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ABSTRACT This paper presents a probabilistic trajectory prediction of cut-in vehicles exploiting the infor-
mation of interacting vehicles. First, a probability distribution of behavioral parameters, which represents the
characteristics of lane-change motion, is obtained via Gaussian Process Regression (GPR). For this purpose,
Gaussian Process (GP) models are trained using real-world trajectories of lane-changing vehicles and
adjacent vehicles. Subsequently, the future states of the lane-change vehicle are probabilistically estimated
using a path-followingmodel, which introduces virtual measurements based on the information of behavioral
parameters. The proposed predictor is applied to the motion planning and control of autonomous vehicles. A
Model Predictive Control (MPC) is designed to achieve predictive maneuvering of autonomous vehicles
against cut-in preceding vehicles. The proposed predictor has been evaluated in terms of its prediction
accuracy. Also, the performance of the proposed predictor-based control has been validated via computer
simulations and autonomous driving vehicle tests. Compared to conventional prediction methods, it is shown
that the interaction-aware proposed predictor provides improved prediction of cut-in vehicles’ motion in
multi-vehicle scenarios. Furthermore, the control results indicate that the proposed predictor helps the
autonomous vehicle to reduce the control effort and improve ride quality for passengers in cut-in scenarios,
while guaranteeing safety.

INDEX TERMS Autonomous vehicle, autonomous driving, Gaussian process (GP), machine learning,
vehicle trajectory prediction, interaction-aware motion prediction, model predictive control.

I. INTRODUCTION
Autonomous driving technology has been rapidly developed
as the performance of electronic and mechanical devices
and computer software improves [1]. Taking advantage of
the development of the sub-modules in autonomous vehi-
cles, researchers have tried to develop algorithms that enable
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autonomous vehicles to perform various tasks. Autonomous
vehicles are expected to provide convenience to drivers and
ensure safety through these technological advances. More-
over, the role of autonomous driving performance is impor-
tant in situations in which safety is greatly affected by the
driver’s attention and maneuverability. In particular, response
to lane-changing vehicles is one of the situations in which
many accidents occur due to the driver’s insufficient judg-
ment or lack of attention [2]. Transportation statistics from
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the United States reveal that accidents related to lane change
account for between 4% and 10% of total accidents in the
country [3], [4]. Analysis of traffic accident data in the
Netherlands shows that the proportion of accidents caused
by lane changes was 12.6% of the total [5]. Accidents from
lane changes affect traffic flow on roads by causing 10% of
latencies [6]. Therefore, resolving the cut-in vehicle response
problem through autonomous driving is expected to con-
tribute significantly to improving safety and reducing passen-
gers’ anxiety.

Autonomous driving algorithms can be divided into envi-
ronment perception, decision-making, and control in func-
tional units [7]. In the field of decision-making and control,
it is essential to predict the motion of surrounding vehicles
in order to evaluate the risk of collision and establish a
behavioral plan. Many studies have dealt with the control
methodology of autonomous driving by reflecting the predic-
tion results of surrounding vehicles [8]–[11]. These studies
have reported that the application of the prediction algorithm
to the control helps to improve safety and establish natural
behavior. Because the accuracy of the prediction result has an
influence on the control strategy, accurate motion prediction
is required to prevent threats to safety or sudden changes in
an automated vehicle’s motion.

Many researchers have devised motion prediction algo-
rithms using a variety of methods. Several works have
used physics-based motion models which assume con-
stant physical variables within the prediction horizon:
Constant Velocity (CV) model [12], Constant Acceler-
ation (CA) model [13], [14], Constant Turn Rate and
Velocity (CTRV) model [15], and Constant Turn Rate and
Acceleration (CTRA)model [16]. Although these approaches
allow for simplification of the model and low computa-
tional cost, the prediction results are not suitable for long-
term prediction due to an inability to capture motion pattern
changes within the wide prediction horizon. To consider the
variability of physical parameters, researchers havemixed the
simple physics-based models using the Interactive Multiple
Model (IMM) approach while assuming the transition prob-
ability matrix with respect to the motion modes [17].

A lot of research has defined a set of maneuvers that
represents the driving situations semantically. To derive the
prediction results at the trajectory level, the motion model
is defined separately for each maneuver. Lane-keeping and
lane-changing maneuvers have been mainly treated to con-
struct the maneuver-based prediction model [18]–[20]. In the
case of lane-change maneuvers, assumption of the behavioral
rule has been widely applied to several works. To model
the predictive trajectory of a lane change, a sinusoidal func-
tion [21], [22] and a quintic function [23] have been suggested
with the constraints related to the current states and final
states. A feedback control approach has been used to imitate
the drivers’ tracking motion of the desired centerline [24].
A potential field-based approach has been applied to generate
the predictive path of surrounding vehicles considering the
adjacent obstacles [25]. In the rule-based prediction model,

however, fine assumption of the behavioral rule is required
to secure the reliable prediction performance, which requires
many parameters related to the motion model. Furthermore,
advancement of the behavioral rule that describes the general
drivers’ motion requires complex motion assumptions, which
increases the difficulty of parameter tuning.

Based on the requirement of the human-driven model,
machine learning has been widely applied to the prediction
of driving motion. Trajectory prediction methods based on
soft clustering have been suggested to probabilistically model
the conditional distribution of future trajectories given past
trajectories utilizing a Gaussian Mixture Model (GMM) or
a Variational Gaussian Mixture Model (VGMM) [26], [27].
A Gaussian process has been introduced to predict the
probability distribution of vehicles’ future positions based
on velocity field modeling on spatial space [28], [29].
A Radial Basis Function Network (RBFN) has been used
to derive a quintic polynomial approximation of predicted
positions [30]. A Variational Autoencoder (VAE) has been
applied to learn the distribution of a latent variable that
is used to generate the future trajectories of vehicles [31].
However, the aforementioned methods have limitations in
terms of considering the interaction among surrounding
vehicles in the trajectory-level prediction because only the
information about individual vehicles is reflected to model
the corresponding drivers’ pattern. Many researchers have
tried to model the interaction in the traffic environment.
Information about nearby vehicles has been concatenated in
input features of the learning framework [32]–[34]. Convolu-
tional social pooling has been applied to Long Short-Term
Memory (LSTM) for learning interdependencies between
vehicles [35]. However, these approaches require the obser-
vation of a large number of surrounding vehicles, which is
usually not available in automated vehicles based on local
sensors due to occlusion and the inherent limit of perception
range.

