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ABSTRACT Electrical trees are one of the main degradation processes leading to failure of high voltage
polymeric insulation. Electrical trees grow under the effect of partial discharges (PD), which can bemeasured
and analyzed for conditionmonitoring of electrical insulation. In this paper, techniques that are normally used
for classification of PD and noise separation were explored in their ability to determine the stage of growth
of electrical trees: Spectral Power Clustering Technique (SPCT), Time-Frequency (TF) maps and Chromatic
Technique (CT). The techniques allowed to analyze PD signals captured in ultra-high frequency (UHF) range
with an antenna during tree growth. Laboratory treeing-samples were made of epoxy resin and trees were
generated at six different excitation frequencies: 0.1, 10, 50, 150, 250 and 350 Hz. The results showed that
two parameters, part of SPCT and TF maps, were sensitive to the tree progression and showed a consistent
relation with the length of the tree: the low-frequency power ratio and the equivalent bandwidth. These two
parameters were selected to create a new map, proposed for the characterization of electrical tree growth,
which is more consistent and robust than the original separation maps. It was found that the low-frequency
content of PD pulses proportionally increased with tree propagation.

INDEX TERMS Chromatic technique, electrical trees, electrical insulation, partial discharges, source
separation techniques, spectral power clustering technique, time-frequency.

I. INTRODUCTION
One of the main degradation mechanisms in high voltage
polymeric insulation systems of electrical equipment is the
formation of electrical trees inside the material [1], [2]. Fun-
damentally, electric trees can be considered as microscopic
tubular structures composed of gas channels that branch
beyond their place of origin, eroding the insulation and caus-
ing equipment failure [1]. As is well known, the growth of
electric trees is associated to internal PD activity that takes
place in the areas where these channels or branches are
formed. In this regard, PD measurement has proven to be a
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useful tool when studying the growth and evolution of this
complex degradation phenomenon [1], [3]–[5].

Physically, PD activity is evidenced by the presence of
short duration, low energy transient current pulses, which
can be captured using detection impedances that are electri-
cally coupled using standard measurement circuits [6], [7].
On the other hand, the electromagnetic radiation (EM) orig-
inated from PD can also be captured using very-high fre-
quency (VHF) sensors, accurate in the range of 30–300MHz,
and ultra-high frequency (UHF) antenna-sensors, accurate
in the range of 300–3000 MHz [7], [8]. One of the main
advantages of using VHF-UHF sensors is the feasibility of
capturing PD activity without requiring galvanic contact with
the equipment being monitored.
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In general terms, internal PD activity can be considered
the most harmful type of PD for any insulation system since
it is located within the material and therefore cannot be
easily mitigated [9]. However, two other types of PD can act
simultaneously during the measurement processes: corona
and surface PD. Although these two types of PD can also
contribute to deteriorate the insulation, once detected they can
be more easily controlled during a scheduled maintenance of
the asset [5].

In industrial environments, it is practically inevitable to
capture relevant sources of noise with high-amplitude and
frequency content similar to that of PD [10], [11]. This makes
it more difficult to perform an accurate diagnosis of the insu-
lation in an electrical asset since sources of great amplitude
can be superimposed upon other sources of lower amplitude,
whose origin could be related to an important degradation
process or imminent failure [9], [10], [12], [13].

A strategy effectively used to address this problem is the
application of separation techniques that allow grouping the
signals that belong to the same type of source [14]. Normally,
the separation process is carried out by means of clustering
techniques based on mathematical analysis of the waveform
of the acquired pulses. In this manner, it is possible to
extract a series of characteristic parameters from each signal,
which can be later represented in either two-dimensional or
three-dimensional separation maps. The captured signals are
located in specific areas of these separationmaps according to
the type of source they originate from. Once each cluster on
the map has been established, the subsequent identification
and diagnosis process can be carried out by simply analyzing
each clustered source individually.

Among most-used separation techniques, the Spectral
Power Clustering Technique (SPCT) [12], [13], time-
frequency (TF) maps [9], [10], and chromatic technique
(CT) [15] have proven to be efficient at differentiating multi-
ple sources of PD from each other or from noise. One of the
main advantages these techniques provide is the low compu-
tational burden since they are only based on the direct appli-
cation of simplemathematical expressions. Furthermore, they
do not require additional processing before or after the sepa-
ration, as it happens with other separation techniques which
require the prior use of noise filtering techniques on the
signals to be classified [16] or the application of dimension-
ality reduction techniques such as principal component anal-
ysis (PCA) [17], [18], or t-Distributed Stochastic Neighbor
Embedding (t-SNE) [19]. These techniques aim to reduce the
number of parameters obtained so that the sources represen-
tation can be done in a 2D or 3D separation map.

In the technical literature, these separation techniques have
been further studied, focusing on the variability that the gen-
erated clusters may have due to the dynamics of the defects
being monitored. This analysis was detailed in [12] and [20],
where it was possible to evidence that, for test objects that
contained cylindrical vacuoles, the clusters represented in
the separation map presented variations in their shape and
position as the vacuoles increased their size. Furthermore,

these separation techniques have demonstrated that the shape
and position of the clusters associated with any type of source
may vary significantly if there is any change in the electrical
parameters of the measurement circuit, which also includes
the test object [9], [10], [12], [13]. Thus, it is expected that
these techniques could be useful in both the diagnosis of insu-
lation containing electrical trees given their dynamics, and
the difficult task of evaluating the growth of trees [21]–[26].
Nevertheless, only one of these techniques (SPCT) has been
explored so far in terms of its capability to determine the
state of progression of electrical trees [20], [26]. The findings
of that research showed that power ratio maps (SPCT) are
sensitive to the growth of electrical trees, presenting a dis-
placement of the clusters in a 2D map as the tree progressed.

