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ABSTRACT Many industrial thermal processes are large-scale time-varying nonlinear distributed parameter
systems (DPSs). To effectively model such systems, dual extreme learning machine based online spatiotem-
poral modeling with adaptive forgetting factor (AFFD-ELM) is proposed in this paper. This method can
recursively update the parameters of the low-order temporal model by using newly arriving data under
Karhunen- Loève (KL) based space/time separation. In this way, the time-varying dynamics can be tracked
real-time very well as output data increases over time. Besides, since the training samples are usually
timeliness, adaptive forgetting factor (AFF) is also embedded in this method to improve the online learning
effects by adding a reasonable weight to previous data. This online learning strategy makes the process
promising for online modeling under continuously samples environment. The proposed method is utilized
for online temperature prediction of the curing oven. Simulation results verify the efficiency and viability of
the online spatiotemporal model.

INDEX TERMS Dual extreme learning machine, forgetting mechanism, online sequential learning algo-
rithm, online spatiotemporal modeling.

I. INTRODUCTION
Distributed parameter systems (DPSs) widely exist in the
industrial processes [1]–[4]. Unlike lumped parameter sys-
tems (LPSs), DPSs are often described by one or a set of par-
tial differential equations (PDEs) with corresponding initial
and boundary conditions [5]. Their input, output, and even
state parameters are space/time coupled, which leads to the
infinite-dimensional characteristic of such systems [6], [7].
Modeling such systems is difficult but essential for process
prediction, control, and optimization [8]–[12].

There are many spatiotemporal modeling methods
researched in recent years [13]–[16]. Among them,
space/time separation-based modeling methods have been
widely used and proven viable and practical to model DPSs.
The main idea of space/time separation methods is to suppose
that the spatiotemporal variables can be decomposed into a
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series of dominant spatial basis functions (BFs) and corre-
sponding time coefficients according to Fourier transform.
Thus, the BFs and time coefficients can be learned separately
using physical-based or data-based algorithms.

For the BFs learning, if the PDEs description of sys-
tems is known, the typically used method is the spectral
method [17], which can acquire representative spatial BFs
for space/time separation and synthesis [18]. However, this
method often requires the systems to have a regular space
domain and homogeneous boundary conditions. In many
industrial processes, their accurate PDEs description is often
entirely unknown for the lack of enough physical informa-
tion and uncertainty. Under this situation, data-based algo-
rithms are very suitable for the optimal learning of BFs.
Karhunen–Loève (KL) method, as known as principal com-
ponent analysis (PCA) or proper orthogonal decomposition
(POD) [19]–[22], has been popularly used in many types of
research related to spatiotemporal modeling and turned out to
be an effective method for BFs learning.
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Once the BFs are learned adequately, the corresponding
time coefficients should be modeled to approximate the tem-
poral dynamics of DPSs. If the PDEs description of systems is
known, Galerkin’smethod [23], [24] can be used to reduce the
infinite-dimensional PDEs into finite-dimensional ordinary
differential equations (ODEs) with learned spatial BFs. Thus,
the unknown parameters or structures that existed in ODEs
can be identified and approximated using conventional LPSs
methods. If the PDEs description of systems in completely
anonymous, traditional modeling methods, such as support
vector machines (SVM) [25], neural networks (NN) [26],
block-oriented models [27], and fuzzy model [28] can be
applied to model the time coefficients.

From the above literature review, it can be found that tra-
ditional spatiotemporal modeling methods are mainly devel-
oped in an offline environment. That is, all the training
data is collected and ready before the modeling process.
However, in many real industrial processes, systems often
work with large-scale time-varying features, which require
the spatiotemporal model online updated using newly coming
samples for preserving satisfactory performance. Therefore,
a novel online spatiotemporal modeling method should be
developed for such complex DPSs.

In recent years, there are few studies reported devoting
to the online spatiotemporal modeling. Li and Qi [29] pro-
posed an incremental modeling method for DPSs, which
refers to adding the hierarchical spatiotemporal kernels incre-
mental algorithm for online learning. Jiang et al. [30] pro-
posed a precision online spatiotemporal model to predict
the thermal crown in hot rolling processes, where a hybrid
intelligent model given in state-space formulation is applied
for online learning implementation. However, this method
required the mathematical structure of the systems known.
Lu et al. [31] proposed an adaptive spatiotemporal modeling
method for time-varying DPSs with the application of an
adaptive Takagi-Sugeno fuzzy model. Wang and Li [32] pro-
posed an incremental KL method for online spatiotemporal
modeling of DPSs. This method calculates the newly BFs
with previous learned BFs and newly arriving spatiotemporal
samples. The above mentioned online spatiotemporal mod-
eling methods can achieve satisfactory model performance.
However, they didn’t consider the inherent system structure
features. Though the online spatiotemporal model proposed
by Jiang et al. [30] is developed based on the PDEs of
the hot rolling processes, the application of NN leads this
online model to low computational efficiency. Furthermore,
all the above methods cannot reflect the timeliness of online
sequential training data well.