This study focuses on improving the trajectory-level pre-
diction accuracy of lane-changing vehicles and perform-
ing suitable control against cut-in maneuvers of the side
lane vehicle. The proposed predictor applies a machine
learning-based approach to estimate the crucial parameters
of lane-change motion. The future states of cut-in vehicles
are probabilistically predicted by applying a path-following
model. The probability distribution of future states is applied
to the control of an autonomous vehicle to proactively react
to the cut-in vehicle. Vehicle tests have been conducted to
evaluate the improvement of control performance allowed by
accurate prediction results.

The main contributions of this work are summarized as
follows:

1) Lane-changemotion of cut-in vehicles is predictedwith
consideration of the interaction among surrounding
vehicles.

2) Gaussian Process Regression (GPR) is introduced to
probabilistically estimate the dominant parameters that
represent lane-change behavior.
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FIGURE 1. Multiple possible trajectories of a lane-changing vehicle. The
most probable trajectory is depicted in red.

3) Impact of predictive performance improvement on con-
trol performance is validated by control simulation
tests.

4) Applicability of the proposed predictor-based proac-
tive control is validated by vehicle tests based on
autonomous driving in the real world.

II. OVERVIEW OF THE PROPOSED PREDICTOR
This study has focused on trajectory-level prediction of cut-
in vehicles in multi-vehicle traffic, as shown in Fig. 1. For
long-term trajectory prediction, a model that reflects the
characteristics of cut-in behavior should be designed rather
than simple physics-based models. An important factor in
determining the characteristics of cut-in motion is the drivers’
behavioral aggression to complete the lane-change maneu-
ver [36]. Because the lane-change behavior of cut-in vehicles
is determined by the influence of interactionwith surrounding
vehicles, the reference information for the predictor should
include information about interacting vehicles. If the predic-
tion is performed without awareness of interaction, unreliable
prediction results can be derived. For example, in dense
traffic, a predictor without consideration of interaction may
provide the prediction result that a cut-in vehicle collides
with a front or rear vehicle in the target lane. Thus, we
introduce the cut-in vehicle trajectory predictor in which the
inter-vehicle interaction is implicitly modeled to enhance the
reliability and accuracy of the prediction results.

The cut-in vehicle trajectory predictor is subdivided into
two main parts: behavioral parameter estimation and vehicle
state prediction, as shown in Fig. 2. The behavioral param-
eter estimation module provides a probability distribution
of behavioral parameters of the lane-changing vehicle uti-
lizing a Gaussian Process Regression (GPR). To reflect the
interaction with surrounding vehicles, GP models are trained
using information about the lane-changing vehicle as well
as the nearby vehicles in the target lane. The estimated
behavioral parameters implicitly represent the driving style of
the lane-changing vehicle. The vehicle state prediction mod-
ule estimates the sequence of future states using Extended
Kalman Filter (EKF) with the path-following model. The
behavioral parameters estimated from GPR are utilized to
generate virtual measurements in EKF. Therefore, the pro-
posed predictor provides the outputs consisting of time series
data of future states and future uncertainties of the cut-in
vehicle, using the inputs composed of the current states of
the cut-in vehicle and adjacent vehicles in the target lane.

The future information of the cut-in vehicle is utilized in the
predictive control of autonomous vehicles, which is described
in Section V.

III. BEHAVIORAL PARAMETER ESTIMATION
The behavioral parameters of cut-in motion have been esti-
mated using the GPR method, which is a data-driven regres-
sion method in a supervised manner. The features of the GP
model have been selected considering the representativeness
of the cut-in driving style and surrounding traffic. The map-
ping function between the input and output features has been
learned by training the GP model. The details are described
in the following sections.

A. FEATURE DEFINITION
The selection of features for supervised regression is an
important factor in understanding the situation and properly
extracting the desired property. Therefore, the input features
should include all the information that is necessary to recog-
nize the situation at the time of the query. The output features
must contain other properties of the situation that can be
properly utilized to run the following module.

The description of the input features for behavioral param-
eter estimation is shown in Fig. 3. The input features
have been selected with two considerations: lane-changing
progress of the cut-in vehicle and relative configuration of
the interacting vehicles. Both are represented by the physical
properties of the cut-in vehicle and nearby vehicles in the
target lane, respectively. The vector of the input features is
defined as follows:

xinput =
[
ey,target eθ,target vx px,rel,ft vx,ft px,rel,rt vx,rt

]T
,

(1)

where subscripts ft and rt mean the front vehicle and the rear
vehicle in the target lane, respectively; ey,target and eθ,target are
the lateral offset and heading offset of the cut-in vehicle with
respect to the target centerline, respectively; vx is the longitu-
dinal velocity of the cut-in vehicle; px,rel,ft and px,rel,rt are the
relative position of the interacting vehicles with respect to the
cut-in vehicle; and vx,ft and vx,rt are the longitudinal velocity
of the interacting vehicles. ey,target,eθ,target, and vx represent
the lane-changing progress of the cut-in vehicle. px,rel,ft,
px,rel,rt, vx,ft,and vx,rt represent the relative configuration of
the interacting vehicles.

The output features, which are the behavioral parameters
of the cut-in vehicle to be estimated, have been selected as
dominant physical properties to represent the lane-change
aggressiveness, as depicted in Fig. 4. The vector of the output
features is determined as follows:

youtput = f (xinput ) =
[
sLC ey,f ,LC tLC

]T
, (2)

where f is the mapping function between the input and output
features; sLC is the longitudinal distance remaining to com-
plete the lane-change maneuver; ey,f ,LC is the lateral offset
with respect to the target centerline at the completion of the
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FIGURE 2. Overall architecture of the proposed cut-in vehicle trajectory prediction algorithm.

FIGURE 3. Description of input features for behavioral parameter
estimation.

FIGURE 4. Description of behavioral parameters representing the
lane-change behavior.

lane change; and tLC is the time left to complete the lane
change. sLC and ey,f ,LC represent the final position of the
lane-change maneuver.

B. GPR-BASED PARAMETER ESTIMATION
A GP is a collection of random variables that has a multivari-
ate Gaussian distribution [37]. The distribution of function f
is modeled by GP, which considers a set of function values
[f (x1), f (x2), . . . , f (xN )] as the random variables. The formu-
lation of GP is written as follows:

f ∼ GP(m(x), k(x, x′)), (3)

where x is a feature vector; and m(x) and k(x, x′) are a mean
function and a kernel function, respectively. The correlation
between the function values is approximately modeled by
the kernel function, which measures similarity between the
corresponding input features.

AGPR, a GP-based regressionmethod, is a non-parametric
supervised learning method utilizing the Bayesian approach.