In addition to the challenge of determining the deterio-
ration state of the insulation of an asset, the problem of
interpreting PDs under excitation frequencies different from
power frequency is a relevant aspect in insulation condi-
tion assessment. On the one hand, harmonic components are
present in power networks due to the increasing use of power
converters and nonlinear loads. Such is the case of renewable
energies just as solar and wind, which provide an important
income of pollution in power networks [27]. On the other
hand, very low frequency (VLF, typically 0.1 Hz) is currently
used for diagnostic testing of power cables [4] and new
methods of PD analysis are required for VLF testing [5], [26].
Few and recent studies have considered PD source sepa-
ration maps for electrical tree characterization at different
frequencies [24], [26]. However, they have not exploited the
techniques addressed in this paper, which have proven to be
useful in applications involving both high frequency and low
frequency signals [28], and can be complemented with sev-
eral measurement systems like VHF or UHF [9], [13], [26].

In this paper, the characteristic parameters that are used
in the separation processes with SPCT, T-F maps and CT
are studied with the aim of evaluating their response during
the growth of electric trees in epoxy resin samples. For each
experiment, the PD measurement process was carried out
using a 5 cm monopole antenna located in the vicinity of the
samples that contained each of the treeing processes. Like-
wise, six different excitation frequencies were used to evalu-
ate the response of the techniques from 0.1 Hz to 350 Hz.

II. EXPERIMENTAL SETUP
A. CIRCUIT AND MEASUREMENT SYSTEM
As depicted in Fig. 1, the measurement process of the tree
growth was carried out using a balanced circuit, according to
IEC 60270 standard [6]. To generate high voltage at variable
frequency, an amplifier (Trek 20 / 20C-HS, HVA) was used to
generate voltage in the range of 0.1 Hz to 350 Hz frequency.
A signal generator (SG) was used to generate the low voltage
signal for the amplifier and a digital oscilloscope (DO) for
monitoring that signal. The samples were fed through a lim-
iting resistance (Rx of ∼400 k�) to protect the instruments
in the event of a breakdown. A PD-free sample Ck and the
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FIGURE 1. Circuit for electrical tree growth and monitoring.

treeing sample Ca, where the electric tree grows, were placed
into a transparent container filled with silicone oil, in order to
prevent unwanted surface discharges. Also, with the aim of
minimizing the effect of external electrical noise, both sam-
ples were connected to a subtracting circuit (SC), following
the strategy of the balanced circuit arrangement presented in
the standard [6]. The output of the SC was connected into a
commercial PD measurement system (‘PD’ in Fig. 1), as it
is the conventional method to measure PD activity. These
measurements were used for monitoring purposes only, but
they were not included in the analysis presented in this work.
Since the measurement system requires a sync signal from
the voltage applied to the test object, a voltage divider (VD)
was coupled to the output of Rx . For excitation frequencies
of 10 Hz or higher, a capacitive VD with capacitance values
of 50 pF and 0.033µF was used. For VLF, a resistive VDwas
used, with resistance values of 9.9 M� and 100 k�.

Both Ca and Ck were made of epoxy resin (a DGBA epoxy
system).Ca corresponded to the conventional needle-to-plane
geometry with a distance gap of ∼2 mm between the needle
tip (∼3µm tip radius) and the bottom-plane of the sample.Ck
followed the same geometry except that the tip of the needle
is semi-spherical rounded (radius of ∼0.5 mm). Electrical
trees were generated and monitored in a test facility specially
assembled for treeing experiments. An optical camera (DLSR
Canon EOS T6 with a Canon EF 100mm f/2.8L macro lens)
was used to take pictures every 5-30 seconds (depending on
the applied frequency) during the growth process, in order to
correlate the PD measurements with the tree progression.

Partial discharges were captured in UHF mode using an
antenna. During the measurement process, a PXI high-speed
acquisition system (‘ACQ System’ in Fig. 1) was used to
digitize and store the waveform signals coming from a 5 cm
monopole antenna located 25 cm from Ca. The PXI acquisi-
tion system used was composed by a NI PXIe-1071 chassis,
a PXIe-5185 card and a NI PXIe-8135 controller. This acqui-
sition system has two channels which can be configured to
measure with a sampling frequency up to 12.5 GS/s, a band-
width of 3 GHz and 8-bit resolution. In this work, the system
sampling frequency was adjusted to 4 GS/s and the signals
were acquired in time windows of 1 µs. Also, a commercial
High Frequency Current Transformer (HFCT) was used to
synchronize the signals captured with the monopole antenna
in the acquisition system. The HFCT was placed between Ca
and SC, and its output was connected to a 20 dB attenuator

to protect the acquisition system in the case a relatively
high signal is acquired, which normally occurs at insulation
breakdown.

The monopole antenna used to capture EM emissions from
PDs, was constructed from a 1.6 mm diameter copper wire,
with a length of 5 cm and one of its ends attached to a 50�
BNC straight bulkhead socket. A monopole antenna can be
considered as a halved dipole which powers on its center
line (relative to a ground plane) [8], [29], which has the
main advantage of being easy to build and tune, allowing
simple measurements in a specific frequency range [30], [31].
The capacity of monopole antennas, when measuring PD
sources and electrical noise, has been extensively tested in
other works [8], [29]–[31]. According to its dimensions,
the implemented monopole antenna has a resonance fre-
quency of 1300 MHz.

Fig. 2 shows the value of the return loss of the antenna
(S11), measured with a vector network analyzer (VNAMaster
MS2035B). It should be noted that S11 is related to the
efficiency of the antenna and it is relevant when assessing the
performance of the antenna.

FIGURE 2. Measured S11 for the 5 cm monopole antenna.

B. ELECTRICAL TREE INITIATION AND GROWTH
The initiation and growth of the electrical trees were devised
as two separated processes.

First, electrical trees for the samples Ck were initiated
following a typical procedure of incremental steps of three
minutes applying voltage with a constant RMS-value and
constant frequency. The starting step was 10 kV - 50 Hz,
then, the frequency or the voltage was increased until the
voltage limit of the high voltage amplifier was reached; then,
only the frequency could be increased. At any point of this
initiation procedure, as soon as an electrical tree was visually
detected, the voltage application was turned off. If no tree
was initiated, the test sample was discarded as not suitable for
treeing experiments. A set of samples with initiated electrical
trees (treeing-samples) was created following this procedure
to be ready for the electrical tree growth process.