In this paper, a novel dual extreme learning machine
based online spatiotemporal modeling method with adaptive
forgetting factor (AFFD-ELM) is proposed for large-scale
time-varying DPSs. Firstly, a traditional KL based spa-
tiotemporal model is developed under the offline envi-
ronment. Since two coupled nonlinearities are embedded
in the general distributed thermal systems [33], the low-
order temporal model should be designed according to such

structure characteristics. Recent years have witnessed an
increasing interest in the topic of extreme learning machine
(ELM) [34]–[37], which has the advantage of universal
approximation capability and fast learning speed. Therefore,
ELM is applied here to approximate the two coupled non-
linear functions, where the derived model is called dual
ELM (D-ELM) in this paper. Since the model structure of
D-ELM matches well with the systems, it can achieve better
performance [37]. Secondly, an online sequential learning
algorithm (OSLA) [36] will be designed for online updating
of the spatiotemporal model. This algorithm can update the
model parameters with previously calculated parameters and
newly arriving samples. Since the training samples usually
have timeliness [38], that is, they have a specific valid-
ity period, an online sequential learning algorithm with a
forgetting mechanism (FOS-ELM) [39] is developed. How-
ever, this method straightforward abandons the oldest data
during online learning and ignores their real contribution
in the current learning situation. Though timeliness online
sequential extreme learning machine (TOS-ELM) [38] can
achieve satisfactory model performance with adaptive weight
scheme, the contribution of each data set cannot be adaptive
adjust with different online learning environment once it
was determined. Therefore, adaptive forgetting factor (AFF)
is designed by using a fast leave-one-out cross-validation
(FLOO-CV) method [41] and is embedded into the online
learning process. The embedding of AFF can improve the
learning effects and reduce the lousy affection of previous
data. Thirdly, by space/time synthesis, AFFD-ELM based
online spatiotemporal model can be acquired. Finally, exper-
iments on a real industrial thermal process will be carried
out to verify the proposed method’s effectiveness. The main
novelty and contributions of our work can be summarized as
below:

1) D-ELM is designed to resolve the inherent coupled
structure issue of systems, where the current online spa-
tiotemporal modeling methods fail.

2) Different from the traditional online spatiotemporal
methods which ignore the timeliness of sequential training
data, online sequential learning algorithm with AFF is devel-
oped for the online update of D-ELM-based spatiotemporal
model. This novel algorithm can deal with data timeliness
well and improve the learning effects during the online updat-
ing process.

3) The proposed method does not require the analytical
expression of DPSs, which implies that it is very proper for
general industrial applications.

The rest of this paper is organized as follows: Section II
is the problem description. The detailed description of the
proposed online spatiotemporal modeling method is pre-
sented in section III. Experimental verification is discussed
in section IV, and the conclusions are given in section V.

II. PROBLEM DESCRIPTION
According to the heat transfer laws, the general mathematical
description of industrial thermal processes can be expressed
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by the following nonlinear PDE [33]:

ρc
∂T (S, t)
∂t

=k · ∇2 (T (S, t))+f (T (S, t))+ρQ (S, t) ,

(1)

with the Neumann boundary conditions and initial condi-
tion as:

∂T
∂S
|S=0 = 0,

∂T
∂S

∣∣S=S0 = 0, T (S, 0) = T0 (S) , (2)

where T (S, t) denotes the spatiotemporal output at time t and
location S = (x, y, z) ∈ (0, S0). c is the specific heat coeffi-
cient, correspondingly. f (T (S, t)) is the unknown nonlinear
thermal dynamics related to the spatiotemporal output T .
Q (S, t) is the heating source, which is a nonlinear function of
themanipulated input signals u(t) = [u1(t), u2(t), . . . un(t)]T .
∇

2
=

∂

∂x2
+

∂

∂y2
+

∂

∂z2
is the Laplacian space operator. T0 (S, 0)

is the spatiotemporal initial output. ρ and k are variables with
respect to temperature T , their expressions can be written as
follows:

k = k0 + k̄ (T ) , ρ =
ρ0

1+ ρ̄ (T )
, (3)

where k0 and ρ0 are the parameter initial values, k̄ (T ) and
ρ̄ (T ) are functions of T (S, t).

Then (1) can be transformed into the following equation:

∂T
∂t
= k1∇2T + F(T )+

1
c
Q, (4)

where: k1 = k0
/
ρ0c,

F(T ) =
k0ρ̄(T )
ρ0c

∇
2T +

1+ ρ̄(T )
ρ0c

(k̄(T )∇2T

+
∂ k̄(T )
∂x

∂T
∂x
+
∂ k̄(T )
∂y

∂T
∂y
+
∂ k̄(T )
∂z

∂T
∂z
+ f (T )).