A GPR efficiently models the predictive probability distribu-
tion of the function value f (x∗) given a query input x∗ and
training dataset, which is defined as follows:

D = {(xi, f (xi))| i = 1, 2, · · · ,N }, (4)

where N denotes the number of the training samples.
A joint distribution of f and f (x∗) is determined as follows:[
f

f (x∗)

]
∼ N

([
m(X)
m(x∗)

]
,

[
K (X,X)+ σ 2

n I K (X, x∗)
K (x∗,X) k(x∗, x∗)

])
,

(5)

where σn is the standard deviation of the observation noise;
X is the collection of the training input dataset and f is the
collection of the training output dataset;K (X,X) is theN×N
matrix where [K (X, X)]ij = k(xi, xj); K (X, x∗) is the N×
1 matrix where [K (X, x∗)]i = k(xi, x∗); and K (x∗, X) is the
transpose matrix of K (X, x∗). The predictive distribution of
the function value f (x∗) is derived as the following Gaussian
distribution:

f (x∗)|D, x∗ ∼ N
(
µ∗, σ

2
∗

)
, (6)

where

µ∗ = m(x∗)+ K (x∗, X)
[
K (X,X)+ σ 2

n I
]−1

(f− m(X)),

σ 2
∗ = k(x∗, x∗)− K (x∗,X)

[
K (X,X)+ σ 2

n I
]−1

K (X, x∗).

(7)

In this paper, three GP models are designed and trained to
estimate the distribution of the behavioral parameters, sLC ,
ey,f ,LC , and tLC . The models are represented as follows:

fsLC ∼ GPsLC (msLC (x), ksLC (x, x′)),
fey,f ,LC ∼ GPey,f ,LC (mey,f ,LC (x), key,f ,LC (x, x′)),
ftLC ∼ GPtLC (mtLC (x), ktLC (x, x′)). (8)

For all GP models, this work utilizes the affine mean function
and Matern 3/2 kernel function with an automatic relevance
determination (ARD) structure as shown below:

m(x) = αx+ β,
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k(x, x′) = σ 2
f

(
1+

√
3 ‖x− x′‖2M−1

)
× exp

(
−

√
3 ‖x− x′‖2M−1

)
, (9)

whereα andβ are the coefficients of the affinemean function;
σf is the standard deviation of the signal; and M is the
positive-definite diagonal matrix that implicitly determines
the relevance of each dimension of the input feature vector.
Constructing the GP models, the predictive distribution of
each parameter is obtained as follows:

sLC |DsLC , x∗ ∼ N
(
ŝLC , σ̂ 2

sLC

)
,

ey,f ,LC |Dey,f ,LC , x∗ ∼ N
(
êy,f ,LC , σ̂ 2

ey,f ,LC

)
,

tLC |DtLC , x∗ ∼ N
(
t̂LC , σ̂ 2

tLC

)
. (10)

The parameters θh = {α, β, σf , σn, M} are regarded as
hyperparameters of the GP model for definition of the mean
function and kernel function. Optimizing the hyperparam-
eters is required to enhance the estimation performance of
GPR. The optimal parameters are obtained by maximizing
the log likelihood in the GP model, as given below:

θ̂h = argmax
θh

log p(f|X, θh)

= argmax
θh

−
1
2
log

∣∣∣2π (K (X,X)+ σ 2
n I)
∣∣∣

−
1
2
(f− m(X))T (K (X,X)+ σ 2

n I)
−1(f− m(X)). (11)

This optimization problem is solved offline by using an
L-BFGS algorithm, which efficiently approximates the
inverse Hessian matrix in the quasi-Newton method [38].

C. TRAINING GP MODELS
The GP models for the behavioral parameters have been
constructed using the dataset consisting of the lane-changing
trajectories in the real world. The Next Generation Simu-
lation (NGSIM) database, a public dataset established by
the U.S. Federal Highway Administration, has frequently
been used to analyze the traffic characteristics and micro-
scopic behavior of the participants [39]. In this paper, the
I-80 and US-101 dataset from the NGSIM have been utilized
to generate the training and testing dataset. Both datasets
contain 45 minutes of traffic data, respectively.

The trajectory sets, including 537 events of cut-in maneu-
vers, have been extracted from the NGSIM database and
pre-processed using a Kalman filter [40]. The trajectories of
the cut-in vehicles as well as the front and rear vehicles in the
target lanes have been used to prepare the dataset. The target
lane for each lane-change maneuver has been determined
as the lane to which the cut-in vehicle finally completes
the lane change. The output features of the datasets have
been determined by marking the final points of the cut-in
maneuvers. To determine the final points, we have obtained
the point when the cut-in vehicle is in the target lane and
heading offset with respect to the target centerline reaches

TABLE 1. Statistics of estimation error of the behavioral parameters.

below a threshold θbound [33]. In this study, θbound of 2 deg is
used.

To construct the GP models, 4000 input-output pairs
for left lane change and right lane change have been ran-
domly selected. The two selected datasets have been used to
train the GP models for the two lane changes, respectively.
In Table 1, the behavioral parameter estimation performance
of the trained GP models is shown with error statistics in
terms of Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) derived by the testing data pairs. The larger
errors of the left lane-change models compared to the right
lane-changemodels are due to the larger portion of overtaking
cases in the dataset, which make the lane-change behavior
dynamic. Meanwhile, the overall errors of both models are
bounded within the reliable level. Therefore, the error statis-
tics show that the feature configuration of the GP models
is suitable to derive the approximation of the behavioral
parameters.

IV. VEHICLE STATE PREDICTION
The future states of the cut-in vehicle are predicted based
on the EKF approach. The path-following model is utilized
to generate virtual measurements of the EKF. The probabil-
ity distribution of the behavioral parameters is considered
to determine the values and noise properties of the virtual
measurements. Therefore, the vehicle state predictionmodule
probabilistically predicts the time series data of the future
states by repeating the EKF.