Secondly, electrical trees were grown in six treeing-
samples, each one of them energized with a different excita-
tion frequency: 0.1, 10, 50, 150, 250 and 350 Hz, as presented
in Table 1. The voltage was set to 12 kV for frequencies
50-350 Hz, 14 kV for 10 Hz and 16 kV for 0.1 Hz. The
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TABLE 1. Energizing parameters of each treeing-sample.

applied voltage was higher in the lower frequency samples,
otherwise the experiment was too long or the growth was
imperceptible, especially in the case of 0.1 Hz.

In order to assure repeatability, another set of six treeing-
samples was created and analyzed applying the same
frequency and voltage. The results and tendencies were con-
cordant among the sets and, for convenience, only one set of
results is analyzed and discussed here as representative.

III. SEPARATION TECHNIQUES
Three separation techniques are exploited in this work for
characterizing electrical tree growth. These techniques have
been selected due to their ease of application, the low compu-
tational cost required during processing, and the performance
they have demonstrated previously in their application in
separating multiple sources of PD and electrical noise.

A. SPECTRAL POWER CLUSTERING TECHNIQUE
The SPCT requires to calculate the spectral power of the
signals detected in two frequency bands: the low-frequency
band, defined in the range [f1L, f2L], and the high-frequency
band, defined in the range [f1H, f2H] [12], [13]. The spectral
power of these two frequency bands is then normalized by
dividing them by the total power of the detected signal. This
procedure allows to calculate the power ratio for low frequen-
cies (known as PRL) and the power ratio for high frequencies
(known as PRH) as:

PRL =

∑f2L
f1L
|s(f )|2∑ft

0 |s(f )|
2
, (1)

PRH =

∑f2H
f1H
|s(f )|2∑ft

0 |s(f )|
2
, (2)

where s(f ) is the magnitude of the Fourier transform of the
pulse signal s(t), and ft is the maximum evaluated frequency.
The frequency bands can be chosen according to the observed
spectrums. Thereby, each detected signal will have a PRL and
a PRH value that are represented as a point on a separation
map, called PR map [12].

Regarding the frequency intervals chosen, they could be
complementary or overlapping. However, it is suggested that
the concatenation of both frequency intervals do not cover
the entire analyzed spectrum [0, ft] since in such a case the
information of an axis would be redundant (0-PRH would

be equal to 100-PRL and vice versa). Finally, f2L should be
less than f2H, so as not to lose perspective of the represented
interval [13].

The selection of the frequency bands associated to SPCT
is a relevant methodological aspect since it defines the sep-
aration capability of the maps. Following the procedure
described in [32], in this work the bands were adjusted to
[0, 500] MHz for PRL and [500, 900] MHz for PRH. Like-
wise, ft was set at 2 GHz according to the sampling frequency
used during the acquisition process.

B. TIME-FREQUENCY MAPS
This technique is based on the time series transformation
of PD signals and electrical noise into time sub-series cor-
responding to the similar waveform pulses [9], [10], [32].
This is carried out by taking the equivalent duration of the
waveform (σT) and the equivalent bandwidth (σF) of the
spectrum for each pulse and representing them by means of
a two-dimensional map. To this end, the pulses of signals
acquired are first normalized in the time domain as:

s̃ (t) =
s (t)√∫ T
0 s(t)2dt

. (3)

Then, the standard deviation of the normalized signal is
calculated for both the time (4) and frequency (5) domains,
which correspond to the equivalent duration (σT) and equiv-
alent bandwidth (σF) of the signal respectively:

σT =

√∫ T

0
(t − t0)2s̃(t)2dt, (4)

σF =

√∫
∞

0
f 2 |s̃(f )|2 df , (5)

where f is the frequency, s̃(f ) is the Fourier transform of s̃(t)
and t0 is the ‘‘temporal gravity center’’ of the normalized
signal, defined by:

t0 =
∫ T

0
t s̃(t)2dt. (6)

The parameter t0 is used tomake σT to be independent from
the instant of time in which the PD is generated. Once the
pulses have been characterized through σT and σF, these val-
ues are represented as points in a classificationmap, called TF
map. This technique has demonstrated to be useful to classify
different signal sources acting simultaneously into different
clusters, in a way that each cluster represents the pulses
associated to the PD source or the electric noise detected [9].

C. CHROMATIC TECHNIQUE
CT is a technique that allows the classification or differ-
entiation of signals that are not easily identifiable in time
or frequency [15], which is typical when analyzing pulses
associated to the PD sources. In this paper, the classification
of signals with this technique is implemented through three
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different parameters: the energy content (Eb), average fre-
quency (ωc) and RMS bandwidth (B) of the signal, defined
as:

Eb =

T∫
0

|f (t)|2 dt =
1
2π

∞∫
0

|F (ω)|2 dω, (7)

ωc =

∞∫
0
ω |F(ω)|2 dω

2πEb
, (8)

B =

√√√√√ 1
Eb

∞∫
0

(ω − ωc)
2
|F (ω)|2 dω, (9)

where F(ω) is the Fourier transform of the signal f (t),ω is the
angular frequency and t is time. Note that B in (9) is slightly
different from σF in (5), as the former calculates a normalized
standard deviation centered in ωc, whereas the latter derives
the standard deviation centered in ω = 0.
By means of these three parameters, a 3D map where each

of the clusters is represented can be established. However,
studies show that the parameters ωc and B provide the best
performance when separating simultaneous sources of PD
and electrical noise [33]. For this reason, the parameter Eb
was not used in this work.