It can be found that the right side of (4) consists of two
nonlinear functions F(T ) and Q.
The model (1) described by nonlinear PDE is space/time

coupled that cannot directly be used for online prediction
and control. The commonly used method is the space/time
separation methods [7], [33], by which the spatiotemporal
variable T (S, t) can be decoupled into a set of spatial BFs
{φi (S)}∞i=1 with corresponding time coefficients {ai (t)}∞i=1.
Usually, the first n-th order of BFs {φi (S)}ni=1 can capture the
dominant dynamics of the DPS. Then, T (S, t) and Q (S, t)
can be described as:

T (S, t) =
n∑
i=1

φi (S) ai (t), (5)

Q (S, t) =
n∑
i=1

φi (S) qi (t). (6)

The unit orthogonal BFs can be learned using the KL
method with collected spatiotemporal distribution snapshots.
Substituting (5) and (6) into (1), the equation residual can be
calculated as:

R =
∂Tn
∂t
− k1∇2Tn − F(Tn)−

1
c
Q. (7)

With Galerkin’s method [23], [24], take the spatial BFs
φj as weight function, the residual (7) can be minimized by
solving: (

R, φj
)
= 0, (8)

where
(
R, φj

)
denotes the inner product: ∫R · φjd�.

Substituting (5) and (6) into (8):∫
∂
[∑n

i=1 φi · ai(t)
]

∂t
· φjd�

=

∫
k1∇2

(
n∑
i=1

φi · ai(t)

)
· φjd�

+

∫
F(Tn) · φjd�+

∫
1
c

(
n∑
i=1

φi · qi(t)

)
· φjd�.

(9)

Since the BFs {φi (S)}ni=1 are orthonormal, (9) can be cal-
culated as:

ȧi(t) =
n∑
i=1

kijaj(t)+ F̃i (a1(t), . . . , an(t))+
1
c
qi(t), (10)

where: kij =
∫ (
k1∇2φi

)
φjd�(j = 1, 2, . . . , n),

� is the domain (0 ≤ x ≤ x0, 0 ≤ y ≤ y0, 0 ≤ z ≤ z0),

F̃i (a1(t), . . . , an(t)) =
∫
F(Tn)φjd�.

Ignoring the coupling effect among the low-order models,
(10) is simplified as:

ȧi(t) = kiiai(t)+ F̃i (ai(t))+
1
c
qi(t). (11)

The discrete form of (11) can be rewritten as:

ai(t) = k̃iiai(t − 1)+ F̃i (ai(t − 1))+
1t
c
qi(t − 1), (12)

where k̃ii = 1+1tkii, 1t is the discrete interval.
Define the nonlinear functions:

gi (ai(t))= k̃iiai(t)+ F̃i (ai(t)) , fi(u(t))=
1t
c
qi (t) . (13)

Then the mathematical structure of the time coefficients
can be described as:

ai (t) = gi (ai (t − 1))+ fi (u (t − 1)) . (14)

Obviously, model (14) has two coupled nonlinear struc-
ture gi (·) and fi (·) as depicted in Fig. 1. There are many
data-based identification methods to estimate the low-order
temporal model (14). While the temporal model is trained
very well, the spatiotemporal model can be finally recon-
structed by space/time synthesis.

Though traditional spatiotemporal modeling methods have
a satisfactory model performance on industrial thermal pro-
cesses, there are still some problems required to solve for the
online implementation of the model, which can be summa-
rized as follows:
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FIGURE 1. Structure of the low-order ODE model.

1) Strong nonlinear structure: Two inherent cou-
pled nonlinear dynamics are existed in the process.
To approximate the process well, the proposed model
required to be designed according to the nonlinear
structure characteristics of the system.

2) Online update: Traditional spatiotemporal modeling
methods are conducted in an offline environment,
which often leads to the model drift for large-scale,
time-varying systems. Therefore, model parameters
online learning strategy with newly arriving snapshots
is necessary, which can adapt to real-time dynamics
variation.

3) Computational accuracy: For the large-scale time-
varying systems, there are significant differences
between the new and old samples. If the spatiotem-
poral model only continuously adds new snapshots
to the training samples set without any treatment of
the ancient samples, it will lead to its limited learn-
ing ability to the latest training samples, and thus
difficult to accurately depict the time-varying system
characteristics.

The research of this paper will focus on solving the above
three problems. Detailed methodology is given in the follow-
ing section.

III. ONLINE SPATIOTEMPORAL MODELING WITH
ADAPTIVE FORGETTING FACTOR
A. MODELING FRAMEWORK
The framework of the proposed modeling method is shown
in Fig. 2. The modeling issue can be summarized as three
aspects: 1) D-ELM-based model design, 2) Online sequential
learning algorithm, and 3) Forgetting mechanism.