A. EKF-BASED MOTION PREDICTION
An EKF is designed to probabilistically predict the sequence
of the future motion of the cut-in vehicle by modeling the
vehicle behavior. The vehicle state vector and measurement
vector of the EKF at predictive time step k are defined as:

xk =
[
px,k py,k θk vk γk ak

]T
,

zk =
[
γk,virtual ak,virtual

]T
, (12)

where px and py are the x position and y position, respec-
tively; θ is the heading angle; v is the absolute velocity;
γ is the yaw rate; a is the longitudinal acceleration; and
subscript virtual implies the virtual measurements derived
by the path-following model described in Section IV. B. The
recursive update of the future vehicle states is derived as the
following process update model:

px,k+1 = px,k + vk cos θk ·1t
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+ (ax,k cos θk − γkvk sin θk ) ·
(1t)2

2
+ wk,1,

py,k+1 = py,k + vk sin θk ·1t

+ (ax,k sin θk + γkvk cos θk ) ·
(1t)2

2
+ wk,2,

θk+1 = θk + γk ·1t + wk,3,

vk+1 = vk + ak ·1t + wk,4,

γk+1 = γk − (kγ γk ) ·1t + (k2γ γk ) ·
(1t)2

2
+ wk,5,

ak+1 = ak − (kaak ) ·1t + (k2aak ) ·
(1t)2

2
+ wk,6, (13)[

wk,1 wk,2 . . . wk,6
]T
∼ N (0,Qk ), (14)

where 1t is the sampling time of 0.1s; kγ and ka are the
decaying rates of the yaw rate and longitudinal acceleration,
respectively; w1, w2, . . . ,w6 denote the process noise terms
of each element of the state vector; and Q is the covariance
matrix of the process noise vector. The assumption of decay-
ing yaw rate and longitudinal acceleration is used to represent
the stabilizing behavior of the vehicle and enhance the pre-
diction accuracy. Q is derived by the results of the statistical
analysis of the sensor noise [24]. The process update model
described in equation (14) could be summarized as follows:

xk+1 = fk (xk )+ wk , (15)

where f is the function of the process update model; and w
is the process noise vector including w1, w2, . . . ,w6. The
measurement update model is given as follows:

γk,virtual = γk + nk,1,

ak,virtual = ak + nk,2, (16)[
nk,1 nk,2

]T
∼ N (0,Rk ), (17)

where n1 and n2 denote the measurement noise terms of the
virtual yaw rate and longitudinal acceleration, respectively;
and R is the covariance matrix of the measurement noise
vector. The estimated state vector x̂ and its error covariance
P are derived by following the procedures of the EKF, which
obtains the optimal solution in the minimum mean-square-
error sense [40]. The recursive estimation of the EKF is
briefly described as follows:

x̄k = fk−1(x̂k−1),

Mk = Fk−1Pk−1FTk−1 +Qk−1,

Fk−1 =
∂fk−1(x)
∂x

∣∣∣∣
x=x̂k−1

, (18)

x̂k = x̄k +Kk (zk −Hk x̄k ),

Pk = (I−KkHk )Mk ,

Hk =

[
0 0 0 0 1 0
0 0 0 0 0 1

]
,

Kk = MkHT
k (HkMkHT

k + Rk )−1, (19)

where the initial conditions, x̂0 and P0, are defined as the
probability distribution of the perceived vehicle at the cur-
rent time step. Therefore, the EKF obtains the sequence of

FIGURE 5. Derivation of virtual yaw rate of cut-in vehicle using behavioral
parameters.

the vehicle state vector {x̂k | k = 1, 2, . . . ,Np} and error
covariance {Pk |k = 1, 2, . . . ,Np}, whereNp is the prediction
horizon.

B. VIRTUAL MEASUREMENT GENERATION
Determining the virtual measurements has a major influence
on the prediction performance of the proposed structure.
The path-following model, which assumes that the driver
may follow the target lane, is utilized to generate the virtual
measurements. In this study, the behavioral parameters, sLC ,
ey,f ,LC , and tLC , are applied to the path-following model and
used to derive the values and noise properties of the virtual
measurements: yaw rate and longitudinal acceleration.

As depicted in Fig. 5, the virtual yaw rate is derived based
on the design of a curve that reaches the final point of the lane
change. First, the final point of the lane change is determined
in the following sense:

1) The target vehicle travels from the current position to
the lane-change final position with an arc length of sLC
based on the road coordinate.

2) The final point deviates from the centerline by the
lateral offset of ey,f ,LC .

The derivation of the final position point pfinal = [px,final ,
py,final]T is formulated as given:∫ px,final

px,0

√
1+ (2a2 · x + a1)2dx = ŝLC ,

py,final = êy,f ,LC

+

{
a2 · p2x,final+a1 · px,final+a0+Wroad · Nlane

}
,

(20)

where px,0 is the current longitudinal position; a0, a1, and a2
are the zeroth, first, and quadratic coefficients of the quadratic
polynomial that models the geometry of the road centerline;
Wroad is the width of the road lane; and Nlane is the inte-
ger lane index of the lane-change target lane. Subsequently,
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the trajectory yk is modeled at the predictive time step k using
a cubic polynomial curve which is a twice-differentiable
function. The polynomial curve has the constraint that it
passes through points pk and pfinal while the tangents at pk
and pfinal are parallel to the predictive orientation of the target
vehicle at the predictive time step k and the road tangent at the
final point, respectively, where pk is the predictive position
of the target vehicle at the time step k defined as pk = [px,k ,
py,k ]T . The boundary condition of the curve has the sense that
the target vehicle adjusts its heading angle parallel to the lane
direction at the end of the lane change. Finally, the virtual yaw
rate γvirtual at the predictive time step k is derived based on
the curvature and orientation of the trajectory as follows:

γk,virtual = vk
y′′k(

1+ y′2k
)3/2 , (21)

where vk is the predictive velocity of the target vehicle at the
time step k .
The virtual longitudinal acceleration is determined as the

acceleration input for velocity tracking. The Optimal Velocity
Model (OVM) is utilized to design the acceleration input,
which tracks the desired velocity as follows [41]:

a = v̇

= κ · (vdes − v), (22)

where a and v are the acceleration and velocity: vdes is the
desired velocity; and κ is the gain constant for the velocity
difference. In this study, κ of 0.16s−1 is used. The desired
velocity vdes is estimated in the sense that the target vehicle
travels the arc length of sLC during the time of tLC . Assuming
that the vehicle generates the longitudinal motion according
to the OVM, the velocity v is derived as a function of time t
by solving the linear differential equation in equation (22),
and the desired velocity vdes is obtained by matching the
coefficients of the terms in the solution v with the following
conditions:

v(t = t0) = v0,∫ t0+t̂LC

t0
v · dt = ŝLC , (23)

where t0 and v0 are the current time and velocity, respec-
tively. Therefore, the virtual longitudinal acceleration at each
predictive time step is derived using the OVM utilizing the
estimated desired velocity vdes.

The proper assumption of the measurement noise covari-
ance R is important to improve the prediction accuracy of
the EKF because R affects the determining procedure of the
Kalman gain K. R is designed through the intuitive that the
noise properties of the virtual measurements are dependent
on the reliability of the estimated behavioral parameters.
The noises of the virtual measurements can be derived as
functions of the nominal values and errors of the predictive
vehicle states and the behavioral parameters. Finally, the stan-
dard deviation of the virtual measurement noises and the

measurement noise covarianceR at the predictive time step k
are expressed as follows:

σγk,virtual = gγk,virtual (x̄k ,Mk , ξ̂GP),

σak,virtual = gak,virtual (x̄k ,Mk , ξ̂GP),

Rk = diag(σ 2
γk,virtual

, σ 2
ak,virtual ), (24)

where ξGP is defined as a set of the nominal values and
standard deviations of the behavioral parameters derived by
the GP models; and g denotes the function that maps the a
priori state x̄, a priori error covariance M, and ξGP to the
standard deviations of the behavioral parameters.