IV. DATA MANAGEMENT
Electrical tree growth was characterized by both the wave-
form of PD pulses, measured through the entire tree growth,
and the length of the electrical trees as they grew, extracted
from pictures. Tree length is widely used for electrical treeing
characterization [24], [26], and it is considered an appro-
priate parameter to estimate the remaining insulation life,
since the final breakdown occurs soon after the tree crosses
the insulation [34], [35]. The waveform of PDs and treeing
pictures were synchronized for adequate correlation. The
monitoring of the treeing-samples in which the trees were
initiated and grew (see Table 1) generated a variable amount
of data, which depended on PD dynamics and experiment
duration. In this regard, the obtained data was normalized
to analyze and compare results among treeing-samples. Due
to the high number of measured PDs, the dataset generated
in the monitoring of each treeing-sample was divided into
three sub-datasets in order to group the data temporally, this
is, with a temporal dependence. The first dataset contains
the first third of the recorded PDs (Stage 1). The second
subset contains the next third of PDs (Stage 2) and the third,
the last PDs (Stage3). This PD grouping was chosen after a
preliminary results analysis, constituting a simple and easily
reproducible methodology to analyze the tendency of the
parameters with respect to the tree growth. The generated
maps that are presented in the next section therefore show one
point per stage, which represents the centroid of the clusters
obtained for that stage.

With the aim of evaluating the capability of the approached
methods to determine the state of tree growth, in each stage

the length of the growing electrical tree and the parameters
obtained from the separation technique are calculated and
correlated. Since each stage was conceived to have one third
of all PD recorded in the monitoring of a treeing-sample
and the growing process is non-linear and is different from
treeing-sample to treeing-sample, the average tree length
of each stage varies for different samples as well. In this
paper, the average normalized tree length (ltree) of each stage
was estimated from treeing images recorded, and estimated
according to:

ltree =
1

N −M + 1

N∑
i=M

li
lt
, (10)

where li is the observed tree length in the i-th picture, as
the furthest tree extent from the needle tip in direction to the
ground plane, M and N are the number of the first and the
last picture taken for a certain stage, and lt is the final tree
length inmmof the first branch that reached the ground plane,
observed prior to breakdown. Therefore, ltree can take values
from 0 to 1, with 0 meaning that the tree has not yet grown,
while 1 means that the tree is at maximum length, i.e. a tree
branch has reached the counter-electrode, prior to breakdown.
Table 2 groups the average normalized tree length for the
three stages recorded from each treeing-sample.

TABLE 2. Estimated relative length of the tree for each stage.

V. RESULTS AND ANALYSIS
In this section, the results of the application of SPCT,
T-F maps and the CT to the recorded signals during tree
growth are analyzed. As presented in Table 1, the results
of the experiments shown in this section correspond to six
treeing-samples energized each one with a different fre-
quency: 0.1, 10, 50, 150, 250 and 350 Hz, which are named
from (a) to (f) in the figures. The shape of the electrical tree
structures varied depending on the applied frequency and
voltage, consistent with what has been reported in the liter-
ature [24]. Nevertheless, in this work, the physical damage
was characterized, and related to the recorded PD, through
tree length. The tree growth was monitored for the entire
experiment, and three different stages were defined as Stage
1 to Stage 3 and color coded in the figures.

A. MAPS OBTAINED BY MEANS OF SPCT
Fig. 3 shows the power-ratio maps obtained from themonitor-
ing of the six treeing-samples. Fig. 3(a) also shows the image
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FIGURE 3. SPCT maps for treeing-samples energized with different
frequency; (a) 0.1 Hz 16 kV, (b) 10 Hz 14 kV, (c) 50 Hz 12 kV, (d) 150 Hz
12 kV, (e) 250 Hz 12 kV, (f) 350 Hz 12 kV. Images of the tree at the end of
each stage are shown for the 0.1Hz treeing-sample.

of the tree at the end of each stage of the 0.1 Hz treeing-
sample to depict how the tree grows as the stages advance.
The results showed that the centroid of the PR maps moved
as the tree grew, indicating that SPCT is sensitive to the pro-
gression of the tree. Furthermore, inmost of the cases it can be
observed that the centroid moved from an upper-left position
(Stage 1) towards a lower-right position (Stage 3), indicating
that, in an early stage of tree-growth, the PD pulse waveform
had a smaller low-frequency content than in a more advanced
stage. For all the treeing-samples, the low-frequency power-
ratio (PRL) increased as the tree grew, which can be easily
seen by observing the vertical dashed guiding lines over each
map. In turn, the high-frequency power-ratio (PRH ) showed
a non-monotonic tendency according as the stages advance,
as it can be seen from the 10Hz treeing-sample results: PRH
increases from the first stage to the second, whilst it decreases
from the second to the third stage (ending at a level even lower
than the first stage). Even still, the PRH value of the last
stage was always lower than the value of the first stage for

FIGURE 4. TF maps for treeing-samples energized with different
frequency; (a) 0.1 Hz 16 kV, (b) 10 Hz 14 kV, (c) 50 Hz 12 kV, (d) 150 Hz
12 kV, (e) 250 Hz 12 kV, (f) 350 Hz 12 kV.

all six treeing-samples energized with different frequencies,
which is, therefore, an indicator of either an energy increase
on the lower frequency or an energy decrease in the higher
frequencies.

B. MAPS OBTAINED BY TF TECHNIQUE
Fig. 4 shows the maps obtained using TF technique, in which
the equivalent duration (σT) and equivalent bandwidth (σF)
were calculated for each stage. From the results, it can be
noted that σF proved to be sensible to the tree growth, as the
first stage has the higher σF value, followed by the second
and the third stage, configuring a monotonic tendency for all
six samples. This can be best seen as a downward movement
of the centroids in Fig. 4, as the horizontal dashed lines
show. It can be observed that the equivalent bandwidth always
decreased with tree evolution, suggesting a low-frequency
energy increase or a high-frequency energy decrease, in con-
cordance with SPCT results.

In contrast, the equivalent duration did not have a
consistent tendency as the tree grew, since it did not
always increase or always decrease with the evolution of
the stages, therefore, σT is not suitable as a tree-growth
indicator.
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C. MAPS OBTAINED BY MEANS OF CT
Fig. 5 shows the CT maps obtained for the six
treeing-samples. On the one hand, for most of the cases,
the average bandwidth of each stage B did not show any
consistent tendency, but only little variation, indicating that is
not sensitive to electrical tree growth. On the other hand, the
average frequency ωc of each stage showed variation as the
tree progressed, with most of the cases having a downward
movement of the centroid in the map, as the horizontal dashed
lines show. However, the variation of ωc is less pronounced
than the previously explored parameters PRL or σF. Also,
the decrease was not monotonous for the 50 and 150 Hz
treeing-samples.

