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ABSTRACT High-dimensional datasets often display heterogeneity due to heteroskedasticity or other forms
of non-location-scale covariance effects. When the size of datasets becomes very large, it may be infeasible
to store all of the high-dimensional datasets on one machine, or at least to keep the datasets in memory. In this
paper, we consider penalized expectile regression using smoothly clipped absolute deviation (SCAD) and
adaptive LASSO penalties, which can effectively detect the heteroskedasticity of high-dimensional data.
We propose a communication-efficient approach for distributed sparsity learning, where observations are
randomly partitioned across machines. By selecting the appropriate tuning parameters, we show that the
proposed estimators display oracle properties. Extensive numerical experiments on both synthetic and real
data validate the theoretical results and demonstrate the superior performance of our proposed method.

INDEX TERMS Expectile regression, SCAD, adaptive LASSO, communication-efficient, distributed
learning.

I. INTRODUCTION
The explosive growth in the size of modern datasets
has stimulated interest in distributed statistical learning
[2], [4], [29]. A problem arises, for example, when the dataset
is too large to store on one machine and must be stored across
multiple machines. The main bottleneck in a distributed setup
is communication between machines, so the primary goal of
optimal design is to minimize communication complexity.

In distributed statistical learning, the most common dis-
tributed optimization method is averaging estimators locally
formed by different machines [16], [29], [9]. The divide-
and-conquer procedure also has applications in statistical
inference [3], [15]. Both of the above approaches attempt
to find a good balance between computation and communi-
cation. However, their communication complexity boundary
has a poor dependence on the number of conditions [21].
To improve these methods, Jordan et al. [11] devel-
oped a communication-efficiency surrogate likelihood (CSL)
framework for estimation and inference in regular parametric
models, high-dimensional penalty regression, and Bayesian
statistics. A similar method for penalized regression also
appears in Wang et al. [26]. However, there is a problem in
the optimization based on the CSL function that only the first
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machine solves the optimization problem, while the others
only calculate the gradient; as a result, the first machine is
working hard, and other machines are idling. Therefore, it is
imperative to explore new distributed optimization methods.

Large-scale data are not only large in quantity but also
high in dimension. High-dimensional data are often collected
a wide range of research fields such as genomics, tomog-
raphy, economics and finance. Heterogeneity is common
in high-dimensional data due to heteroskedasticity or other
forms of non-location-scale covariance. In regression appli-
cations with heterogeneous data, we often see that targeting
the mean function alone is not enough to obtain the com-
plete relationship between response variables and predictors.
In this case, quantile regression based on the asymmetric
L1-norm [12] is a more appropriate tool because it allows the
study of the quantile structure of the conditional distribution.
Li and Zhu [13] and Wu and Liu [28] investigated the
regularized quantile regression with fixed parameter dimen-
sion. While quantile regression is intuitively appealing,
Newey and Powell [17] highlighted its three disadvantages:
nondifferentiability, ineffectiveness of Gaussian-like error
distributions, and difficulty in calculating the covariance
matrix. They proposed expectile regression based on the
asymmetric L2-norm as an alternative to analyze the complete
conditional distribution of the response. Expectile regression
is a generalization of general mean regression and is effective
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when typical assumptions (including homogeneity of errors)
are met. It is also closely related to quantile regression, which
is robust to outliers.

Since the landmark article by Newey and Powell [17],
expectile regression has attracted attention in many fields
[1], [10], [22]. Sobotka et al. [23] studied the relation-
ship between female education and fertility in Botswana
using semiparametric expectile regression.Waltrup et al. [24]
showed that expectile regression involves fewer crossings
than quantile regression and is more robust to heavy-tailed
distributions. Liao et al. [14] discussed the pros and cons of
penalized quantile and expectile regression and conducted
in-depth simulation studies to compare the finite sample
performance of the two methods. Pan et al. [18] developed
a communication-efficient distributed optimization method
to solve the expectile regression problem with covariates
missing at random. Although expectile regression has appli-
cations in various fields, few people, to the best of our knowl-
edge, have used the penalized version of expectile regression
in a distributed environment. This paper attempts to study
a distributed optimization approach for large-scale expec-
tile regression with SCAD [6] and adaptive LASSO [31]
penalties.

To address the problem of establishing the theoretical prop-
erties of parameter estimation under the distributed setting,
Jordan et al. [11], Pan [18] and Pan et al. [19] indicated
that CSL function can be regarded as a valid proxy of global
loss function. Inspired by CSL function, we propose a more
generalized proxy loss function called gradient-enhanced loss
(GEL) function, which includes the CSL function as a spe-
cial case. In addition, GEL function effectively avoids the
disadvantages of CSL function that making the CPU work
very hard while the other machines are idling. We propose a
distributed estimator based on the GEL function with SCAD
and adaptive LASSO penalties and then apply the ideas of
Zhao and Zhang [30] and Jordan et al. [11] to prove the oracle
properties of penalized expectile regression with independent
identically distributed random error.

Another challenge stems from optimizing the penalized
GEL function. The alternating direction method of multi-
pliers (ADMM) algorithm has many successful applications
in high-dimensional statistics. Boyd et al. [2] argued that
ADMM is well suited to large-scale problems in distributed
convex optimization and statistics. As an important variant
of ADMM, the proximal ADMM has also been studied in
various fields [5], [7]. In this paper, we propose an aug-
mented proximal ADMM algorithm to solve the large-scale
expectile regression with SCAD and adaptive LASSO penal-
ties. Computationally, to fully exploit the computing power
of the machine and accelerate convergence, all machines
can optimize their corresponding GEL functions in parallel,
and the results are then aggregated by the CPU. Visually,
the average step requires less computation, but it helps to
improve the accuracy of estimates. In terms of communi-
cation, the proposed algorithm can be proven to match the
centralized method during few rounds of communication.

Simulation and empirical studies show that the estimation
errors (or the prediction errors) and variable selection results
obtained by the proposed approach are compared with those
obtained by the centralized method, and are better than the
results of Pan [18] which is based on the CSL function.
In addition, they also show that our proposed method can not
only effectively solve the problem of data heterogeneity, but
also reduce the cost of data storage and transmission.

The remainder of the paper is organized as follows. Large-
scale expectile regression with SCAD and adaptive LASSO
penalties are introduced in Section II. The oracle properties
of the SCAD and adaptive LASSO penalized expectile esti-
mators are presented in Section III. The augmented proximal
ADMM algorithm for handling the distributed optimization
problem is proposed in Section IV. Section V and Section VI
present numerical results on simulations and real data, respec-
tively. The conclusion and prospects for future work are
summarized in Section VII.