V. MPC-BASED MOTION PLANNING AND CONTROL
The proposed predictor is applied to the motion planning
and control of the autonomous vehicle that deals with the
situation that a side front vehicle in the side lane changes its
lane to the driving lane of the subject vehicle. In this paper,
the longitudinal vehicle controller is designed to maintain
clearance and adjust the speed with the preceding vehicle.
The control of acceleration and deceleration is considered in
this work. To carry out an appropriate response to the cut-in
vehicle, predictive control is required to consider the potential
risk and behavior.
AnMPC problem is designed to deal with the requirements

mentioned above. The concept in [42] is utilized in the pre-
dictive control against the cut-in vehicle. To reflect the system
dynamics to the MPC, a point mass model is used as a plant
model as defined below:

qk+1 = Aqk + Buk

s.t. A =

 1 1t 0
0 1 1t
0 0 1−1t/τ

 , B =

 0
0

1t/τ

 , (25)

where k is the predictive time step;1t is the sampling time of
0.1s; q is the state vector consisting of the travel distance p,
longitudinal velocity v, and longitudinal acceleration a; u is
the control input; and τ is the time constant of the first-order
response system of the actuator. In this study, longitudinal
acceleration command is used as the control input u; and τ
of 1s is used. TheMPCderives the time series of the solution u
within the predictive horizon Np by minimizing the following
cost function:

J =
Np∑
k=1

{
(qk − qk,ref )T ·Wq,k · (qk − qk,ref )

}

+

Np−1∑
k=0

{
Wu,k · u2k

}
, (26)

where qref denotes the reference states to be tracked; andWq
andWu are the weighting factors for reference tracking error
and input magnitude, respectively. The constraints related to
the MPC are determined as follows:

qk+1 = Aqk + Buk ,
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GTqk ≤ qk,bound , G =
[

1 0 0
−1 0 0

]T
,

umin ≤ uk ≤ umax, (27)

where qbound is the position boundary of the vehicle derived
by the configuration of the surrounding vehicles; and umin
and umax denote the minimum and maximum control input,
respectively. The reference states are determined in the sense
that the vehicle adjusts the velocity to the predictive velocity
of the preceding vehicle and maintains a desired clearance
cdes designed as shown below:

cdes = τgap · vref + cmin, (28)

where τgap is the desired time gap of 1.3s; cmin is the mini-
mum clearance of 3m; and vref is the reference velocity of the
subject vehicle. τgap and cmin are determined considering the
typical characteristics of human drivers in car following sce-
narios by referring [45]. A longitudinal safe distance between
the center of gravity of the subject vehicle and the preceding
vehicle is defined as follows:

sd = cdes + Lvehicle + σp,target, (29)

where Lvehicle is the length of the vehicle; and σp,target is the
standard deviation of the predictive longitudinal position of
the preceding vehicle. The reference states are designed using
the predictive information of the preceding vehicle as follows:

qk,ref =
[
pk,ref vk,ref 0

]T
s.t. pk,ref =

{
pk,target − sdk if pk,target < sdk
pk,host otherwise,

vk,ref ={
vk,target if pk,target < sdk
Wk · vset + (1−Wk ) · vk,target otherwise,

Wk =
pk,target − sdk

pk,target
, (30)

where ptarget and vtarget are the predictive longitudinal position
and velocity of the preceding vehicle, respectively; vset is the
set speed of the subject vehicle; and pk+1,host = pk,host+
vk,ref ·1t for the time step k with the initial condition p0,host =
0. If the cut-in vehicle is predicted to invade the driving lane of
the subject vehicle, the information about the cut-in vehicle is
reflected in the decision of the preceding vehicle’s predictive
states. Fig. 6 depicts an exemplary cut-in case in which a side
lane vehicle is predicted to cross the lane at the predictive time
step Np,cross within the horizon of Np. In this case, the cut-in
vehicle is regarded as the preceding vehicle in deriving the
reference states at k = Np,cross, Np,cross + 1, . . . ,Np. There-
fore, the controller allows the vehicle to react to the cut-in
vehicle proactively before the lane-changing vehicle actually
invades the driving lane of the subject vehicle.

VI. PREDICTION PERFORMANCE ANALYSIS
The prediction performance of the proposed trajectory-level
predictor has been evaluated through the data-based eval-
uation. The dataset for the evaluation is obtained from

FIGURE 6. Exemplary driving scene in which a vehicle in the side lane
cuts in. Predictive states of the cut-in vehicle are reflected in reference
states of MPC at k = Np,cross, Np,cross + 1, . . . , Np.

11,678 samples of the cut-in driving data from the NGSIM
database. Section VI. A reports the prediction accuracy
of the proposed algorithm with prediction error analysis.
Section VI. B describes the prediction results for two cases
from the evaluation dataset.

The prediction results have been compared to the results
from the existing prediction methods that have been widely
used in the prediction of surrounding vehicles’ motion:
the Constant Turn Rate and Velocity (CTRV) model and
the path-following model with Constant Velocity (CV)
[8], [12]–[15], [24], [42]. Two base algorithms utilize states of
the prediction vehicles without the awareness of inter-vehicle
interaction. In particular, the path-following model with CV
utilizes lane information and derives the prediction results
based on the virtual yaw rate by a rule-based approach
referring [8].

A. PREDICTION ERROR ANALYSIS
The accuracy of the prediction has been evaluated by ana-
lyzing the characteristics of the prediction errors with respect
to ground truth. The prediction errors of position and veloc-
ity have been obtained by processing the samples from
the NGSIM database. The prediction accuracy of time-to-
cross, i.e., the time required to cross lanes, has also been
discussed based on the dataset, which is composed of the
lane-change trajectories earlier than 0.5 seconds before cross-
ing lanes. To evaluate the robustness of the prediction algo-
rithms against the noise generated by the perception module,
white Gaussian noises have been added to the states of the
vehicles in the current time step. By referring to the per-
formance of LiDAR-based perception algorithms discussed
in [43], [44], the additive Gaussian noises for the vehicle
states have been designed to have zero means and stan-
dard deviations of 0.3m, 0.3m, 0.05rad, 0.3m/s, 0.06rad/s,
and 0.3m/s2 for x position, y position, heading angle,
absolute velocity, yaw rate, and longitudinal acceleration,
respectively.