FIGURE 5. CT maps for treeing-samples energized with different
frequency; (a) 0.1 Hz 16 kV, (b) 10 Hz 14 kV, (c) 50 Hz 12 kV, (d) 150 Hz
12 kV, (e) 250 Hz 12 kV, (f) 350 Hz 12 kV.

D. VARIATION OF PARAMETERS WITH TREE GROWTH
As previously analyzed, parameters PRL, σF and ωc were
the most sensitive to electrical tree growth, and thus, they
were selected to further analyze their variation and relation
with the degradation process of tree growth. Fig. 6 shows the
variation of the selected parameters in function of the average
normalized tree length, which was defined in (10).

From Fig. 6, it can be seen that PRL variation has a good
agreement with the tree growing process for all six exper-
iments, which is concordant with the preliminary findings
of [26]. In most cases, although only three point-stages were

FIGURE 6. Value of relevant parameters as function of tree length for
treeing-samples energized with different frequency; (a) 0.1 Hz 16 kV,
(b) 10 Hz 14 kV, (c) 50 Hz 12 kV, (d) 150 Hz 12 kV, (e) 250 Hz 12 kV,
(f) 350 Hz 12 kV.

analyzed, it can be noted that there was a proportional rela-
tionship between PRL and tree length. To complement this,
σF (obtained from the TF technique) also showed amonotonic
tendency with respect to tree length, since for all cases it
decreased with tree progression. In turn, ωc (derived from the
CT) showed a less clear tendency related to the tree growing
process.

The performance of these parameters can be further ana-
lyzed by means of the values presented in Table 3, which
summarizes the difference of the parameters PRL, σF and
ωc between two consecutive stages. In order to assist the
visualization of the variations, some values are highlighted
for an easier identification of the tendencies. For instance,
1l tree1−2 is the difference of the average tree length between
the first and the second stage, and 1l tree2−3 is the difference
between the second and the third stage.

In the first treeing-sample (0.1 Hz), as 1l tree2−3 was
greater than 1l tree1−2, then 1l tree2−3 was highlighted. This
is repeated for each parameter. In the cases where parameters
did not show a monotonic tendency, the values were not
highlighted, as was the case of 1ωc1−2 and 1ωc2−3 for the
50 and 150 Hz samples.

VOLUME 9, 2021 64671



C. Madariaga et al.: PD Electrical Tree Growth Identification by Means of Waveform Source Separation Techniques

TABLE 3. Variation of relevant parameters between stages for all six samples.

From Table 3, it can be firstly noted that PRL had both a
monotonous tendency and a notorious relation with respect
to the tree length for all six treeing-samples, as the results
of each sample has similar response: In 0.1, 250 and 350 Hz
samples, 1l tree1−2 was smaller than 1l tree2−3, which corre-
sponds with1PRL1−2 being smaller than1PRL2−3. In con-
trast, for 10, 50 and 150 Hz samples, 1l tree1−2 was greater
than 1l tree2−3, which correlated with 1PRL1−2 being also
greater than 1PRL2−3.
In turn, σF, had a monotonous tendency for all six samples,

and was related with tree length variations in five of the
six treeing-samples, excluding the 150 Hz sample in which
1l tree1−2 was greater than1l tree2−3, but1σ F1−2 was smaller
than 1σ F2−3.
Finally,ωc showed a less notorious relationwith tree length

compared to the other two parameters: from the highlighted
values of Table 3, it can be noted that only a third of the cases
showed a consistent relation with tree length variation.

In summary, PRL and σF showed a consistent relation with
the average normalized tree length since the variation of the
parameters and the variation of the tree length between stages
kept almost unchanged. This could suggest the existence of
a proportional relationship between the parameters (specially
PRL) and the tree length.

VI. DISCUSSION
A. MAPPING TECHNIQUES
From the obtained results, it can be firstly observed that the
most responsive parameter with the tree growth was PRL,
part of the SPCT, followed by the parameter σF, part of the
TF technique, which showed a consistent response: for all six
treeing-samples their value decreased as the tree progressed.
However, PRL values strongly depend on the selected low-
and high-frequency bands, while σF does not require any prior
user-entry value. Nonetheless, the identified tendency of the
evaluated parameters can be explained through SPCT results:
PR maps showed the displacement of the centroids from
the upper-left corner to lower-right corner as the tree grew.
This meant that the spectrum of the detected PDs signals
proportionally increased its energy in the low frequencies
(lower than 500 MHz – PRL range), at the expense of an
energy decrease in the high frequencies (higher than 500MHz
– PRH range). As the energy of the low-frequency interval
increased with respect to the total energy, then the equivalent

bandwidth σF consequently decreased (σF is defined as the
frequency-based standard deviation, centered in ω = 0 and
should be sensitive to spectrum variations).

In turn, the tendency of ωc, obtained by means of CT, par-
tially confirms this statement: while the tree grew, the average
frequency decreased, which was related to an increase of the
relative energy in the low-frequency bands. Notwithstanding,
parameter ωc was less effective as a descriptor of electrical
tree growth. This was noted from the non-monotonic ten-
dency of ωc with respect of the tree length, for the 50 and
150 Hz treeing-samples. The evaluation of ωc, as defined
in (8), requires the computation of Eb, which has been stated
to not be suitable for PD source separation [33]. Table 4
groups the average energy of the PD signals for the three
stages of all six treeing-samples. From the Table 4, it can be
noted that Eb does not provide a good response to the tree
growth either, which in turn undermines the feasibility of ωc
of being a good descriptor of tree growth. Note that, in (8),
the numerator of the expression is similar to (5), and so the
response of both terms (ωc and σF) to tree progression should
be similar if it were not for the consideration of Eb in (8).

TABLE 4. Average energy of detected signals of each stage.