In the first aspect, the traditional KL method is used to
decompose the spatiotemporal variables into a series of dom-
inant spatial BFs and corresponding time coefficients. Sub-
sequently, taking time coefficients as model output, D-ELM
is designed to model the temporal dynamics according to
model (14).

In the second aspect, two steps are needed for online
sequential learning. 1) update of the modeling coefficient θ ,
which can be expressed as a function of the AFF ω. 2) update
of the AFF ω, where a FLOO-CV method is applied to
weaken the previously collected samples by giving a reason-
able weight.

In the third aspect, spatiotemporal variables can be recon-
structed by space/time synthesis.

FIGURE 2. The framework of the proposed online spatiotemporal
modeling method.

Detailed description and development can be found as
follows.

B. DUAL EXTREME LEARNING MACHINE
Suppose the spatiotemporal snapshots of an industrial
thermal process are {T (S, t)}Lt=1 and the input signals
are {u (t)}Lt=1, where L is the time length. As shown
by(1), the spatiotemporal domain of the thermal process
is time/space coupled. To perform time/space decouple,
KL method is first adopted to learn spatial BFs {φi (S)}ni=1
from {T (S, t)}Lt=1. The detailed description of time/space
separation procedure by KL can be found in [13]. Due to the
orthogonality of the spatial BFs, temporal dynamics a (t) =
{ai (t)}ni=1 can be obtained by ai (t) = (φi (t) ,T (S, t)),
where (φi (t) ,T (S, t)) is defined as the inner product oper-
ation of φi (t) and T (S, t). To consider the inherent sys-
tem structure features, the D-ELM model is developed to
approximate the two coupled nonlinear blocks in(14). For
mathematical convenience, let gi (·) = g (·), fi (·) = f (·).
These two nonlinear functions can be approximated using the
ELM model, respectively, as [34], [35]:

g (a (t)) =
N1∑
σ

βσG1 (ωσ · a (t)+ ησ ), (15)

f (u (t)) =
N2∑
δ

β ′δG2
(
ω′δ · u (t)+ η

′
δ

)
, (16)

where βσ and β ′δ are the output weights linking the output
node and corresponding hidden nodes, ωσ and ω′δ are the
input weights connecting the input nodes and corresponding
hidden nodes, ησ and η′δ are the threshold of corresponding
hidden nodes,N1 andN2 are the numbers of the hidden nodes,
G1 and G2 are the activation functions of the hidden layer.
With (15) and (16), (14) can be rewritten as the following
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equation:

a(t) =
N1∑
σ

βσG1 (ωσ · a (t − 1)+ ησ )

+

N2∑
δ

β ′δG2
(
ω′δ · u (t − 1)+ η′δ

)
. (17)

The above equation is the mathematical description of the
Dual ELM, designed according to the coupled two nonlinear
structures. The parameters identification process is similar
to general ELM. The unknown parameters ωσ , ω′δ , ησ , η

′
δ

are randomly generated. The remained unknown parameters
βσ andβ ′δ need to be determined according to the input-output
data.

Equation (17) can be expressed in a linear regression form,
as:

a (t) = hT (t) θ , (18)

where h (t) is a parameter vector related to the input-output
data and has the form as follows:

h (t)

=

[
G1(ω1 · a(t−1)+η1), . . . ,G1(ωN1 · a(t−1)+ηN1 ),
G2(ω′1 · u(t−1)+η1), . . . ,G2(ω′N2

· u(t−1)+ηN2 )

]T
,

(19)

θ =
[
β1, . . . , βN1 , β

′

1, . . . , β
′
N2

]T
is the unknown parameter

vector to be identified.
To calculate the parameter vector (19), ωσ , ω′δ , ησ and

η′δ are all randomly generated without the knowledge of the
training data. They are not only independent of the training
data but also of each other. Once they are estimated, the value
will be fixed in the following learning procedure.

Equation (18) can be written in a matrix form as:

A = Hθ , (20)

where A = [a(2), a(3), . . . , a(L)]T is the output vector,
H =

[
hT (2) . . . hT (L)

]T
is the regressionmatrix. SinceA and

H are known, the unknown parameters θ can be calculated
analytically as:

θ̂ = H†A, (21)

where H† is the Moore-Penrose (MP) generalized inverse
of matrix H. Here, we only consider the nonsingular case:
H†
=
(
HTH

)−1HT

C. ONLINE SEQUENTIAL LEARNING ALGORITHM
The above developed D-ELM method can model the spa-
tiotemporal dynamics of DPSs very well since its model
structure matches the general thermal system. However, this
model developed in an offline environment should be online
updated to keep satisfactory model performance [31], [32].
A simple method to achieve online update is supposed the
model to be retrained from scratch repeatedly by combining
existing data and newly arriving data, which will lead to a

high computational burden in real applications. Therefore,
OSLA is required for the spatiotemporal model online updat-
ing, which only uses the learned model parameters and the
newly arriving data involving time coefficients from KL and
the input signals.
Given a chunk of the initial training set ℵ0 =