The prediction errors including comparisonwith base algo-
rithms are described in Table 2 and Fig. 7. Table 2 shows
that the proposed prediction method provides a lower level of
the prediction error compared to the base algorithms in terms
of the following error metrics: Mean Absolute Error (MAE),
Standard Deviation (STD), and Root Mean Square Error
(RMSE). The error histograms depicted in Fig. 7 imply that
the errors from the proposed predictor are more distributed
near zero, which signifies the reduced proportion of the
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TABLE 2. Comparison of statistics of prediction errors between the proposed algorithm and the base algorithms.

FIGURE 7. Prediction error histograms at the prediction horizon of 3s with
comparison between the proposed algorithm and the base algorithms.

samples with large errors. In particular, for a prediction time
of 3 seconds, the samples in which the lateral position error
exceeds the threshold of 1.5m account for 53.1% in the CTRV

model, 9.0% in the path-following model with CV, and 6.3%
in the proposed method. The prediction results with different
prediction horizons show that the improvement of the pre-
diction accuracy by the proposed method is more noticeable
in long-term prediction than in short-term prediction. The
advanced long-term prediction efficiently captures the cut-in
aggressiveness, which improves the estimation results of the
time-to-cross.

B. CUT-IN CASE STUDY
Fig. 8 and Fig. 9 present two cases of the cut-in motion
prediction performance in a multi-vehicle situation with the
proposed predictor and the base prediction algorithms. The
true trajectories of the cut-in vehicle, the side front vehicle,
and the side rear vehicle are shown with the true speed values
in green, gray, and light blue, respectively, for 3 seconds at
1-second intervals. The prediction results of the CTRV
model, the path-following model with CV, and the proposed
predictor are represented in black, blue, and magenta, respec-
tively, for 0, 1, 2, and 3 seconds of prediction time.

In Fig. 8 (a), the CTRV model provides the erroneous
prediction that the cut-in vehicle changes its lane by two
lanes. Fig. 8 (b) shows the unreliable result derived by the
path-following model with CV that the vehicle takes on an
extremely high risk of collision with the side front vehicle.
On the other hand, as shown in Fig. 8 (c), the proposed algo-
rithm manages to predict that the cut-in vehicle decelerates
and reaches a reliable position in the lane-change target space.
Note that the lateral motion is more accurately predicted in
the proposed predictor than the path-following model with
CV. In another case, as depicted in Fig. 9 (a) and (b), the two
base algorithms provide the unrealistic prediction result that
the cut-in vehicle collides with the side rear vehicle at the
predictive time step of 3s. However, in Fig. 9 (c), the proposed
algorithm predicts that the vehicle moves to the adjacent lane
with acceleration to avoid the collision.

The comparison results of the base and proposed algo-
rithms imply three interpretations. First, the road-aware
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FIGURE 8. Examples of trajectory prediction results derived by the
proposed algorithm and the base algorithms for normal traffic
environment.

prediction improves the accuracy of lateral motion prediction.
Compared to the CTRV model, which assumes a fixed yaw
rate, the path-following rule allows the yaw rate to change
according to the road geometry and reduces the effect of the
perception error of the yaw rate into the prediction perfor-
mance. Second, the interaction-aware approach enhances the
prediction performance of the longitudinal motion prediction.
Unlike the base algorithms, the proposed predictor properly
captures the traffic context of the interacting vehicles and
prevents the unrealistic prediction of the cut-in vehicle’s
behavior such as extremely high collision risk with the side
lane vehicles. Finally, the data-driven approach improves the
trajectory prediction accuracy. The improved ability of driv-
ing style modeling based on the learning-based behavioral
parameters reduces the prediction errors in a long time inter-
val. Therefore, these improvements aid the subject vehicle in
accurately estimating the potential risk of the cut-in vehicle
in a long time horizon.

VII. CONTROL PERFORMANCE ANALYSIS
The performance of the control strategy has been evaluated
via computer simulations and real vehicle tests. The evalu-
ation environment is the multi-vehicle traffic scenario with
the side front vehicle’s cut-in maneuver. The MPC-based
controller has been used to achieve clearance keepingwith the
preceding vehicle and predictive reaction against the cut-in

FIGURE 9. Examples of trajectory prediction results derived by the
proposed algorithm and the base algorithms for dense traffic
environment.

vehicle. To implement the predictor-based control algorithm
within an integrated system, the lane-change intention has
been determined based on a method in [25] that classifies
the maneuver of surrounding vehicles as ‘‘lane keeping’’,
‘‘lane changing’’, ‘‘arrival’’, and ‘‘adjustment’’ based on a
multi-class Support Vector Machine (SVM). The control
results have been analyzed in terms of ride quality and safety
performance. In Section VII. A, the simulation results based
on the data-based simulation are described and discussed.
To compare the impact of prediction performance to con-
trol, the base and proposed prediction algorithms have been
applied to the MPC-based controller. In Section VII. B,
the vehicle test results are described to evaluate the control
performance in the real world.

A. SIMULATION RESULTS
The simulation of the control system combined with pre-
diction has been conducted in the lane-keeping scenario.
The simulation environment is a two-lane road on which
the subject vehicle and two surrounding vehicles are placed.
In the simulation scenario, a side lane vehicle changes to
the driving lane of the subject vehicle and moves into the
space between the subject vehicle and a vehicle directly in
front of the subject vehicle. For each scenario, the initial
location and motion conditions of all vehicles are defined
based on the traffic data from the NGSIM database. The
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whole motions of the surrounding vehicles are simulated
using the NGSIM database. The movement of the subject
vehicle is simulated based on the MPC-based controller
combined with prediction. To evaluate the effectiveness of
the proactive response against the cut-in vehicle, the control
result of the proposed proactive control method is compared
to that of a non-proactive controller that responds to the
cut-in vehicle only if the vehicle invades the driving lane.
Also, to validate the improvement of the proposed predictor
in proactive control, the controllers based on the proposed
prediction method and the base prediction methods discussed
in Section VI are compared based on the performance results.
The controllers with different approaches are simulated in
identical conditions.