The equivalent duration σT did not show a consistent ten-
dency when mapped by means of TF technique. By analyz-
ing (4), it can be seen that σT is related to the dispersion of
the signal data around the ‘temporal gravity center’ t0, which
should be near the instant in which the peak of the signal
is achieved. This dispersion around the peak of the signal
configures a time band that is usually interpreted as the
equivalent duration of the signal. As shown from the results
of σT for the six samples, this representative time band of the
PDs was not related to the state of tree growth. In turn, PRH
showed a non-monotonic tendency according as the tree grew,
as noted from the 10Hz treeing-sample results. However, the
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PRH value in the third stage was always lower than the first
stage for all six treeing-samples. This suggests that the PDs
recorded in the last states of growth have a proportionally
lower high-frequency energy content than the PDs recorded
at the beginning of the treeing process.

In brief, changes of the propagation media of detected
PD signals, due to carbonization of tree channels when the
tree grows, translates into variations of the waveform and
the energy content of the spectrum of detected PDs. These
changes can be best detected by PRL and σF, which proved
to be proportionally related to changes of the state of tree
progression.

B. PROPOSED MAP FOR ELECTRICAL TREEING
CHARACTERIZATION
Parameters PRL and σF showed promising results as descrip-
tors of electrical tree growth by evidencing a consistent
tendency in relation to the average normalized tree length.
Therefore, a 2Dmap combining both parameters was devised,
as shown in Fig. 7.

FIGURE 7. Proposed map for the six treeing-samples energized with
different frequency: (a) 0.1 Hz 16 kV, (b) 10 Hz 14 kV, (c) 50 Hz 12 kV,
(d) 150 Hz 12 kV, (e) 250 Hz 12 kV, (f) 350 Hz 12 kV.

As observed in Fig. 7, the response of the proposed PRL−
σF map is consistent for all the samples. Although the 50 Hz
sample has a small variation between the second and third
stage, this was due to the small growth of the tree between
those two stages (from ltree = 0.82 to ltree = 0.96, as seen
in Table 2).

The proposed map provides two main advantages when
compared with the more traditional SPCT, TF and CT ana-
lyzed previously. First, the proposed PRL − σF map allows
a more consistent visualization of the relation between the
values of the characteristic parameters of SCPT and TF tech-
niques with respect to the tree length. Secondly, the new map
becomes a more robust and reliable map since parameters
PRL and σF complement each other: On the one hand, PRL
parameter has the advantage of being sensitive to electrical
tree growth at the expense of depending on the user-selection
of the low- and high-frequency bands. On the other hand,
the equivalent bandwidth σF does not require a previous
user-entry for its calculation and can detect frequency shifts
of the energy content towards or away from ω = 0. Thus,
in case ofmis-selection of low frequency bands in the calcula-
tion of PRL, σF will show variation and reasonable sensitivity
with tree growth. Furthermore, the results of σF may indicate
that the selection of the frequency bands could be corrected,
if required, becoming a feedback in the selection process.

In terms of computation effort, there is not extra burden.
Moreover, PRL and σF share the requirement of calculat-
ing the Fourier transform of the signal, which makes this
proposed map efficient when calculating both PRL and σF
together, instead of separately for PR and TF maps.

VII. CONCLUSION
This paper presented the application of Spectral Power Clus-
tering Technique (SPCT), Time-Frequency (TF) maps and
Chromatic Technique (CT) for the identification of electrical
tree growth. These separation techniques are normally used
for classification of types of PD and noise separation. In this
paper, the techniques were explored in their ability of deter-
mining the stage of electrical tree growth, and thus, to become
a potential tool for insulation diagnosis. It was found that the
waveform of PD pulses varied with electrical tree growth, and
thus, the use of these mapping techniques that characterize
PD waveform can also characterize the progression of elec-
trical trees. Specifically, SPCT and TF maps provided more
satisfactory results than CT. Parameters related to frequency
content of PD signal were sensitive to tree growth. PRL
parameter from SPCT always increased as the tree grew,
indicating that the proportion of energy in the low frequency
band was increasing with tree propagation. There was found
a consistent relation between PRL and tree length, which
could be useful in lifetime prediction. Similarly, the equiva-
lent bandwidth σF, a TF map parameter, showed a consistent
tendencywith tree growth: σF always decreasedwith tree evo-
lution. Therefore, a newmap using PRL and σF was proposed
combining the benefits they proved in their respective maps
(SPCT and TF). The proposed PRL − σF map gives a more
consistent and robust response to the different stages of tree
growth, providing a reliable monitoring tool.

Future research can involve the evaluation and comparison
of these techniques with other available techniques, in terms
of their capability of identifying the state of progress of tree
growth.

VOLUME 9, 2021 64673



C. Madariaga et al.: PD Electrical Tree Growth Identification by Means of Waveform Source Separation Techniques

REFERENCES
[1] L. A. Dissado and C. Fothergill, Electrical Degradation and Breakdown in

Polymers, 1st ed. London, U.K.: Peter Peregrinus, 1992.
[2] J. Lawson and W. Vahlstrom, ‘‘Investigation of insulation deterioration in

15 KV and 22 KV polyethylene cables removed from service—Part II,’’
IEEE Trans. Power App. Syst., vol. PAS-92, no. 2, pp. 824–835, Mar. 1973.

[3] X. Chen, Y. Xu, and X. Cao, ‘‘Nonlinear time series analysis of partial
discharges in electrical trees of XLPE cable insulation samples,’’ IEEE
Trans. Dielectr. Electr. Insul., vol. 21, no. 4, pp. 1455–1461, Aug. 2014.

[4] J. V. Champion, S. J. Dodd, and J. M. Alison, ‘‘The correlation between
the partial discharge behaviour and the spatial and temporal development
of electrical trees grown in an epoxy resin,’’ J. Phys. D, Appl. Phys., vol. 29,
no. 10, pp. 2689–2695, Oct. 1996.

[5] F. H. Kreuger, Partial Discharge Detection in High-Voltage Equipment,
1st ed. London, U.K.: Butterworths, 1989.

[6] High-Voltage Test Techniques—Partial Discharge Measurements, IEC
Standard 60270, 2015.