{z (t) , a (t)}L0t=1, where z (t) = [a (t − 1) , u (t − 1)], accord-
ing to (21), the initial model parameters can be calculated
by θ̂0 = K−10 HT

0A0 with K0 = HT
0H0, where the subscript

0 denotes the corresponding initial vector or matrix concern-
ing the initial training set ℵ0. The online data are usually
arriving one-by-one or chunk-by-chunk. Here, the chunk-
by-chunk case will be taken into consideration in the algo-
rithm development. Suppose that a new chunk of data ℵ1 =
{z (t) , a (t)}L0+L1t=L0+1

comes. Equation (11) can be expressed as:

θ̂1 = K−11

[
H0
H1

]T [A0
A1

]
, (22)

where:

K1 =

[
H0
H1

]T [H0
H1

]
, (23)

H1 and A1 is the regression matrix and output vector for
ℵ1, respectively. For online sequential learning, we have to
express θ̂1 as a function of θ̂0, K1, H1 and A1. Now, K1 can
be written as:

K1 = HT
0H0 +HT

1H1 = K0 +HT
1H1 (24)

Then θ̂1 can be expressed as [36]:

θ̂1 = θ̂0 +K−11 HT
1

(
A1 −H1θ̂0

)
. (25)

Generalizing the previous arguments, when (m+1)-th

trunk of data ℵm+1 = {z (t) , a (t)}
∑m+1

j=0 Lj

t=
(∑m

j=0 Lj
)
+1

arrives,

we have:{
Km+1 = Km +HT

m+1Hm+1

θ̂m+1 = θ̂m +K−1m+1H
T
m+1

(
Am+1 −Hm+1θ̂m

) ,

(26)

where:
Am+1 =

[
a
((∑m

j=0 Lj
)
+ 1

)
, a
((∑m

j=0 Lj
)
+ 2

)
,

. . . a
(∑m+1

j=0 Lj
)]T

,Hm+1 =

[
hT
((∑m

j=0 Lj
)
+ 1

)
,

hT
((∑m

j=0 Lj
)
+ 2

)
, . . . ,hT

(∑m+1
j=0 Lj

)]T
. By (26), the

model parameters θ̂m+1 can be updated by the known
parameters θ̂m and newly arriving data ℵm+1 =

{z (t) , a (t)}
∑m+1

j=0 Lj

t=
(∑m

j=0 Lj
)
+1

.

D. ADAPTIVE FORGETTING FACTOR
The OLSA considers that the contribution of newly arriving
samples and previously collected samples are equal. There-
fore, it adopts equal weight treatment that fails to highlight
the role of newly arriving snapshots. Besides, this algorithm
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recursively updates the network weights as soon as it gets
a new trunk of snapshots. This kind of automatic network
weight update mode lacks the flexibility to adjust according
to the actual situation and is easy to increase the unneces-
sary computation. To overcome this problem, the adaptive
forgetting factor (AFF) is applied to weaken the previously
collected samples by giving a reasonable weight.

Suppose that the model parameters θ̂1 corresponding to the
first trunk of data ℵ1 = {z (t) , a (t)}

L0+L1
t=L0+1

can be expressed
as:

θ̂1 =

([
H0
H1

]T [H0
H1

])−1 [
H0
H1

]T [A0
A1

]
=

(
HT

0H0 +HT
1H1

)−1 (
HT

0A0 +HT
1A1

)
. (27)

SinceHT
0H0 andHT

0A0 in (27) are related to the previously
collected samples, a reasonable weight will be given to them.
Thus, (27) can be transformed into the following equation:

θ̂1=
(
ω0HT

0H0 +HT
1H1

)−1 (
ω0HT

0A0 +HT
1A1

)
, (28)

where the weight ω0 ∈ (0, 1) is the AFF, whose function is to
weaken the influence of the previously collected samples and
indirectly enhance the effect of the newly arriving snapshots.

Define:

K1 = ω0K0 +HT
1H1. (29)

Thus, θ̂1 can be expressed as:

θ̂1 = K−11

(
ω0HT

0A0 +HT
1A1

)
= K−11

(
ω0K0K−10 HT

0A0 +HT
1A1

)
= K−11

(
ω0K0θ̂0 +HT

1A1

)
= K−11

[(
K1 −HT

1H1

)
θ̂0 +HT

1A1

]
= θ̂0 +K−11 HT

1

(
A1 −H1θ̂0

)
. (30)

Generalizing the previous arguments, when (m+1)-th

trunk of data ℵm+1 = {z (t) , a (t)}
∑m+1

j=0 Lj

t=
(∑m

j=0 Lj
)
+1

arrives,

we have:{
Km+1 = ωmKm +HT

m+1Hm+1

θ̂m+1 = θ̂m +K−1m+1H
T
m+1

(
Am+1 −Hm+1θ̂m

) .