The simulation results have been evaluated based on the
controller’s ability to provide ride quality and maintain safety
with respect to the preceding vehicle. Fig. 10 (a) to (d) show
the simulation results of the controller with the four different
approaches, including longitudinal acceleration command,
velocity, clearance, and inverse Time To Collision (TTC).
In Fig. 10 (a), the legend of ‘Non-Proactive’ denotes the result
of the non-proactive controller, while the legends of the rest
denote the proactive control results with the three different
cut-inmotion predictors. In Fig. 10 (b), brownmarkers denote
the velocity history of the preceding vehicle. In Fig. 10 (c),
the desired clearance defined in equation (28) is represented
as greenmarkers. Fig. 10 (d) depicts the inverse TTC between
the subject vehicle and the preceding vehicle. Fig. 10 (e)
represents the lateral position history of the cut-in vehicle
with respect to the subject vehicle. In this scenario, a side lane
vehicle actually crosses the lane at t= 3.3s. Fig. 10 (f) depicts
the simulation scenario at t = 2.7s, in which the subject, cut-
in, and lead vehicles are represented in blue, red, and black,
respectively. The prediction result of the cut-in vehicle with
the proposed predictor is shown for 2 seconds at the interval
of 0.4 seconds.

As shown in Fig. 10 (a), the controllers except for the
non-proactive control proactively slow down the vehicle in
reaction to the cut-in 1.6 seconds before the side lane vehicle
crosses the lane. The early deceleration of the proactive con-
trollers improves the desired clearance tracking performance
compared to the non-proactive approach, as shown in Fig. 10
(c). As indicated in Fig. 10 (b), the velocity change caused
by the reaction against the cut-in vehicle is relatively small
in the proactive control methods, which leads to the fast
adjustment of the subject vehicle velocity to the preceding
vehicle velocity. Accordingly, the inverse TTC reaches the
region near zero more rapidly in the proactive control com-
pared to the non-proactive control, as shown in Fig. 10 (d).
This implies that the proactive deceleration in response to
the cut-in improves ride quality and adaptation of the subject
vehicle’s motion to the preceding vehicle’s motion. Among
the proactive controllers with the three different prediction
approaches, the controller with the proposed predictor uses
the smallest amount of deceleration in response to the cut-in,
as depicted in Fig. 10 (a). This leads to the relatively small

FIGURE 10. Simulation results of predictive control in cut-in scenario with
comparison between the proposed algorithm and the base algorithms.

velocity variation from t = 2 to 4s in the proposed method.
Accordingly, the usage of the acceleration for velocity recov-
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FIGURE 11. Configuration of the test vehicle for implementation of the
proposed algorithm.

TABLE 3. Statistics of control performances in the simulation test in
terms of control effort and inverse TTC.

ery from t = 4 to 6.5s is the lowest in the proposed method.
Meanwhile, as shown in Fig. 10 (c), the desired clearance
tracking performance of the proposed method is comparable
to that of the controllers with other predictors. The drop
of the inverse TTC at t = 3.3s is smaller in the controller
with the proposed predictor than with the other predictors,
which implies the less conservative response of the proposed
method. This indicates that the proactive controller with the
proposed predictor reacts to the cut-in vehicle with less con-
trol effort while maintaining safe clearance similarly to that
of other proactive methods.

The simulation results of 509 lane-keeping scenarios with
21,964 total samples have been acquired and analyzed sta-
tistically. Table 3 describes the statistical results including
the control effort and the inverse TTC in terms of the mean
and the mean peak value. The ‘‘mean peak’’ implies the
average value of the peak values in each simulation scenario.
In this section, the control effort is defined as the absolute
value of the longitudinal acceleration command. The results
show that the proactive control method uses less control effort
compared to the non-proactive method. In particular, the con-
troller based on the proposed predictor reduces the average
control effort usage by 7.8% compared to the non-proactive
controller. Also, the proposed predictor leads to the lowest
usage of the control effort compared to the other predictors in
terms of both the mean and the mean peak value. The mean
of the inverse TTC is closest to zero in the non-proactive

TABLE 4. The number of occurrences of the critical cases in the
simulation test in terms of control effort and inverse TTC.

control than other methods. However, the positive mean peak
value of the inverse TTC larger than 0.2s−1 reveals that the
non-proactive controller may cause a risky situation when
reacting to the cut-in, which leads to anxiety among the
passengers. In fact, the work in [45] evaluates a situation
with the inverse TTC larger than 0.2s−1 as uncomfortable.
On the other hand, the proactive controllers manage the risk
properly and make the inverse TTC bounded within safe
region in terms of both the mean and mean peak. The pro-
posed predictor-based controller shows the mean value of the
inverse TTC that is nearest to zero among the three proactive
controllers. This means that the proposed predictor leads to
better performance of the adaptive cruise control.

To evaluate the frequency of undesirable situations,
the occurrence of critical cases has been counted for each
controller. In this paragraph, the critical situation is defined as
excessive control usage and high collision risk. The number
of occurrences of critical cases out of the 21,964 samples is
represented in Table 4 in terms of the control effort and the
inverse TTC with different boundaries of the criticality. The
controller combined with the proposed predictor reduces the
cases with the control effort larger than 1.5m/s2 by 16.7%,
and the cases larger than 2.0m/s2 by 15.9% compared to
the non-proactive controller. Compared to other proactive
controllers, the proposed method reduces the rate of the event
with a large control effort by over 9.9%. In the case of the
inverse TTC, the number of events in which the inverse
TTC exceeds 0.2s−1 significantly falls by over 88.5% in
the proactive control compared to the non-proactive control.
Moreover, the proactive controllers achieve zero occurrences
of the inverse TTC exceeding 0.4s−1, while the non-proactive
method does not. Meanwhile, the frequency of the high
collision risk situation is comparable within the proactive
controllers with the different predictors. Therefore, the proac-
tive response to the cut-in reduces the control effort and
enhances collision safety. Furthermore, the improvement of
the accuracy of the trajectory-level prediction affects the con-
trol efficiency and the adaptation ability to the cut-in vehicle’s
motion.

B. VEHICLE TEST RESULTS BASED ON AUTONOMOUS
DRIVING
The application of the proposed predictor to the MPC-based
controller has been validated via real vehicle tests based on
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FIGURE 12. Vehicle test route.

FIGURE 13. Snapshots of the vehicle test results in cut-in scenario.

autonomous driving. The proactive control has been realized
by implementing the proposed algorithm on the test vehicle.
The test vehicle is equipped with sensors, processors, and
control modules as shown in Fig. 11. Surrounding obsta-
cle information is provided by the LiDAR system, which
consists of six 2D-LiDAR and LiDAR processors. The rel-
ative position, orientation, velocity, and type of obstacles are
obtained by the LiDAR system. Lane information is provided
as a quadratic polynomial by a front camera system. The
environmental information acquired by the sensors is pro-
cessed by an industrial PC. The controller combined with the
proposed predictor has been implemented in the industrial
PC. Micro-Autobox II is used to apply control command to
the vehicle actuator system through the gateway Electronic
Control Unit (ECU).