II. DISTRIBUTED ESTIMATION IN LARGE-SCALE
PENALIZED EXPECTILE REGRESSION
Suppose that we have a random sample {xi, yi}Ni=1 from the
following model:

yi = xTi β0 (τ )+ εi (τ ) , i = 1, 2, · · · ,N , (2.1)

where xi is a p-dimensional vector of covariates, β0 (τ ) is a
p-dimensional vector of parameters, and the random error
εi (τ ) satisfies P (εi (τ ) ≤ 0|xi) = τ for some specified τ ∈
(0, 1). We drop τ from the parameters and error term for
notational simplicity.We assume that the true parameter value
β0 is sparse. In other words, if we represent the support set as
B = {k : βk0 6= 0} and let q = |B| be the cardinality of the
set B, the sparsity assumption implies that q� p, where βk0
is the k-th component of β0.
Modern large-scale datasets, where both N and p are very

large, create challenges for classical approaches. In this paper,
we address the challenge that observations cannot be stored
in a single machine but are distributed acrossmmachines. For
simplicity, we assume that N = nm and that the j-th machine
has access to observations {xji, yji}ni=1. All of our results can
be easily generalized for a generalized N . The regression
expectile estimator proposed by Newey and Powell [17] is
defined as the vector that minimizes the following global loss
function

QN (β) =
1
nm

m∑
j=1

n∑
i=1

ρτ

(
yji − xTjiβ

)
, (2.2)

where ρτ (·) is a convex loss function of the form

ρτ (u) = τu2I (u > 0)+ (1− τ )u2I (u ≤ 0)

with I (·) being the indicator function. In a large-scale dataset
environment, the directminimization ofQN (β) is costly. This
means that we need to construct a proxy function for QN (β)
and change the optimization objective QN (β) to the proxy
function.
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In a distributed environment, only p-dimensional gradient
vector ∇QN (β) can communicate easily, so the linear func-
tion Q(1)

N (β) = QN
(
β
)
+ 〈∇QN

(
β
)
, β − β〉, which is the

first-order Taylor expansion of Q(1)
N (β) around β, where β is

any initial estimator. The global loss function to beminimized
can be written as

QN (β) = Q(1)
N (β)+ R (β) , (2.3)

where R (β) = QN (β) − Q(1)
N (β). Since the linear func-

tion Q(1)
N (β) can easily be communicated to each machine

whereas R (β) cannot, this naturally prompts us to replace
R (β) with its subsampled version at machine j:

Rj (β) = Qj (β)−
[
Qj
(
β
)
+ 〈∇Qj

(
β
)
, β − β〉

]
, (2.4)

where Qj (β) is the local loss function based on the datasets
at machine j, defined by

Qj (β) =
1
n

n∑
i=1

ρτ

(
yji − xTjiβ

)
, j = 1, 2, · · · ,m. (2.5)

Due to this substitution, the goal of optimization becomes
Q(1)
N (β)+ Rj (β), which equals

Q (β) := Qj (β)+ 〈∇QN
(
β
)
−∇Qj

(
β
)
, β〉 (2.6)

up to an additive constant. We call the surrogate loss function
Q (β) the GEL function, where the function R (β) based
on the global data is replaced by the function Rj (β) based
on the local one. Note that Jordan et al. [11] proposed a
communication-efficient surrogate likelihood method using
the GEL function

Q1 (β)+ 〈∇QN
(
β
)
−∇Q1

(
β
)
, β〉 (2.7)

on the first machine. Obviously, our proposed GEL function
is more general, and it includes the CSL function as a special
case.

Because of the high parameter dimension, the GEL func-
tion (2.6) cannot be used for the inference of β. To avoid
overfitting and improve generalizability, we add penalty term
to the GEL function to encourage sparsity in the coefficient
estimators and propose the following penalized GEL function

Q̃ (β) = Qj (β)+〈∇QN
(
β
)
−∇Qj

(
β
)
, β〉+

p∑
k=1

pλ (|βk |) ,

(2.8)

where pλ (·) is a penalty function with tuning parameter λ.
According to the different penalty function, the estimation

coefficient methods are divided into elastic net family penal-
ties, including LASSO estimate, Ridge estimate and ENet
estimate; Non-convex Penalty estimation, including SCAD,
MCP (Minimax Concave Penalty), etc. The Lasso is a repre-
sentation of the convex penalty function and is easy to calcu-
late, and it can compress the coefficient of the independent
variable to zero, so it has good robustness and is especially
practical. SCAD is a representation of a nonconvex penalty

function, it satisfies asymptotic unbias, but the calculation
is complicated. In our paper, on the one hand, we consider a
nonconvex SCAD. On the other hand, we consider a convex
penalty, adaptive LASSO penalty, which can be seen as a
generalization of the LASSO penalty. The main purpose of
adaptive LASSO penalty is to use adaptive weights to punish
the coefficients of different covariates to different degrees.
Based on the two kinds penalties, we construct the SCAD-
penalized GEL function and adaptive LASSO penalized GEL
function in the rest of this section; we then establish the
corresponding theoretical properties respectively under dif-
ferent regular conditions in Section III. To solve the adap-
tive LASSO penalty expectile regression and SCAD penalty
expectile regression, we make a local linear approximation
for the SCAD penalty, and we unify the SCAD-penalized
GEL function and adaptive LASSO penalized GEL function,
and then propose an augmented proximal ADMM algorithm
in Section IV.

We first consider the SCAD penalty and define the penalty
function as

pλ (|u|) = λ |u| I (|u| ≤ λ)+
aλ |u| −

(
|u|2 + λ2

)
/2

a− 1

× I (λ < |u| ≤ aλ)+
(a+ 1) λ2

2
I (|u| > aλ)

for some a > 2 and λ > 0. A typical choice is a = 3.7 as
suggested by Fan and Li [6]. Combining (2.8) and the SCAD
penalty, the GEL function with the SCAD penalty can be
written as

Q̃SCAD (β) = Qj (β)+ 〈∇QN
(
β
)
−∇Qj

(
β
)
, β〉

+

p∑
k=1

pλ (|βk |) . (2.9)

By (2.9), we propose the first estimator of β, denoted by
β̂(SCAD), which is defined to solve the following SCADpenal-
ized expectile regression optimization problem

β̂(SCAD) = arg min
β∈Rp

Q̃SCAD (β) . (2.10)

Then we consider the adaptive LASSO penalty. Based on
(2.8), the adaptive LASSO penalized expectile regression
minimizes

Q̃AL (β) = Qj (β)+〈∇QN
(
β
)
−∇Qj

(
β
)
, β〉+λ

p∑
k=1

wk |βk |

(2.11)

with respect to β, where wk (k = 1, 2, · · · , p) is a prespec-
ified weight. By (2.11), we propose the other estimator of
β, denoted by β̂(AL), which is defined to solve the following
adaptive LASSO penalized expectile regression optimization
problem

β̂(AL) = arg min
β∈Rp

Q̃AL (β) . (2.12)
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III. ASYMPTOTIC PROPERTIES
In this section, we establish the asymptotic properties of
the proposed estimators β̂(SCAD) and β̂(AL), respectively.
We assume that our sample set {xi, yi}Ni=1 come from the
following data generation process

yi = xTi β + εi =
(
x1i
)T
β1 +

(
x2i
)T
β2 + εi,

i = 1, 2, · · · ,N , (3.1)

where xi =
((
x1i
)T
,
(
x2i
)T)T

, β =
(
βT1 , β

T
2

)T
, x1i ∈ R

q,

x2i ∈ R
p−q. The true regression coefficients are β1 = β10

with each component being nonzero, and β2 = β20 = 0, as a
result β0 =

(
βT10, β

T
20

)T
.

To give the asymptotic properties, we introduce some nota-
tion. Define

εji = yji − xTjiβ0, εji = yji − xTjiβ,

g (τ ) = τ [1− Fε (0)]+ (1− τ)Fε (0) ,

ϕτ (u) = 2τuI (u > 0)+ 2 (1− τ) uI (u ≤ 0) ,

a (τ ) = Var
(
ϕτ
(
εji
))
, b (τ ) = Cov

(
ϕτ
(
εji
)
, ϕτ

(
εji
))
,

c (τ ) = τ 2E
[
ε2jiI

(
εji > 0

)]
+ (1− τ)2 E

[
ε2jiI

(
εji ≤ 0

)]
,

d (τ ) = (m− 1) a (τ )+ (2− 2m) b (τ )+ 4mc (τ ) ,

where Fε(·) is the distribution function of εji. In order to
obtain our theoretical results, we enforce the following con-
ditions throughout the paper. Note that ‖·‖2 refers to the

L2-norm in the Euclidean space,
d
−→ represents the conver-

gence in distribution, and
P
−→ represents the convergence in

probability.
(C1) Regression errors {εi}Ni=1 are independent and identi-

cally distributed with a common cumulative distribu-
tion function Fε (·), and given xi, the τ -th expectile
of εi is zero and satisfies E

[
ε2i | xi

]
<∞.