(31)

From (31), the model parameters θ̂m+1 can be recursively
updated by the known model parameters θ̂m, the newly arriv-
ing trunk of data ℵm+1, and the weight ωm. Since ωm rep-
resents the timeliness effect of previously collected samples,
and the contribution of each trunk of data will not be equal
in a different situation, the weight ωm should be adaptively
calculated in continuous incremental learning. Here, a novel
FLOO-CV method is developed for the optimal calculating
of ωm.

E. OPTIMAL DESIGN OF THE AFF
The FLOO-CV method can be used to evaluate the general-
ization ability of neural network models. Its generalization
error estimation is unbiased and unaffected by random fac-
tors. The verification process can be repeated entirely with
high computational efficiency. To select the optimal AFF,
a FLOO-CVmethod proposed byMao et al. [40] is developed
here.

Take the trunk of data ℵ1 = {z (t) , a (t)}
L1
t=1 into consider-

ation, let each input-output data (z (s) , a (s)) in set ℵ1 as the
testing sample, and all the remaining data are used as training
samples.
By (31), we can update the model parameter as follows:{

Ks = ω0K0 +HT
s Hs

θ̂ s = θ̂0 +K−1s HT
s

(
As −Hsθ̂0

) (32)

where:

As= [a (1) , . . . , a (s− 1) , a (s+ 1) , . . . , a (L1)]T ,

Hs=

[
hT (1) , . . . ,hT (s−1) ,hT (s+1) , . . . ,hT (L1)

]T
,

Usingmodel (32), the predicted error using the testing sample
z (s) can be calculated, which can be expressed as follows:

ē (s) = a (s)− hT (s) θ̂ s (33)

In [40], the generalization error expressed in (33) can be
calculated as:

ē (s) =
as −HzsH

†As

1−
(
HzsH†)

s

(34)

where (·)s means the ith element, H is hidden layer matrix,
and Hzs is the row about the sample zs in H.

The main difference our method and the method in [40] is
that the old sample is directly delete in [40], while the old
sample is given a AFF to weak its affect to the new model in
our method. Therefore, the only affected element is H. The
H† in our method can be expressed as:

H†
= K−1HT

=

(
ω0K0 +HT

s Hs

)
HT (35)

Substituting (35) into (34), the generalization error in sth
can be calculated. Finally, the optimal selection of weight ω0
can be constructed as follows:

argmin J (ω0) =
1
L1

L1∑
s=1

ē2 (s)

subject to: ω0 ∈ (0, 1) (36)

Many evolutionary algorithms (EAs), such as the genetic
algorithm (GA) and Newton method, can be applied here
to solve the optimization problem (36) and find the optimal
weight value.
The proposed online sequential learning algorithm with a

forgetting mechanism for dual ELM can be summarized as
follows.
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Proposed Algorithm:
Step 1. Initialization phase :

1) Set m = 0. Choose the activation function G1 and G2
of hidden layer and the number of hidden nodes N1 and
N2. Randomly assign the hidden parametersωσ ,ω′δ , ησ ,
η′δ and fixed in the following learning process.

2) Compute the initial output matrix of the hidden layer:

H0 =
[
hT (2) · · · hT (L0)

]T
. (37)

3) Calculate the initial output weight:

θ̂0 = K−10 HT
0A0, (38)

whereK0=HT
0H0 andA0= [a (2) , a (3) ,. . ., a (L0)]T .

Step 2. Online sequential learning with adaptive forgetting
factor:

1) When the (m+1)-th trunk of data ℵm+1 =

{z (t) , a (t)}
∑m+1

j=0 Lj

t=
(∑m

j=0 Lj
)
+1

arrives, calculate the activa-

tion function Hm+1:

Hm+1

=

[
hT
((∑m

j=0
Lj
)
+1
)
,hT

((∑m

j=0
Lj
)
+2
)
, . . . ,

hT
(∑m+1

j=0
Lj

)]T
. (39)

2) Establishing the optimal value of weight ωm by repeat-
ing (32) to (36).

3) Calculate:

Km+1 = ωmKm +HT
m+1Hm+1. (40)

4) Calculate the output weight

θ̂m+1 = θ̂m +K−1m+1H
T
m+1

(
Am+1 −Hm+1θ̂m

)
.

(41)

5) Used the calculated output weight θ̂m+1 to estimate the
dual ELM model (17).

6) Set m = m+ 1, then go to (1) of step 2.