[7] A. J. Reid, M. D. Judd, R. A. Fouracre, B. G. Stewart, and D. M. Hepburn,
‘‘Simultaneous measurement of partial discharges using IEC60270 and
radio-frequency techniques,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 18,
no. 2, pp. 444–455, Apr. 2011.

[8] R. Albarracín, J. Ardila-Rey, and A. Mas’ud, ‘‘On the use of monopole
antennas for determining the effect of the enclosure of a power transformer
tank in partial discharges electromagnetic propagation,’’ Sensors, vol. 16,
no. 2, p. 148, Jan. 2016.

[9] A. Cavallini, G. C. Montanari, F. Puletti, and A. Contin, ‘‘A new method-
ology for the identification of PD in electrical apparatus: Properties
and applications,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 12, no. 2,
pp. 203–215, Apr. 2005.

[10] A. Cavallini, G. Montanari, A. Contin, and F. Pulletti, ‘‘A new approach
to the diagnosis of solid insulation systems based on PD signal inference,’’
IEEE Elect. Insul. Mag., vol. 19, no. 2, pp. 22–30, Apr. 2003.

[11] P. Bidan, T. Lebey, and C. Neacsu, ‘‘Development of a new off-line test
procedure for low voltage rotating machines fed by adjustable speed drives
(ASD),’’ IEEE Trans. Dielectr. Electr. Insul., vol. 10, no. 1, pp. 168–175,
Feb. 2003.

[12] J. Ardila-Rey, J. Martínez-Tarifa, G. Robles, and M. Rojas-Moreno, ‘‘Par-
tial discharge and noise separation by means of spectral-power clus-
tering techniques,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 4,
pp. 1436–1443, Aug. 2013.

[13] J. Ardila-Rey, M. Rojas-Moreno, J. Martínez-Tarifa, and G. Robles,
‘‘Inductive sensor performance in partial discharges and noise separation
by means of spectral power ratios,’’ Sensors, vol. 14, no. 2, pp. 3408–3427,
Feb. 2014.

[14] J. A. Ardila-Rey, M. P. Cerda-Luna, R. A. Rozas-Valderrama,
B. A. de Castro, A. L. Andreoli, and F. Muhammad-Sukki, ‘‘Separation
techniques of partial discharges and electrical noise sources: A review of
recent progress,’’ IEEE Access, vol. 8, pp. 199449–199461, Nov. 2020.

[15] J. Ardila-Rey, J. Montaña, B. de Castro, R. Schurch, J. C. Ulson,
F. Muhammad-Sukki, and N. Bani, ‘‘A comparison of inductive sensors
in the characterization of partial discharges and electrical noise using the
chromatic technique,’’ Sensors, vol. 18, no. 4, p. 1021, Mar. 2018.

[16] F. Alvarez, J. Ortego, F. Garnacho, andM. A. Sanchez-Uran, ‘‘A clustering
technique for partial discharge and noise sources identification in power
cables by means of waveform parameters,’’ IEEE Trans. Dielectr. Electr.
Insul., vol. 23, no. 1, pp. 469–481, Feb. 2016.

[17] L. Hao, P. Lewin, J. Hunter, D. Swaffield, A. Contin, C. Walton, and
M. Michel, ‘‘Discrimination of multiple PD sources using wavelet decom-
position and principal component analysis,’’ IEEE Trans. Dielectr. Electr.
Insul., vol. 18, no. 5, pp. 1702–1711, Oct. 2011.

[18] K. Firuzi, M. Vakilian, V. P. Darabad, B. T. Phung, and T. R. Black-
burn, ‘‘A novel method for differentiating and clustering multiple par-
tial discharge sources using s transform and bag of words feature,’’
IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 6, pp. 3694–3702,
Dec. 2017.

[19] R. D. Nimmo, G. Callender, and P. L. Lewin, ‘‘Methods for wavelet-
based autonomous discrimination of multiple partial discharge sources,’’
IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 2, pp. 1131–1140,
Apr. 2017.

[20] J. A. Ardila-Rey, R. Schurch, J.Montaña, A. A.Mas’ud, andN.M. Poblete,
‘‘Sensitivity assessment of power ratio maps due to variation of internal
defects in solid insulation,’’ in Proc. Int. Symp. High Voltage Eng., 2019,
pp. 1–5.

[21] M. Conti, A. Cavallini, G. C.Montanari, and F. Guastavino, ‘‘Identification
of electrical tree growth in insulation systems by fuzzy logic techniques
based on partial discharge acquisition,’’ in Proc. IEEE Int. Conf. Solid
Dielectr. (ICSD), Toulouse, France, 2004, pp. 661–664.

[22] R. Vogelsang, B. Fruth, T. Farr, and K. Fröhlich, ‘‘Detection of electrical
tree propagation by partial discharge measurements,’’ Eur. Trans. Electr.
Power, vol. 15, no. 3, pp. 271–284, May 2005.

[23] N. M. Chalashkanov, S. J. Dodd, L. A. Dissado, and J. C. Fothergill,
‘‘A comparison between PSA plots of partial discharges in needle voids
and electrical trees,’’ in Proc. IEEE Int. Conf. Dielectr. (ICD), Montpellier,
France, Jul. 2016, pp. 476–479.

[24] R. Sarathi, K. H. Oza, C. L. G. P. Kumar, and T. Tanaka, ‘‘Electrical
treeing in XLPE cable insulation under harmonic AC voltages,’’ IEEE
Trans. Dielectr. Electr. Insul., vol. 22, no. 6, pp. 3177–3185, Dec. 2015.

[25] P. Donoso, R. Schurch, J. Ardila, and L. Orellana, ‘‘Analysis of partial dis-
charges in electrical tree growth under very low frequency (VLF) excitation
through pulse sequence and nonlinear time series analysis,’’ IEEE Access,
vol. 8, pp. 163673–163684, Sep. 2020.

[26] R. Schurch, O. Munoz, and J. Ardila-Rey, ‘‘Spectral power analysis of
partial discharges waveforms during electrical tree growth under differ-
ent excitation frequencies,’’ in Proc. 21st Int. Symp. High Voltage Eng.,
Budapest, Hungary, 2019, pp. 899–907.