(C2) There exists a positive definite matrix 6 =(
611 612
6T

12 622

)
such that lim

N→∞

(
N∑
i=1

xixTi

)
/N = 6,

where 611 is the q-by-q submatrix of 6, 612 is the
q-by-(p − q) submatrix of 6, 622 is the (p − q)-by-
(p− q) submatrix of 6.

A. SCAD
We establish the

√
N -consistency of our proposed SCAD

penalized estimator β̂(SCAD) as shown in Theorem 1 when
the tuning parameter λ = λ (N ) → 0 as N → ∞, and
we also establish the oracle property of β̂(SCAD) as shown in
Theorem 2 when the tuning parameter λ = λ (N ) → 0 and
√
Nλ→∞ as N →∞.
Theorem 1 (Consistency): Suppose the sample set
{xi, yi}Ni=1 is generated according to process (3.1); under
Conditions (C1) and (C2), if λ = λ (N ) → 0, then β̂(SCAD)

converges to β0 in probability, i.e., ‖ β̂SCAD − β0 ‖2=

Op
(
N−

1
2

)
.

Remark 1: Theorem 1 shows that the estimator β̂(SCAD) is
√
N -consistent.

Theorem 2 (Oracle Property): Suppose the sample set
{xi, yi}Ni=1 is generated according to process (3.1); under
Conditions (C1) and (C2), if λ = λ (N )→ 0 and

√
Nλ→∞

as N → ∞, then with probability tending to one the
√
N-consistent local minimizer β̂(SCAD) =

(
β̂
(SCAD)
1
β̂
(SCAD)
2

)
in

Theorem 1 satisfies:

(I) Sparsity: β̂(SCAD)2 = 0;

(II) Asymptotic Normality:
√
N
(
β̂
(SCAD)
1 − β10

)
d
−→

N
(
0, d(τ )

4g2(τ )
6−111

)
.

Remark 2: For the SCAD penalized expectile regression,
according to Theorem 2, if λ = λ (N ) → 0 and

√
Nλ →

∞ as N → ∞, the penalized estimators possess the oracle
property and perform as well as the expectile estimates for
estimating β1 knowing β2 = 0.
Remark 3: If we set the initial value β to satisfy β =

β0 + Op
(
N−

1
2

)
, it follows that a (τ ) = b (τ ) = 4c (τ ), and

d (τ ) = 4c (τ ), then, by Theorem 2, we have

√
N
(
β̂
(SCAD)
1 − β10

)
d
−→ N

(
0,

c (τ )
g2 (τ )

6−111

)
.

Remark 3 gives the same asymptotic results as those of
Zhao and Zhang (2018).

B. ADAPTIVE LASSO
We establish the oracle property of our proposed adap-
tive LASSO penalized estimator β̂(AL) as shown in Theo-
rem 3 when the tuning parameter λ = λ (N ),

√
Nλ → 0

and N (r+1)/2λ→∞ as N →∞.
Theorem 3 (Oracle Property): Suppose the sample set
{xi, yi}Ni=1 is generated according to process (3.1); under
Conditions (C1) and (C2), if λ = λ (N ),

√
Nλ → 0 and

N (r+1)/2λ → ∞ as N → ∞, then the adaptive LASSO

expectile regression estimator β̂(AL) =

(
β̂
(AL)
1
β̂
(AL)
2

)
satisfies:

(a) Sparsity: β̂(AL)2 = 0;

(b) Asymptotic Normality:
√
N
(
β̂
(AL)
1 − β10

)
d
−→ N(

0, d(τ )
4g2(τ )

6−111

)
.

Remark 4: Except for the results similar to Remarks 2 and
3 for the adaptive LASSO estimator β̂(AL) when λ = λ (N ),
√
Nλ→ 0 and N (r+1)/2λ→∞ as N →∞, Theorem 3 also

shows that β̂(AL) does not need to be
√
N -consistent for

adaptive LASSO.

IV. AUGMENTED PROXIMAL ADMM ALGORITHM
To propose an algorithm for calculating the SCAD and adap-
tive LASSO penalized estimators, we first set β to be the
current t-th iteration value β(t) and unify the SCAD-penalized
GEL function Q̃SCAD and adaptive LASSO penalized GEL
function Q̃AL as follows:

Q̃(t) (β) = Qj (β)+ 〈∇F
(
β(t)

)
, β〉 + λ ‖w ◦ β‖1 (4.1)
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where ∇F
(
β(t)

)
= ∇QN

(
β(t)

)
− ∇Qj

(
β(t)

)
, w =(

w1, · · · ,wp
)T is the vector of nonnegative weights, and

‖w ◦ β‖1 =
p∑

k=1
wk |βk | with ◦ denoting the Hadamard

product.
As discussed in Zou and Li [32], the SCAD penalty

function can be local linear approximation as

pλ (|βk |) ≈ ∇pλ
(∣∣∣β(t)k ∣∣∣) |βk | ,

where∇pλ (·) is the first-order derivative of pλ (·), defined by

∇pλ (u) = λ
[
I (u ≤ λ)+

(aλ− u)+
(a− 1) λ

I (u > λ)

]
for some a > 2 and u > 0, and the notation e+ denotes
the positive of e; that is, e+ is e if e > 0, zero oth-
erwise. Thus, for the SCAD penalized expectile regres-
sion, wk (k = 1, 2, · · · , p) in (4.1) can be chosen as wk =
λ−1∇pλ

(∣∣∣β(t)k ∣∣∣). For the adaptive LASSO penalized expec-

tile regression, we choose wk =
(
β̂
(L)
k + 1/n

)−1
for k =

1, 2, · · · , p, where β̂(L)k denotes the expectile LASSO esti-
mator for βk . We see that the problem of solving the above
penalized GEL function can be transformed into a problem
of solving a convex optimization.

The implementation of optimizing penalized GEL func-
tion (4.1) is difficult and complicated in practice, owing to
the fact that the data volume is large and the dimension is
high. The ADMM algorithm has become popular recently
owing to its capability of solving large-scale optimization
problems. In the following, we propose an augmented prox-
imal ADMM algorithm as an efficient tool for solving large-
scale expectile regression with sparsity. Denote Gτ (z) =

n−1
n∑
i=1
ρτ (zi) for z = (z1, z2, · · · , zn)T, where z = y − xβ,

y =
(
yj1, yj2, · · · , yjn

)T is an (n× 1)-dimensional vector and
x =

(
xj1, xj2, · · · , xjn

)T is a matrix with dimension n×p. The
problem of optimizing the penalized GEL function (4.1) can
be transformed into the following optimization problem: min
β∈Rp,z∈Rn

Gτ (z)+ 〈∇F
(
β(t)

)
, β〉 + λ ‖w ◦ β‖1 ,

s.t. xβ + z = y.
(4.2)

The ADMM solves problem (4.2) and can be rewritten as
in the following equivalent form:

min
β∈Rp,z∈Rn

[Gτ (z)+〈∇F
(
β(t)

)
, β〉+λ ‖w ◦ β‖1

+
γ

2
‖xβ + z− y‖22 ],

s.t. xβ + z = y,

(4.3)

where the last term γ
2 ‖xβ + z− y‖

2
2 is called the augmenta-

tion term and added to achieve better convergence properties.
γ > 0 is a tuning augmentation parameter. According to

the convex optimization literature, the problem (4.3) has the
following Lagrangian function:

Lγ (β, z, θ) = Gτ (z)+ 〈∇F
(
β(t)

)
, β〉 + λ ‖w ◦ β‖1

−〈θ, xβ + z− y〉 +
γ

2
‖xβ + z− y‖22 ,

where θ = (θ1, θ2, · · · , θn)T is the Lagrangian multiplier.
The standard ADMM algorithm alternately minimizes the

Lagrangian function in β and z, and maximizes θ in the dual
direction, which results in the update as follows:

β(t+1),j := arg min
β∈Rp

Lr
(
β, z(t), θ (t)

)
,

z(t+1),j := arg min
z∈Rn

Lr
(
β(t+1),j, z, θ (t)

)
,

θ (t+1),j := θ (t) − γ
(
xβ(t+1),j + z(t+1),j − y

)
,

j = 1, 2, · · · ,m,

(4.4)

where
(
β(t), z(t), θ (t)

)
denotes the t-th iteration of the algo-

rithm for t ≥ 0. Discard the constant term irrelevant to the
corresponding parameter, the update (4.4) can be rewritten as:

β(t+1),j := arg min
β∈Rp

[〈∇F
(
β(t)

)
, β〉 + λ ‖w ◦ β‖1

−〈θ (t), xβ〉 +
γ

2

∥∥∥xβ + z(t) − y∥∥∥2
2
],

z(t+1),j := arg min
z∈Rn

[
Gτ (z)− 〈θ (t), z〉

+
γ

2

∥∥∥xβ(t+1),j + z− y∥∥∥2
2

]
,

θ (t+1),j := θ (t) − γ
(
xβ(t+1),j + z(t+1),j − y

)
,

j = 1, 2, · · · ,m.

(4.5)

The z-update in (4.5) has a closed-form solution, which can
be executed component-wisely. That is, for i = 1, 2, · · · , n,
we have

z(t+1),ji :

= argmin
zi∈R

1
n
ρτ (zi)− θ

(t)
i zi +

γ

2

(
zi + xTjiβ

(t+1),j
− yji

)2
= argmin

zi∈R
ρτ (zi)+

nγ
2

[
zi −

(
yji − xTjiβ

(t+1),j
+
θ
(t)
i

γ

)]2
= Proxρτ

(
yji − xTjiβ

(t+1),j
+ γ−1θ

(t)
i , nγ

)
,

j = 1, 2, · · · ,m, (4.6)

where for a given τ ∈ (0, 1) andα > 0, the proximalmapping
Proxρτ [ξ, α] can be written as

Proxρτ [ξ, α] := argmin
u∈R

ρτ (u)+
α

2
(u− ξ)2

=


αξ

2τ + α
, ξ > 0,

αξ

2(1− τ )+ α
, ξ ≤ 0.
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Performing the average of z(t+1),ji in (4.6) between m
machines, we get

z(t+1)i =
1
m

m∑
j=1

z(t+1),ji , i = 1, 2, · · · , n. (4.7)

The computational difficulty mainly lies in the β-update
in (4.5). Unlike the z-update, the β-update does not have a
simple closed-form formula for the generic design matrix x.
However, if we update the formula for β with a simple closed-
form as well, the algorithm will be more transparent and easy
to code. To do this, we use a widely used technique called
‘‘linearization’’. Specifically, we consider adding a proximal
term to the objection function in the β-update and replacing
the β-update in (4.5) with the following augmented β-update:

β(t+1) := arg min
β∈Rp

[〈∇F
(
β(t)

)
, β〉+λ ‖w ◦ β‖1−〈θ

(t), xβ〉

+
γ

2

∥∥∥xβ + z(t) − y∥∥∥2
2
+

1
2

∥∥∥β − β(t)∥∥∥2
V
],

where V is a positive semidefinite matrix. We choose V =
γ
(
ηIp×p − xTx

)
with η ≥ 3max

(
xTx

)
, where Ip×p is the

(p× p)-dimensional unit matrix, 3max () denotes the largest
eigenvalue of a real symmetric matrix and ‖S‖2V := 〈S,VS〉
is the seminorm.

For j = 1, 2, · · · ,m, the augmented β-update can be per-
formed component-wisely as, β(t+1),j, shown at the bottom
of the page.

Define a soft shrinkage operator Shrink [u, α] =

sgn (u) (|u| − a)+, where sgn (·) is a sign function, and then
by performing some simple calculation, we have, (4.8), as
shown at the bottom of the page, where x(k) denotes the k-th
column of x for k = 1, 2, · · · , p. By performing the average
of β(t+1),j in (4.8) between m machines, we get

β(t+1) = m−1
m∑
j=1

β(t+1),j. (4.9)

Similarly, we average the θ -update θ (t+1),j in (4.5) between
m machines and get

θ (t+1) = m−1
m∑
j=1

θ (t+1),j. (4.10)

Based on (4.6), (4.7), (4.8), (4.9) and (4.10), we summarize
the augmented proximal ADMM algorithm for large-scale
expectile regression with sparsity in Algorithm 1.

Algorithm 1 Augmented Proximal ADMM Algorithm for
Solving Large-Scale Expectile Regression With Sparsity

Initialize β(0), z(0), θ (0);
1: for l = 0, 1, . . . ,L − 1 do
2: for j = 1, 2, . . . ,m do
3: Each machine evaluates ∇Qj

(
β(l)

)
and sends it to

the CPU;
4: The CPU computes

∇QN
(
β(l)

)
= m−1

m∑
j=1
∇Qj

(
β(l)

)
and broadcasts to machines;

5: Do the following iterates in each machine and send
to the CPU:

6: for t = 0, 1, . . . ,T − 1 do

7: β(t+1),j =

[
Shrink

(
β
(t)
k

−
∇F(β(t)k )−xT(k)(γ y−γ xβ

(t)
−γ z(t)+θ (t))

γ η
, λwk
γ η

)]
1≤k≤p

;

8: z(t+1),j =
[
Proxρτ

(
yji − xTjiβ

(t+1),j
+ γ−1θ

(t)
i ,

nγ
)]

1≤i≤n
;

9: θ (t+1),j = θ (t) − γ (xβ(t+1),j + z(t+1),j − y);
10: end for
11: end for
12: The CPU computes

13: β(l+1) = m−1
m∑
j=1
β(T ),j;

14: z(l+1) = m−1
m∑
j=1

z(T ),j;

15: θ (l+1) = m−1
m∑
j=1
θ (T ),j

16: and broadcasts β(l+1), z(l+1), θ (l+1) to each machine;
17: end for
Return β̂SCAD(β̂AL) = β(L).

Remark 5: If we optimize directly the objective function
QN (β) + λ‖w ◦ β‖1, Algorithm 1 can be degenerated into
the following Algorithm 2. However, x = (x1, x2, · · · , xN )T

is a (N × p)-dimensional matrix and z = (z1, z2, · · · , zN )T

is a N -dimensional vector defined by z = y − xβ, where
y = (y1, y2, · · · , yN )T .

β(t+1),j := arg min
β∈Rp

λ ‖w ◦ β‖1 + γ η2
∥∥∥∥∥β − −∇F

(
β(t)

)
+ γ ηβ(t) + xT

(
γ y− γ xβ(t) − γ z(t) + θ (t)

)
γ η

∥∥∥∥∥
2

2


β(t+1),j :=

Shrink
β(t)k − ∇F

(
β
(t)
k

)
− xT(k)

(
γ y− γ xβ(t) − γ z(t) + θ (t)

)
γ η

,
λwk
γ η


1≤k≤p

(4.8)
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TABLE 1. Simulation results for SCAD penalized expectile regression model.

