 6. Qualitative performance on the Kaggle RSNA Pneumonia Detection Challenge validation set. In every image pair there are: left image - the
localization heatmap (prior to thresholding), right image - derived bounding boxes (white) and ground-truth (green) on the example image. Below
each image pair is its mean average precision (mAP) score. We show a broad range of mAP scores, as well as a varying number of annotations per
image.

for example, the topmost left image localizes the pneumonia
quite well despite the fact that the mAP score is 0. Addition-
ally, we see examples where the algorithm obtains relatively
high mAP scores for two or three target bounding boxes;
this confirms that we can indeed identify multiple discrete
locations. The overall mAP for the private dataset is 0.134.
While this result is not at the same level as the dedicated
ensemble methods winning first place in the challenge (mAP
scores in the range of 0.22-0.255), our algorithm nevertheless
demonstrates good performance given that it is designed for
localization rather than detection; and weakly supervised data
rather than fully supervised data.

VIII. CONCLUSION
We have presented a new technique for localization with
limited annotation. The training of our network requires
very few bounding box annotations, instead relying in large
part on much cheaper whole image annotations. As a result,
the method is widely applicable to situations in which box-
based annotations are expensive, such as medical imaging.
The method is based on a novel loss function, which is math-
ematically and numerically well-posed; and an architecture
that explicitly accounts for patch non-independence and shift-
invariance. We demonstrate our algorithm’s efficacy on the
task of thoracic disease localization in chest X-rays. The algo-
rithm is able to localize multiple diseases in a given image,
and we demonstrate SOTA results for the localization of 8
different classes in the ChestX-ray14 dataset. Additionally,
we show how our algorithm can be extended from the task
of localization to that of object detection, with the resulting
detector achieving high quality results on the Kaggle RSNE
Pneumonia Detection dataset. Future work will focus on

applying the ideas presented in this paper to the realm of
semantic segmentation.
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