[27] X. Liang, ‘‘Emerging power quality challenges due to integration of renew-
able energy sources,’’ IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 855–866,
Mar. 2017.

[28] X. Wang, X. Li, M. Rong, D. Xie, D. Ding, and Z. Wang, ‘‘UHF signal
processing and pattern recognition of partial discharge in gas-insulated
switchgear using chromatic methodology,’’ Sensors, vol. 17, no. 12, p. 177,
Jan. 2017.

[29] G. Robles, R. Albarracín, and J. M. Martínez-Tarifa, ‘‘Shielding effect
of power transformers tanks in the ultra-high-frequency detection of
partial discharges,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 2,
pp. 678–684, Apr. 2013.

[30] G. Robles, J. Martínez-Tarifa, M. Rojas-Moreno, R. Albarracín, and
J. Ardila-Rey, ‘‘Antenna selection and frequency response study for UHF
detection of partial discharges,’’ in Proc. IEEE Int. Instrum. Meas. Technol.
Conf., Graz, Austria, May 2012, pp. 1496–1499.

[31] G. Robles, J. Fresno, and J. Martínez-Tarifa, ‘‘Separation of radio-
frequency sources and localization of partial discharges in noisy environ-
ments,’’ Sensors, vol. 15, no. 5, pp. 9882–9898, Apr. 2015.

[32] J. M. Martínez, J. A. Ardila-Rey, and G. Robles, ‘‘Automatic selection
of frequency bands for the power ratios separation technique in par-
tial discharge measurements: Part I, fundamentals and noise rejection in
simple test objects,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 4,
pp. 2284–2291, Aug. 2015.

[33] J. Zhang, G. R. Jones, J. W. Spencer, P. Jarman, I. J. Kemp, Z. Wang,
P. L. Lewin, and R. K. Aggarwal, ‘‘Chromatic classification of RF signals
produced by electrical discharges in HV transformers,’’ IEE Proc.-Gener.,
Transmiss. Distrib., vol. 152, no. 5, pp. 629–634, 2005.

[34] H. Zheng, S. M. Rowland, I. Iddrissu, and Z. Lv, ‘‘Electrical treeing and
reverse tree growth in an epoxy resin,’’ IEEE Trans. Dielectr. Electr. Insul.,
vol. 24, no. 6, pp. 3966–3973, Dec. 2017.

[35] R. Schurch, J. Ardila-Rey, J. Montana, A. Angulo, S. M. Rowland,
I. Iddrissu, and R. S. Bradley, ‘‘3D characterization of electrical tree struc-
tures,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 1, pp. 220–228,
Feb. 2019.

CARLOS MADARIAGA (Student Member, IEEE)
received the B.Sc. and M.Sc. degrees in elec-
trical engineering from the Pontificia Universi-
dad Católica de Valparaíso, Chile, in 2017 and
2020, respectively. He is currently pursuing the
Ph.D. degree with the University of Concepcion,
Chile. He was granted a scholarship to pursue his
Ph.D. studies from the National Research Devel-
opment Agency, in 2020. His research interests
include modeling, design, and optimization of
electromechanical devices.

64674 VOLUME 9, 2021



C. Madariaga et al.: PD Electrical Tree Growth Identification by Means of Waveform Source Separation Techniques

ROGER SCHURCH (Member, IEEE) received
the degree in electrical engineering from Fed-
erico Santa Maria Technical University (UTFSM),
Valparaiso, Chile, in 2006, and the Ph.D. degree
from The University of Manchester, in 2014.
He was a High-Voltage Equipment Analyst with
Transelec Transmission Company, before join-
ing UTFSM, as Lecturer, in 2008. He currently
re-joined UTFSM as an Assistant Professor. His
research interests include electrical trees and par-

tial discharges and insulation diagnostics of power systems plant.

JORGE ARDILA-REY (Member, IEEE) was born
in Santander, Colombia, in 1984. He received the
B.Sc. degree in mechatronic engineering from the
Universidad de Pamplona, Pamplona, Colombia,
in 2007, the Specialist Officer degree in naval engi-
neering from Escuela Naval Almirante Padilla,
Cartagena, Colombia, in 2008, and the M.Sc.
and Ph.D. degrees in electrical engineering from
the Universidad Carlos III de Madrid (UC3M),
in 2012 and 2014, respectively. He was an Auto-

matic Control Engineer of ARC Almirante Padilla, from 2008 to 2010. From
2010 to 2014, he worked with the Department of Electrical Engineering,
High-Voltage Research and Tests Laboratory (LINEALT), UC3M. He is cur-
rently working as a Professor with the Department of Electrical Engineering,
Universidad Técnica Federico Santa María, Santiago, Chile. His research
interests include partial discharges, insulation systems diagnosis, and instru-
mentation and measurement techniques for high-frequency currents.

OSVALDO MUÑOZ was born in Quillota, Chile,
in 1994. He received the B. Sc. degree in elec-
trical engineering from Universidad Técnica Fed-
erico Santa María (UTFSM), Valparaíso, Chile,
in 2017, where he is currently pursuing the M.S.
degree in electrical engineering. His thesis work
is about partial discharges in electrical trees under
harmonic frequencies characterized by partial dis-
charge waveforms.

SEBASTIAN FINGERHUTH (Member, IEEE)
received the bachelor’s degree (E.Eng.) from
the Pontificia Universidad Católica de Chile
(PUC), in 2003, and the Ph.D. degree (Dr.-Ing.)
in acoustics from RWTH Aachen University,
Germany, in 2009. As a Researcher and an
Engineer, he worked in acoustic, psychoacoustic,
vibrations, and noise reduction projects with
RWTH Aachen University, Germany. He is cur-
rently a full-time Professor with the School of

Electrical Engineering, Pontificia Universidad Católica de Valparaíso. He is
working in projects in areas such as acoustics, structural vibration, instru-
mentation, sensors, and signal processing. He is a member of the German
Acoustic Society (DEGA) and the American Society of Acoustics (ASA).

VOLUME 9, 2021 64675