V. SIMULATION STUDIES

We conduct simulation studies to investigate the variable
selection and parameter estimation accuracy of our proposed
Algorithm 1 (Paverage for short). We compare it with the
distributed optimization method (Psingle for short) and the
optimal global method (Centralize for short). For the Psin-
gle method, we use the augmented ADMM algorithm to
solve the CSL function (2.7) with penalty term λ ‖w ◦ β‖1
(Pan [18]). For the Centralize method, we use Algorithm 2
in Remark 5 to optimize the global loss function (2.2) with
penalty term λ ‖w ◦ β‖1.
The scalar response is generated according to the following

heteroskedastic model [27]:

y = x6 + x12 + x15 + x20 + 0.7x1ε, (4.11)

where the predictors x1, x2, · · · , xp are generated by x1 =
8 (̃x1) and xj = x̃j for j = 2, 3, · · · , p with 8(·) being
the cumulative distribution function of the standard normal
distribution and

(̃
x1, x̃2, · · · , x̃p

)T
∼ N (0, 6) with 6 =(

0.5|i−j|
)
p×p for i, j = 1, 2, · · · , p. Note that x1 plays an

important role in the conditional distribution of y given the
predictors but does not directly influence on the mean of the
conditional distribution.

For a comprehensive comparison, we consider the standard
normal N (0, 1) and two heavy-tailed distributions t (3) and
Laplace (0, 1) for the error term ε. We consider the sample
size N = 2000 and divide the data evenly and randomly
on m = 20 machines with the sample size of each machine
n = 100. We fix the parameter dimension p = 300. Similar
to Wang et al. [27], we consider three different expectiles
τ = 0.3, 0.5 and 0.7. We choose tuning parameter λ by
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TABLE 2. Simulation results for adaptive LASSO penalized expectile regression model.

minimizing the test error with a 20-fold cross-validation
method, i.e., min

λ∈R

∑
i∈test ρτ (yi−x

T
i β̂train) with β̂train being the

parameter estimator based on the training set.
Based on the simulation of 100 repetitions, we compare the

performance of the aforementioned three methods in terms
of the following criteria. The average of nonzero regression
coefficients β̂k 6= 0 for k = 1, 2, · · · , p (Size for short).
The proportion of simulation runs including all true crucial
predictors (P1 for short), that is, β̂k 6= 0 for any k ≥ 1
satisfying the true coefficient βk0 6= 0. Note that when
τ = 0.5, this implies the percentage of times that we include
x6, x12, x15, x20, and when τ = 0.3 and 0.7, x1 should also
be included. The proportion of simulation runs x1 is selected
(P2 for short). The estimated error is defined by ‖β̂ − β‖22
(ER for short). The numbers in parentheses in the columns

labeled Size, P1, P2 and ER are the corresponding sample
standard deviations.

Table 1 reports the parameter estimation and variable selec-
tion results for SCAD penalized expectile regression model,
and Table 2 reports the results for adaptive LASSO penalized
expectile regression model. In terms of parameter estima-
tion, the Paverage and Psingle methods generate estimates
that can compete with the Centralize method. The Paverage
method exhibits smaller estimation errors than the Psingle
method. In terms of parameter estimation, the Paverage and
Psingle methods generate estimates that can compete with
the Centralize method. In terms of variable selection, from
Table 1, when τ = 0.3 and 0.7, all methods successfully
select the five variables in the mean (x1, x6, x12, x15 and x20)
with high probabilities (P1). For x1, except for τ = 0.5, all
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Algorithm 2 ADMM Algorithm

Initialize β(0), z(0), θ (0);
1: for t = 0, 1, . . . ,T − 1 do

2: β(t+1) =

[
Shrink

(
β
(t)
k −

−xT(k)(γ y−γ xβ
(t)
−γ z(t)+θ (t))

γ η
,

λwk
γ η

)]
1≤k≤p

;

3: z(t+1) =
[
Proxρτ

(
yi − xTi β

(t+1)
+γ−1θ

(t)
i ,Nγ

)]
1≤i≤N

;

4: θ (t+1) = θ (t) − γ (xβ(t+1) + z(t+1) − y);
5: end for

Return β̂SCAD(β̂AL) = βT .

methods show high probabilities (P2). Similar conclusions
can be obtained from Table 2.

To prove that our proposed method is communication-
efficient, we plot how the estimation error varies with the
number of rounds of communication. Figure 1 reports the
results for the SCAD penalized expectile regression model,
and Figure 2 reports the results for the adaptive LASSO
penalized expectile regression model. The results show that
for our proposed method, the estimation error declines to
that of the Centralize method within a few rounds of com-
munication. In addition, compared with the Psingle method,
the estimation error of the Paveragemethod converges rapidly
to that of the Centralize method in all scenarios, which shows
that average steps lead to better performance.

VI. REAL DATA ANALYSIS
We apply the proposed procedures to a dataset from the
Communities and Crime study. The dataset combine socioe-
conomic data from the 1990 US Census, law enforcement
data from the 1990 US LEMAS survey, and crime data
from the 1995 FBI UCR, which contain 1994 observations
and 128 variables. The dataset can be obtained from the
website http://archive.ics.uci.edu/ml/datasets/Communities+
and+Crime. We remove the variables with excessive missing
information and use the remaining 101 variables as covariates
and the total number of violent crimes per 100000 population
as the response variable. Figure 3 reports the histogram and
density function graph of the response variable, from which
we can see that the response variable is heavy-tailed. There-
fore, it is necessary to use the expectile regression method to
study the effect of the 101 covariates on the response variable.

We use Paverage, Centralize, and Psingle to analyze these
data and compare their performance. We consider three
different expectiles τ = 0.3, 0.5 and 0.7 and randomly
divide the dataset into two parts: a training dataset and a
test dataset with sample sizes of 1400 and 594, respectively.
A 14-fold cross-validation method is performed on the
1400-observation training dataset to determine the tuning
parameter λ. The training dataset is randomly segmented
into 14 machines, which means that each machine stores
100 samples at random. An estimate of the regression

FIGURE 1. Graphs for the SCAD penalized estimation error ‖β̂ − β0‖
2
2

versus rounds of communications.

TABLE 3. Results for the analysis of the Communities and Crime study
data set.

coefficient is obtained based on our proposed distributed
method, and then a cross-validation method is used to
evaluate the prediction error (PE) defined by PE =
1

594

∑
i∈test ρτ (yi−x

T
i β̂).where β̂ is the parameter estimation

obtained by the training set. We repeat the above proce-
dure 100 times, and the results are summarized in Table 3
and include the number of selected important explanatory
variables (Size) and prediction error (PE). The numbers in
parentheses in the columns labeled Size and PE are the cor-
responding sample standard deviations.

64740 VOLUME 9, 2021



Y. Pan, Z. Liu: Efficient Distributed Learning for Large-Scale Expectile Regression With Sparsity

FIGURE 2. Graphs for the adaptive LASSO penalized estimation error
‖β̂ − β0‖

2
2 versus rounds of communications.

FIGURE 3. Histogram and density function graph of response variable
‘‘Per Capita Violent Crimes’’.

From Table 3, it can be concluded that the number
of selected important variables and the standard deviation
of prediction errors derived by the Paverage method is
correspondingly close to those derived by the Centralize
method. The results from the real example again verify that
our proposed distributed method is an effective method to

solve distributed sparse expectile regression and can pro-
duce results that are highly competitive with the Centralize
method.