Vehicle tests have been conducted on urban driving roads
in Gwanak-gu, Seoul, South Korea, as shown in Fig. 12.
In South Korea, a permit system for autonomous driving in
the public road environment is in operation. The permit is
granted through autonomous driving test, fail-safe operation
test, and driver override test. The test vehicle in Fig. 11 has
been approved for the permission, and can be tested for
autonomous driving in real world. The automated driving
data have been collected for 82 minutes in multi-vehicle
traffic environment. In total, 4,454 samples of data have been

FIGURE 14. Vehicle test results in cut-in scenario.

obtained from 69 cut-in scenarios and processed to evaluate
the control performance. Fig. 13 and Fig. 14 depict the vehicle
test results in a cut-in situation in which a sedan with blue
color changes lanes to the subject lane. Fig. 13 (a) to (c)
show the snapshots of the test results with a dashboard
camera image and trajectory prediction results of the cut-
in vehicle. The trajectory prediction results are shown for
the predictive horizon of 2 seconds with the interval of 0.4
seconds, which are represented as red markers and blue lines.
The subject and lead vehicles are visualized with brown and
black lines, respectively. The point clouds measured by the
LiDAR are represented as orange points. The dotted gray
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FIGURE 15. Summary of vehicle test results in cut-in scenario.

lines indicate the lane information perceived by the front
camera system. The results of the test case in Fig. 13 are
represented in Fig. 14 with the longitudinal acceleration,
velocity, clearance, inverse TTC, and lateral position of the
cut-in vehicle with respect to the subject vehicle.

As shown in Fig. 13 (a), the geometric center of the blue
sedan is predicted to cross the lane at the prediction time
of 1.2s from t= 4.2s. The center of the cut-in vehicle actually
crosses lanes at t = 5.4s, as shown in Fig. 13 (b). Fig. 14
(a) and (b) show that the test vehicle starts to react to the cut-in
behavior at t = 2.9s and decelerates before the blue sedan
crosses lanes. The clearance is dropped when the blue sedan
becomes a new preceding vehicle at t = 5.4s, as depicted
in Fig. 14 (c) and (e). The proactive deceleration makes the
clearance smoothly increase to reach the desired clearance
after the clearance drop occurs. As depicted in Fig. 14 (b),
the velocity of the subject vehicle smoothly adapts to the
preceding vehicle’s velocity after t = 5.4s. Fig. 14 (d) shows
that the adaptation of the velocity induces the inverse TTC to
reach the region near zero. During the response to the cut-
in, the test vehicle uses the mild level of the longitudinal
acceleration within the range of −1.7m/s2 to 0.8m/s2, as

shown in Fig. 14 (a). Fig. 14 (c) shows that adequate clearance
is maintained with a minimum clearance of 12.2m. Also,
Fig. 14 (d) shows that the inverse TTC is maintained within
the safe region.

As depicted in Fig. 15, the vehicle test results of the 69
cut-in scenarios are summarized as the following visualiza-
tions: a safety domain of the relative velocity and the clear-
ance, and histograms of the longitudinal acceleration and the
inverse TTC. Fig. 15 (a) shows that the clearance and the
TTC are maintained within the safe region. The clearance
is maintained above 7.71m, and the minimum value of pos-
itive TTC is 3.83s. In Fig. 15 (b) and (c), the distributions
of the longitudinal acceleration and the inverse TTC show
a bell-shaped curve centered near zero, respectively. The
histograms in Fig. 15 (b) and (c) imply that the proposed
algorithm manages to use small control effort and to rapidly
adapt motion to the cut-in vehicle’s motion.

Therefore, the proactive control based on the proposed
predictor can deal with the cut-in situation caused by the
side lane vehicle in the real world. The safety performance
with respect to the cut-in vehicle is properly maintained while
a moderate level of longitudinal acceleration is used. The
improvement of the trajectory prediction helps the vehicle to
reduce the severe change in the predictive motion strategy.
Accordingly, this leads to the low frequency of abrupt braking
and the smooth adaptation to the cut-in vehicle’s motion,
which improves ride quality.

VIII. CONCLUSION
A probabilistic trajectory prediction algorithm of cut-in vehi-
cles has been developed, and its application to the control of
the autonomous vehicle has been evaluated via simulation
studies and autonomous driving vehicle tests. The behav-
ioral parameters of the cut-in motion are estimated through
Gaussian Process Regression (GPR) trained with the Next
Generation Simulation (NGSIM) database. The interaction
with the surrounding vehicles is implicitly considered in the
Gaussian Process (GP) model to accurately determine the
cut-in behavior by using the surrounding traffic informa-
tion. Subsequently, the time series information of the future
states of the cut-in vehicle is recursively obtained using the
Extended Kalman Filter (EKF) approach combined with the
path-following model. In addition, a Model Predictive Con-
trol (MPC) has been designed to calculate the longitudinal
acceleration leading to the proactive reaction to the cut-in
preceding vehicle.

The proposed algorithm has been evaluated in terms of
prediction accuracy and proactive control performance of
the automated vehicle applied by the predictor in a sim-
ulation study. The evaluation results have been compared
with two base prediction algorithms: the Constant Turn Rate
and Velocity (CTRV) model and the path-following model
with Constant Velocity (CV). Compared to the base algo-
rithms, the proposed predictor reduces the unrealistic pre-
diction and improves the prediction accuracy by properly
capturing the motion characteristics with the awareness of
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interaction. The control simulation results show that the pro-
posed prediction-based proactive control properly reacts to
the cut-in vehicle with reduced control effort and enhanced
ride quality while guaranteeing safety performance. The
proactive controller with the proposed predictor has been
implemented in the automated vehicle to evaluate the applica-
bility of the proposed algorithm in the real world. The vehicle
test results based on autonomous driving indicate that the
proactive control combined with the proposed predictor uses
mild acceleration while maintaining an appropriate level of
clearance and Time To Collision (TTC) with respect to the
preceding vehicle.

In the future, motion prediction of surrounding vehicles
must be advanced in three aspects. First, intention inference
of lane-change behavior must be developed and advanced
to construct the integrated framework of the motion pre-
diction algorithm. Second, temporal dependencies of the
sequences of vehicle states should be considered to more
efficiently capture the dynamic feature of vehicles. This may
be achieved by applying a recurrent neural network (RNN).
Finally, the interaction between the surrounding vehicles
must be more delicately considered. To achieve this, spatial
relation and dynamic states of the neighboring vehicles will
be comprehensively processed to explicitly extract social
cues. The improvement of motion prediction in these aspects
will enhance the accuracy of prediction and the ride quality
of control in the automated vehicle.
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