Remark 1: To ensure rank (H0) = N1+N2, the number of
initialization training data L0 should not be less than the sum
of the hidden neurons numbers of two ELM networks.
Remark 2: From (29) and (30), it is easy to find that the

online sequential implementation of the least-square solu-
tion (21) is similar to the recursive least-square (RLS) algo-
rithm. Therefore, all the convergence proof of RLS can be
extended to the proposed algorithm.
Remark 3: From (29), we can get that:

K2 = ω1K1 +HT
2H2. (42)

Combining (42) and (29), the above equation can be further
expressed as:

K2 = ω1ω0K0 + ω1HT
1H1 +HT

2H2. (43)

Expand (43) continually, we can find that:

Km+1 =

m∏
i=0

ωiK0 +

m∏
i=1

ωiHT
1H1 + · · ·

+ωmHT
mHm +HT

m+1Hm+1. (44)

Since ωi ∈ (0, 1), the effect of previous samples
decreases exponentially as online learning continuously pro-
ceeds. Especially, when ωi = 1, the contributions of previous
samples and new samples are equal. This will be the case
of OSLA. Thus, the proposed method can be regarded as a
general form of OSLA.

F. SPACE/TIME SYNTHESIS
With the obtained KL-based spatial BFs and the estimated
temporal model, spatiotemporal variables can be recon-
structed online as follows:

T̂ (S, t) =
n∑
i=1

φi (S) âi (t). (45)

IV. EXPERIMENT VALIDATION
A. EXPERIMENT SETUP
To verify the proposed model’s effectiveness, a typical indus-
trial thermal process of curing oven is studied. As shown
in Fig. 3, the curing oven is a critical equipment to provide the
required temperature distribution during the curing process
in the semiconductor back-end packaging industry. There are
four same heaters placed on the top of the oven, controlled by
pulse-width modulation (PWM) signals. Sixteen thermocou-
ples are placed on the lead frame uniformly for data collected,
as shown in Fig. 4. In total, about 2100 time-series snapshots
are collected by all the sensors in a fixed sampling interval
1t = 10s, which will be used for model training and online
learning. In the online spatiotemporal modeling, the collected
samples are separated into two parts. The first 800 samples
are used for D-ELM-based spatiotemporal model construc-
tion, and the last 1300 samples are used for model testing and
updating.

FIGURE 3. The snap curing oven system.

For the convenience of model verification and comparison,
the following error indexes are given:

1) Spatiotemporal prediction error (e)

e (Si, t) = T (Si, t)− T̂ (Si, t) , i = 1, . . . ,N . (46)
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FIGURE 4. Sensor locations for snapshots collected.

2) Absolute relative error (ARE)

ARE =

∣∣∣T (Si, t)− T̂ (Si, t)∣∣∣
T (Si, t)

, i = 1, . . . ,N . (47)

3) Root mean square error (RMSE)

RMSE =

√√√√ 1
NL

N∑
i=1

L∑
t=1

(
T (Si, t)− T̂ (Si, t)

)2
. (48)

4) Temporal normalized absolute error (TNAE)

TNAE =
1
L

L∑
t=1

∣∣∣T (Si, t)− T̂ (Si, t)∣∣∣, i = 1, . . . ,N .

(49)

B. D-ELM BASED OFFLINE SPATIOTEMPORAL MODEL
For the D-ELM-based spatiotemporal model construction.
KL method is first used to calculate the spatial BFs, where
the orders are selected to 3 [33]. Then, the time coefficients
{ai (t)}ni=1 can be derived by projecting spatiotemporal sam-
ples onto the BFs. With time coefficients and the corre-
sponding input signal u (t), the low-order temporal model
can be estimated using (17) to (21). Finally, D-ELM based
spatiotemporal model can be reconstructed using space/time
synthesis. To evaluate the performance of the model, the last
1300 samples are used for testing. To verify the effectiveness
of the D-ELM method, comparisons between the measured
and predicted temporal coefficients are shown in Fig. 5,
where the red lines correspond to the predicted temporal
coefficients and the black lines to the measured ones. They
show satisfactory agreement between the predicted and mea-
sured dynamics. Besides, the predicted temperature distribu-
tion and corresponding ARE indexes at the 2100-th sample
are simulated, as shown in Fig. 6. It can be seen that the
maximum ARE of the predicted result is within 1.2%, which
means the acquired D-ELM-based spatiotemporal model can
approximate the actual DPS system well.

To evaluate the efficiency of the proposed D-ELM based
model, Dual least square SVM (LS-SVM) [33], MLP [26],
and random vector functional-link (RVFL) [42] are also
developed for the spatiotemporal model construction. Model
performance in terms of TNAE, RMSE, and simulation time

FIGURE 5. Comparisons between the predicted and measured time
coefficients.