VII. CONCLUSION AND DISCUSSION
Expectile regression is a popular alternative when working
with heterogeneous data and studies the overall conditional
distribution of response to a given predictor in a hetero-
geneous environment. High-dimensional data are often col-
lected across a wide range of research areas and often display
heterogeneity. In addition, the sheer size of the data often
makes it impossible to store all of them on one machine.
Therefore, it is necessary to store data in a distributed way
and develop a new distributed learning method with sparsity
in expectile regression. In a distributed environment, we pro-
pose penalized large-scale expectile regression using SCAD
and adaptive LASSO penalties and demonstrate the oracle
properties introduced in Fan and Li [6] and Zou [31].

To generate a statistically optimal estimator with low com-
munication complexity, we construct a GEL function that
provides a communication-efficient surrogate for the global
loss. The GEL function can be used in high-dimensional
regularized estimation. To optimize the penalized GEL func-
tion, we propose an augmented proximal ADMM algorithm.
Simulation results show that the proposed method has good
performance with finite sample size, and the estimation error
can be improved after a few rounds of communication until
it matches that of the Centralize method. A real data example
demonstrates that the implementation of the proposedmethod
is easy in practice.

Several new directions are worth exploring in the future.
First, here we examine a scenario where multiple node
machines are connected to CPU, and all updates are done
simultaneously. It would be interesting to extend this algo-
rithm to decentralized and asynchronous settings. Second,
the communication-efficient versions of the confidence
regions and hypothesis tests of sparse expectile regression
are of great significance in making statistical inference on
the distribution. Finally, the future works may also explore
the ideas presented to improve the computational cost of
communication-efficient distributed multi-task learning with
shared support [25].

APPENDIX
PROOF OF THEOREMS
To prove three theorems in Section 3, we first introduce and
prove five lemmas.
Lemma 1: Let {hn (u) : u ∈ U} be a sequence of ran-

dom convex functions defined on convex, open subset U
ofRp. Suppose h (u) is a real-valued function onU for which
hn (u)→ h (u) in probability, for each u ∈ U . Then for each
compact subset U of U ,

sup
u∈U
|hn (u)− h (u)|

P
−→ 0,

and the function h (·) is necessarily convex on U .
The proof of Lemma 1 can be found in Pollard [20].
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Lemma 2: Let V be a symmetric and positive definite
matrix, W be a random variable and An (u) be a convex
objective function with argmin αn, if

An (u) =
1
2
uTVu+WTu+ op (1)

then αn
d
−→ −V−1W .

The proof of Lemma 2 can be found in Hjort and
Pollard (1993).
Lemma 3: Suppose the sample set {xi, yi}Ni=1 is generated

according to process (3.1); under Conditions (C1) and (C2),
denote

Hn (u) =
n∑
i=1

[
ρτ

(
εji − xTji u/

√
n
)
− ρτ

(
εji
)]

+ n
[
〈∇QN

(
β
)
− Qj

(
β
)
,
u
√
n
〉

]
, (A.1)

then we have

Hn (u) = g (τ ) uT
[∑n

i=1 xjix
T
ji

n

]
u+WT

n u+ op (1) ,

where g (τ ) = τ [1− Fε (0)] + (1− τ)Fε (0), Wn =

1
√
n

n∑
i=1

Di, and Di = ξi −
ηi
m − ζi, i = 1, 2, · · · , n with

ξi = ϕτ
(
εji
)
xji, ηi =

m∑
j=1
ϕτ
(
εji
)
xji, ζi = ϕτ

(
εji
)
xji, εji =

yji − xTjiβ, εji = yji − xTjiβ0.

Proof of Lemma 3: Under Conditions (C1) and (C2), sim-
ilarly to the arguments of Zhao and Zhang [30], we obtain

n∑
i=1

[
ρτ

(
εji − xTji u/

√
n
)
− ρτ

(
εji
)]

= g (τ ) uT
[∑n

i=1 xjix
T
ji

n

]
u−

[∑n
i=1 ϕτ

(
εji
)
xji

√
n

]T
u+ op (1) .

(A.2)

By performing a simple calculation, we have

∇QN
(
β
)
−∇Qj

(
β
)

=
1
n

n∑
i=1

ϕτ (εji) xji − 1
m

m∑
j=1

ϕτ
(
εji
)
xji

 , (A.3)

where ϕτ (u) = 2τuI (u > 0)+ 2 (1− τ) uI (u ≤ 0).
Combining (A.1), (A.2), and (A.3), we obtain

Hn (u)

= g (τ ) uT
[∑n

i=1 xjix
T
ji

n

]
u

+
1
√
n

n∑
i=1

ϕτ (εji) xji− 1
m

m∑
j=1

ϕτ
(
εji
)
xji−ϕτ

(
εji
)
xji

T

× u+ op (1) . (A.4)

If we denote ξi = ϕτ
(
εji
)
xji, ηi =

m∑
j=1
ϕτ
(
εji
)
xji, ζi =

ϕτ
(
εji
)
xji, Di = ξi −

ηi
m − ζi, Wn =

1
√
n

n∑
i=1

Di, then we have

Hn (u) = g (τ ) uT
[∑n

i=1 xjix
T
ji

n

]
u+WT

n u+ op (1) . (A.5)

This completes the proof.
Lemma 4: Under Conditions (C1) and (C2), Wn is defined

by Lemma 3, then we obtain

Wn =
1
√
n

n∑
i=1

Di
d
−→ N

(
0,m−1d (τ )6

)
.

Proof of Lemma 4: The Condition (C1) that the τ -
expectile of the error term is zero, implies E

[
ϕτ
(
εji
)
|xji
]
=

E
[
ϕτ
(
εji
)
|xji
]
= 0, and

Cov (ξi, ξi) = a (τ ) xjixTji , Cov (ηi, ηi) = a (τ )
m∑
j=1

xjixTji ,

Cov (ζi, ζi) = 4c (τ ) xjixTji , Cov (ξi, ηi) = a (τ ) xjixTji ,

Cov (ξi, ζi) = b (τ ) xjixTji , Cov (ηi, ζi) = b (τ ) xjixTji ,

where

a (τ ) = Var
(
ϕτ
(
εji
))

b (τ ) = Cov
(
ϕτ
(
εji
)
, ϕτ

(
εji
))

c (τ ) = τ 2E
[
ε2jiI

(
εji > 0

)]
+ (1− τ)2 E

[
ε2jiI

(
εji ≤ 0

)]
.

By routine calculation, we get

W ∧
= Var

ξiηi
ζi



=


a (τ ) xjixTji , a (τ ) xjixTji , b (τ ) xjixTji

a (τ ) xjixTji , a (τ )
m∑
j=1

xjixTji , b (τ ) xjixTji

b (τ ) xjixTji , b (τ ) xjixTji , 4c (τ ) xjixTji

 . (A.6)

By the fact that Di is independent and identically dis-
tributed zero-mean random vectors, Condition (C2) and

Di =
(
Ip×p,−

Ip×p
m
,−Ip×p

)
p×3p

ξiηi
ζi


3p×1

,

i = 1, 2, · · · , n,

we have

Var (Wn) =
1
n

n∑
i=1

(
Ip×p,

−Ip×p
m

,−Ip×p

)
W

 Ip×p
−Ip×p
m
−Ip×p


=

1
n

n∑
i=1

[
m− 2
m

a (τ ) xjixTji +
2− 2m
m

b (τ ) xjixTji

+ 4c (τ ) xjixTji +
a (τ )
m2

m∑
j=1

xjixTji


P
−→ m−1d (τ )6, as n→∞, (A.7)
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where d (τ ) = (m− 1) a (τ ) + (2− 2m) b (τ ) + 4mc (τ ).
By Central limit theorem, we obtain that

Wn =
1
√
n

n∑
i=1

Di
d
−→ N

(
0,m−1d (τ )6

)
. (A.8)

This completes the proof.
Lemma 5: Suppose the sample set {xi, yi}Ni=1 is generated

according to process (3.1); under Conditions (C1) and (C2),
if λ = λ (n) → 0 and

√
nλ → ∞ as n → ∞, then

with probability tending to one, for any given β1 satisfying
‖β1 − β10‖2 = Op

(
n−

1
2

)
and any constant C , we obtain(

βT1 , 0
T
)T
= arg min

‖β2‖2≤Cn
−
1
2

Q̃SCAD

((
βT1 , β

T
2

)T)
.

i.e., for any δ > 0

P

 inf
‖β2‖2≤Cn

−
1
2

Q̃SCAD

((
βT1 , β

T
2

)T)
> Q̃SCAD

((
βT1 , 0

T
)T)

≥ 1− δ.

Proof of Lemma 5: For any ‖β1 − β10‖2 = Op
(
n−

1
2

)
,

‖β2‖2 ≤ Cn
−

1
2 , and by Lemma 3, we have

n
[
Q̃SCAD

((
βT1 , 0

T
)T)
− Q̃SCAD

((
βT1 , β

T
2

)T)]
= n

[
Q̃SCAD

((
βT1 , 0

T
)T)
− Q̃SCAD

((
βT10, 0

T
)T)]

− n
[
Q̃SCAD

((
βT1 , β

T
2

)T)
− Q̃SCAD

((
βT10, 0

T
)T)]

= Hn

(
√
n
(
(β1 − β10)

T , 0T
)T)

−Hn

(
√
n
(
(β1 − β10)

T , βT2

)T)
− n

p∑
k=q+1

pλ (|βk |)

= g (τ )
√
n
(
(β1 − β10)

T , 0T
)[∑n

i=1 xjix
T
ji

n

]
√
n

×

(
(β1 − β10)

T , 0T
)T
+
√
n
(
(β1 − β10)

T , 0T
)
Wn

− g (τ )
√
n
(
(β1 − β10)

T , βT2

)[∑n
i=1 xjix

T
ji

n

]
√
n

×

(
(β1 − β10)

T , βT2

)T
−
√
n
(
(β1 − β10)

T , βT2

)
Wn−n

p∑
k=q+1

pλ (|βk |)+op (1) .

(A.9)

The conditions ‖β1 − β10‖2 = Op
(
n−

1
2

)
and ‖β2‖2 ≤

Cn−
1
2 imply that

g (τ )
√
n
(
(β1 − β10)

T , 0T
)[∑n

i=1 xjix
T
ji

n

]
√
n

×

(
(β1 − β10)

T , 0T
)T
= Op (1) ,

g (τ )
√
n
(
(β1 − β10)

T , βT2

)[∑n
i=1 xjix

T
ji

n

]
√
n

×

(
(β1 − β10)

T , βT2

)T
= Op (1) , (A.10)

and
√
n
(
(β1 − β10)

T , 0T
)
Wn −

√
n
(
(β1 − β10)

T , βT2

)
Wn

= −
√
n
(
0T, βT2

)
Wn

= Op

(√
nm−1d (τ ) βT2622β2

)
= Op (1) , (A.11)

where 622 is the right-bottom (p − q)-by-(p − q) submatrix
of 6.
Based on the fact that lim

λ→0
lim
θ→0+

p′λ(θ)
λ
= 1, we have

n
p∑

k=q+1

pλ (|βk |)

≥ nλ

[
lim
λ→0

lim
θ→0+

p′λ (θ)
λ

] p∑
k=q+1

|βk | (1+ o (1))


= nλ

 p∑
k=q+1

|βk |

 (1+ o (1)) .
Then the condition

√
nλ → ∞ implies that nλ =

√
n
(√

nλ
)
is of higher order than

√
n, which implies that,

the last term of Eq. (A.9) dominates in magnitude, that is,
Q̃SCAD

((
βT1 , 0

T
)T)
− Q̃SCAD

((
βT1 , β

T
2

)T)
< 0 for large n.

Then

inf
‖β2‖2≤Cn

−
1
2

Q̃SCAD

((
βT1 , β

T
2

)T)
> Q̃SCAD

((
βT1 , 0

T
)T)

with probability tending to one. This completes the proof.
Proof of Theorem 1: As discussed in Fan and Li [6],

to prove Theorem 1, it is enough to show that for any given
δ > 0, there exists a large enough constant C , such that

P
[

inf
‖u‖2=C

Q̃SCAD
(
β0 + u/

√
n
)
> Q̃SCAD(β0)

]
≥ 1− δ,

(A.12)

which implies that there exists a local minimum in the ball{
β0 + u/

√
n : ‖u‖2 ≤ C

}
with probability at least 1−δ. This

is in turn implies that there exists a local minimizer such
that

∥∥β̂(SCAD) − β0∥∥2 = Op(n−
1
2 ). By performing a simple

calculation and Lemma 3, we get

n
[
Q̃SCAD

(
β0 + u/

√
n
)
− Q̃SCAD(β0)

]
= n

[
Qj
(
β0 + u/

√
n
)
− Qj(β0)

]
+ n

[
〈∇QN

(
β
)
−∇Qj

(
β
)
, u/
√
n〉
]

+ n

[ p∑
k=1

pλ
(∣∣βk0 + uk/√n∣∣)− p∑

k=1

pλ (|βk0|)

]
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=

n∑
i=1

[
ρτ

(
εji − xTji u/

√
n
)
− ρτ (εji)

]
+ n

[
〈∇QN

(
β
)
−∇Qj

(
β
)
, u/
√
n〉
]

+ n

[ p∑
k=1

pλ
(∣∣βk0 + uk/√n∣∣)− p∑

k=1

pλ (|βk0|)

]
≥ Hn (u)+ In (u) , (A.13)

where

Hn (u) = g(τ )uT
[∑n

i=1 xjix
T
ji

n

]
u+WT

n u+ op (1) ,

In (u) = n
q∑

k=1

[
pλ
(∣∣βk0 + uk/√n∣∣)− pλ (|βk0|)] .

Due to Lemma 4, we have Wn
d
−→ N

(
0,m−1d (τ )6

)
,

therefore, WT
n u is bounded in probability, i.e.,

WT
n u = Op

(√
m−1d (τ ) uT6u

)
. (A.14)

By applying Lemma 1 to Gn (u) = Hn (u) − WT
n u, we can

strengthens this point-wise convergence to uniform conver-
gence on compact subset of Rp. Note that, for large n,

n
q∑

k=1

[
pλ
(∣∣βk0 + uk/√n∣∣)− pλ (|βk0|)] = 0 (A.15)

uniformly in any compact set of Rp due to the fact that
for the SCAD penalty pλ (θ), we have ∇pλ (θ) = 0
for θ ∈ [aλ,+∞), that is, pλ (θ) is flat for coef-
ficient of magnitude larger than aλ, and λ → 0.
By Condition (C2) and Eqs. (A.13), (A.14) and (A.15),
n
[
Q̃SCAD

(
β0 + u/

√
n
)
− Q̃SCAD(β0)

]
is dominated by the

term g(τ )uT6u for ‖u‖2 equal to sufficiently large C . Thus,
we have Eq. (A.12). It in turn implies that

∥∥β̂(SCAD) − β0∥∥2 =
Op(n−

1
2 ) as n→ ∞. Owing to N = nm, if λ = λ (N )→ 0,

we have
∥∥β̂(SCAD) − β0∥∥2 = Op(N−

1
2 ) as N → ∞. This

completes the proof.
Proof of Theorem 2: (a) As discussed in Fan and Li [6]

and by Lemma 5, as N = nm, it is easy to show that,
λ = λ (N ) → 0 and

√
Nλ → ∞ as N → ∞, we have

β̂
(SCAD)
2 = 0. (b) Next we prove the asymptotic normality of
β̂
(SCAD)
1 . By Theorem 1, we can demonstrate that there exists

a
√
N -consistentminimizer β̂(SCAD)1 of Q̃SCAD

((
βT1 , 0

T
)T)

as
a function of β1.