FIGURE 6. Simulation results at 2100-th sample. (a) the real temperature
distribution; (b) ARE distribution.

is shown in Fig. 7 and Table 1. It can be seen that both D-ELM
and Dual LS-SVM show better accuracy on RMSE due to
the dual-model structure that fits the two inherently coupled
nonlinearities of the thermal system. In addition, the D-ELM
based model has the best TNAE performance at each sensor
location among these four models. Meanwhile, the learning
speed of D-ELM has the same order of magnitude as the
RVFL based model, which highlights the advantages of faster
computing speed compared with Dual LS-SVM.
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TABLE 1. Performance comparison in terms of RMSE and simulation time.

FIGURE 7. Performance comparison in terms of TNAE.

C. AFFD-ELM BASED ONLINE SPATIOTEMPORAL MODEL
For the online learning process, suppose the 1300 sam-
ples are coming chunk-by-chunk with a fixed chunk size,
is set as 10. Thus, the 1300 snapshots can be separated into
130 continuous blocks. The trace of the weight value ω is
depicted in Fig. 8. It is clear to find that the optimal ω value
is overtime for the time-varying dynamics of the nonlin-
ear curing process. To evaluate the model performance of
the proposed online method and D-ELM model, predicted
temperature evolutions and corresponding ARE indexes at
sensor 6 and 11 are simulated, as shown in Fig. 9 and
Fig. 10. As can be seen from the figures, the proposed
online model can extremely approximate the actual dynamic
evolution.

FIGURE 8. Trace of ω value.

For online model comparison, FOS-ELM and TOS-ELM-
based spatiotemporal models are also developed for the
thermal curing process under the same experimental con-
ditions. To verify the superiority of the proposed model,

FIGURE 9. Performance comparisons at sensor 6 and 11 using D-ELM
based model.

FIGURE 10. Performance comparisons at sensor 6 and 11 using the
AFFD-ELM based online model.

the error-index ARE at the 2100-th testing sample is shown
in Fig. 11. Comparedwith Fig. 6(b), these three onlinemodels
can all present better ARE performance than the D-ELM
model. The maximum ARE of these three models reduced
from 1.2% of D-ELM to below 0.5%, 0.6% and 0.7%, respec-
tively, which means they have the higher prediction accuracy.
The reason is that D-ELM, as an off-line model, cannot
reflect the variation of model parameters over time, so it is
difficult to adapt to the large-scale time-varying nonlinear
DPS systems. For further performance comparisons of these
models, the error indexes TNAE and RMSE are also calcu-
lated, as shown in Fig. 12 and Table 2 . It is obvious that
the proposed method has the best RMSE performance and
the minimum TNAE compared to those of the TOS-ELM
and the FOS-ELM, indicating that the proposed model has
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FIGURE 11. ARE distributions at 2100-th sample. (a) proposed model;
(b) FOS-ELM based model; (c) TOS-ELM based model.

a higher accuracy than the other two online spatiotemporal
models. The reason is that the optimal AFF design can make
the proposed model more suitable for the modeling problem
of time-varying DPSs.

D. RESULT ANALYSIS
According to the simulation and experiment results, the pro-
posed AFFD-ELM has the following advantages:

FIGURE 12. Online spatiotemporal model performance comparison in
terms of TNAE.

TABLE 2. Model performance comparison in terms of RMSE.

1) Improved nonlinear modeling performance: Compared
to other popular spatiotemporal models, D-ELM has
the best average RMSE of 1.81 in Table 1. This indi-
cates that it can capture the nonlinear mapping relation-
ship between the system inputs and time coefficients
well.

2) Adapted to the time-varying dynamics of DPSs: the
experiment results show that whenever a new chunk
of data comes, the proposed method outperforms
FOS-ELM and TOS-ELM-based spatiotemporal mod-
els in terms of ARE, TNAE and RMSE in online learn-
ing process.

3) Fast model execution time: DELM requires only 0.055s
to complete simulation, which is close to that of RVFL
based model. Furthermore, Mao et al. [40] has proved
that FLOO-CV method has the good time performance
in online update process. All these shows that the pro-
posed method is enough practical.

V. CONCLUSION
In this work, AFFD-ELM based online spatiotemporal mod-
eling is proposed for large-scale time-varying DPSs. This
method is based on recursively updating the low-order tem-
poral model through online sequential learning of the con-
tinuously arriving samples. In this way, the spatiotemporal
model can be inherited and updated through the whole online
learning process. From the perspective of modeling accu-
racy, the proposed model is based on the accurate D-ELM-
based spatiotemporal model and online updating strategy.
Thus, it gives an extremely close approximation to the actual
process. From the perspective of modeling efficiency, the
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application of ELM can lead to a simple model structure and
high learning speed. Embedding of AFF can ensure the online
modeling has the advantages of improving the learning effects
and reduce the lousy affection of previous data. Therefore,
this method can be applied to a class of time-varying DPSs.
Real-time experiments on a curing oven demonstrate the
efficiency and viability of the proposed model.
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