The proof of Theorem 1 implies that
√
n
(
β̂
(SCAD)
1 − β10

)
minimizes

Hn

((
θT, 0T

)T)
+ n

q∑
k=1

pλ
(∣∣βk0 + θk/√n∣∣) (A.16)

with respect to θ , where θ =
(
θ1, θ2, · · · , θq

)T
∈ Rq. By the

convexity Lemma 1 and Lemma 3, we get

Hn

((
θT, 0T

)T)
= g(τ )

(
θT, 0T

)[∑n
i=1 xjix

T
ji

n

](
θT, 0T

)T

+

(
θT, 0T

)
Wn + op(1)

= g(τ )θT

∑n
i=1 x

1
ji

(
xji1
)T

n

 θ
+

(
W 1
n

)T
θ + op(1) (A.17)

uniformly in any compact subset of Rq, where W 1
n =

1
√
n

n∑
i=1

D1
i , and D

1
i = ξ

1
i − η

1
i /m− ζ

1
i with ξ1i = ϕτ

(
εji
)
x1ji,

ηi =
m∑
j=1
ϕτ
(
εji
)
x1ji, ζi = ϕτ

(
εji
)
x1ji, and similar proof of

Lemma 4, we have

W 1
n

d
−→ N

(
0,m−1d (τ )611

)
. (A.18)

Notice that, for large n, under condition λ = λ (n) → 0,
we have

n
q∑

k=1

pλ
(∣∣βk0 + θk/√n∣∣) = n

q∑
k=1

pλ(|βk0|) (A.19)

uniformly in any compact set of Rq, and this term does not
depend on the parameter θ . By Eqs. (A.16), (A.17) and (A.19)
and Condition (C2), we get

Hn

((
θT, 0T

)T)
+ n

q∑
k=1

pλ
(∣∣βk0 + θk/√n∣∣)

= g(τ )θT611θ +
(
W 1
n

)T
θ + n

q∑
k=1

pλ(|βk0|). (A.20)

By Lemma 2, and Eq. (A.18), it can obtain that

√
n
(
β̂
(SCAD)
1 − β10

)
d
−→ N

(
0,

d (τ )
4mg2 (τ )

6−111

)
. (A.21)

Due to N = nm, Eq (A.21) and Slutsky’s theorem, we have

√
N
(
β̂
(SCAD)
1 − β10

)
d
−→ N

(
0,

d (τ )
4g2 (τ )

6−111

)
. (A.22)

This completes the proof.
Proof of Theorem 3: (a) For any ‖β1 − β10‖2 =

Op
(
n−

1
2

)
, ‖β2‖ ≤ Cn−

1
2 , similarly to the derivative process

of Eq. (A.9), it obtain that

n
[
Q̃AL

((
βT1 , 0

T
)T)
− Q̃AL

((
βT1 , β

T
2

)T)]
= Hn

(
√
n
(
(β1 − β10)

T , 0T
)T)

−Hn

(
√
n
(
(β1 − β10)

T , βT2

)T)
− nλ

p∑
k=q+1

wk |βk | . (A.23)

Note here the first two terms of Eq. (A.23) are exactly the
same as in Eq. (A.9) and hence can be bounded similarly.
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However the third term

−nλ
p∑

k=q+1

wk |βk | = −
[
n(1+r)/2λ

]√
n

×

 p∑
k=q+1

∣∣∣(√n ∣∣β̂k ∣∣)−r ∣∣∣ |βk |
→−∞

owing to n(1+r)/2λ→∞ and
√
nβ̂k = Op (1).

These facts in turn implies that

n
[
Q̃AL

((
βT1 , 0

T
)T)
− Q̃AL

((
βT1 , β

T
2

)T)]
< 0

for n→∞. Then we have

P

 inf
‖β2‖2=Cn

−
1
2

Q̃SCAD

((
βT1 , β

T
2

)T)
> Q̃SCAD

((
βT1 , 0

T
))T

≥ 1− δ.

Owing to N = nm and the conditions λ = λ (N ) ,
√
Nλ→ 0

and N (r+1)/2→∞ as N →∞, it can obtain that β̂(AL)2 = 0.
(b) Similarly to Eq. (A.13), by performing some simple

calculation, we obtain that

n
[
Q̃AL

(
β0 + u/

√
n
)
− Q̃AL(β0)

]
=

n∑
i=1

[
ρτ

(
εji − xTji u/

√
n
)
− ρτ (εji)

]
+ n

[
〈∇QN

(
β
)
−∇Qj

(
β
)
, u/
√
n〉
]

+ nλ
p∑

k=1

[
wk
∣∣βk0 + uk/√n∣∣− wk |βk0|] . (A.24)

We consider the third term of Eq. (A.24) first. For k =

1, 2, · · · , q, we have βk0 6= 0; as a result, wk
P
−→ |βk0|

−r ,
hence

nλ
[
wk
∣∣βk0 + uk/√n∣∣− wk |βk0|] P

−→ 0 (A.25)

as
√
nλ → 0 and

√
n
(∣∣βk0 + uk/√n∣∣− |βk0|) →

uksgn |βk0|. For k = q+ 1, q+ 2, · · · , p, the true coefficient
βk0 = 0; so

nλ
[
wk
∣∣βk0+uk/√n∣∣− wk |βk0|] = √nλ [wk |uk |]→∞,

(A.26)

where uk 6= 0 and = 0 otherwise due to
√
nλwk =

n(1+r)/2λ
(√

n
∣∣β̂k ∣∣)−r with

√
nβ̂k = Op (1), n(1+r)/2

λ → ∞. By Eqs. (A.24), (A.25), (A.26) and Lemma 3 and
Condition (C2), we have

n
[
Q̃AL

(
β0 + u/

√
n
)
− Q̃AL(β0)

]
d
−→ V (u) =


g(τ )u1611u1 +

(
W 1
n

)T
u1,

when uk = 0 for k = q+ 1, · · · , p,
∞, otherwise,

(A.27)

where u1 =
(
u1, u2, · · · , uq

)T. Notice that n[Q̃AL(β0 +
u/
√
n) − Q̃AL(β0)] is convex in u and V (u) has a unique

minimizer, then we have

arg min
u∈Rq

n
[
Q̃AL

(
β0 + u/

√
n
)
− Q̃AL(β0)

]
=
√
n
(
β̂(AL) − β0

)
d
−→ arg min

u∈Rq
V (u) . (A.28)

By Eqs. (A.18), (A.27), (A.28) and Lemma 2, we obtain

√
n
(
β̂
(AL)
1 − β10

)
d
−→ N

(
0,

d (τ )
4mg2 (τ )

6−111

)
. (A.29)

By (A.28), when
√
Nλ→ 0, andN (r+1)/2→∞ asN →∞,

we have
√
N
(
β̂
(AL)
1 − β10

)
d
−→ N

(
0,

d (τ )
4g2 (τ )

6−111

)
. (A.30)

This completes the proof.
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