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ABSTRACT This paper proposes combining an improved particle swarm optimization and Pareto archive
algorithm to solve the multi-objective reactive power optimization problem. The idea of ε-greedy strategy
is adopted and designed to improve particle swarm optimization algorithm. It makes some particles have
stronger global search capability, meanwhile, others have stronger local search capability during the whole
iteration process. Henceforth, the strategy significantly explores the possibility of optimal solution in
local space at the early stage of the iteration, in addition, it mitigates the tendency to fall into the local
optimal solution at the later stage of the iteration. The Pareto optimal solution selection problem is solved
by minimizing the sum of the difference between each objective function and its optimal solution. The
proposed approach is tested on IEEE39-bus and IEEE118-bus system, and it is demonstrated that the
proposed approach not only restores the nodes voltage to the normal range and achieves better value for each
objective function, but also outperforms other algorithms including standard particle swarm optimization and
non-dominated sorting genetic algorithm II(NSGA-II).

INDEX TERMS Multi-objective reactive power optimization, particle swarm optimization, ε-greedy strat-
egy, Pareto archive algorithm, voltage control.

I. INTRODUCTION
Too high or too low voltage will directly affect the secu-
rity and stability of the power system, so voltage control
has been paid more and more attention. The researches on
solving voltage/var control problem are mainly divided into
two categories: 1) Constrained optimal power flow. This
category can obtain the solution based on optimal power
flow [1]–[3]. This type ofmethod is simple, and themodel has
adequate interpretability. However, as the scale of the power
grid expands, the amount of calculation increases. 2)Machine
learning based methods, e.g. reinforcement learning [4]–[6].
They are data-driven methods, which are not limited by the
grid models. However, these methods cannot be understood
and applied well by human due to inadequate interpretability.
At present, the contradiction between the harsh requirements
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of voltage/var control and the lack of interpretability of
machine learning models has become a great obstacle for
engineering applications. From the perspective of the first
type of research, this paper adopts the reactive power opti-
mization method to solve the static voltage control problem.

Reactive power optimization plays a critical role in the
optimal operation of the power system. The static reactive
power optimization aims to obtain better secure and eco-
nomic operation level by changing the number of switching
capacitor banks, the location of the on-load tap changers, and
generators terminal voltage under a given system operation
constraints and load level. In recent years, with the improve-
ment of power system operation requirements, the reactive
power optimization has evolved from a single-objective opti-
mization problem to a multi-objective optimization prob-
lem [7]. Multi-objective reactive power optimization is a
multi-objective, multi-constraint, multi-variable hybrid non-
linear optimization problem [8]–[10]. At present, algorithms
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for addressing multi-objective problems are mainly divided
into two categories: conventional algorithms and intelligent
algorithms.

A. CONVENTIONAL ALGORITHMS
Conventional algorithms convert the multi-objective prob-
lem to single-objective problem, including linear weight-
ing, ε-constraint and so on [11]–[13]. The linear weighting
approach assigns a weight to different sub-objectives, and
then multiple sub-objectives are linearly weighted into a sin-
gle objective. However, it is difficult to determine the weight
value. The ε-constraint approach selects one of the most con-
cerned sub-objectives as the reference, after which other sub-
objectives are constrained to not more than ε. The problem is
that it is difficult to obtain the ε. For multi-objective reactive
power optimization problems in engineering, conventional
algorithms cannot significantly solve them due to the problem
that multiple objectives are often conflicting or interacting
each other. To solve the problem, a large number of intelligent
multi-objective algorithms have been developed.

B. INTELLIGENT ALGORITHMS
Intelligent algorithms can be divided into three categories: the
first category is the algorithm based on Pareto optimization,
the second category is the algorithm not based on Pareto
optimization, and the third category puts forward the concept
of external set on the basis of the first two categories, and then
it improves the distribution of the optimal solution.

1) THE ALGORITHM BASED ON PARETO OPTIMIZATION
Reference [14] proposes the non-dominated sorting genetic
algorithm (NSGA), which utilizes the non-dominant sort-
ing to sort the population. Then niche and morphological
algorithms are utilized to obtain optimal individual selection
combined with the genetic algorithm. Finally, several Pareto
optimal solutions are obtained. The advantage is that the
optimal solution is evenly distributed, however, it has the
disadvantages of low computational efficiency, high com-
plexity and lack of an elite mechanism. Subsequently, ref-
erence [15] proposes the NSGA-II algorithm. Based on the
original NSGA, the congestion degree comparison operator is
proposed. The congestion degree of individuals is compared
in the same non-dominated layer, and the individuals with
higher congestion degree are selected. Then, the elite strategy
is introduced to expand the sampling space. The NSGA-II
algorithm can significantly improve the ability to obtain the
optimal solution and the speed of the algorithm. Meanwhile,
it preserves the diversity of the population and reduces the
complexity. Although NSGA-II has great improvement, it is
not fully applicable to the optimization of three or more
objectives.

2) THE ALGORITHM NOT BASED ON PARETO OPTIMIZATION
References [16]–[18] propose a multi-objective evolutionary
algorithm based on decomposition (MOEA/D). It utilizes
the idea of scalarization to decompose the multi-objective

problem into multi-scalar sub-problems, and simultane-
ously optimizes each sub-problem according to its adja-
cent sub-problems. Then, the optimal solution is obtained.
The approach has advantages in solving efficiency and
accuracy, and has become the most representative heuris-
tic multi-objective algorithm. Compared with NSGA-II,
the MOEA/D has more advantages in time complexity, uni-
formity and convergence in the case of low dimensional
objectives, but its uniformity is worse than NSGA-II in some
cases of high dimensional objectives.

3) THE ALGORITHM BASED ON EXTERNAL SET
The concept of external set is introduced in the algorithm,
which is utilized to preserve all non-dominant individuals.
This type of approach can obtain uniformly distributed Pareto
solution, and maintain the diversity of the population. Refer-
ence [19] proposes the strength Pareto evolution algorithm
(SPEA). It utilizes an external set to preserve non-dominated
solutions, and evaluates adaptability according to the num-
ber of individual external non-dominated solutions. Mean-
while, it controls the size of the non-dominated set com-
bined with clustering approach, so the efficiency of the
search in the selection stage can be guaranteed. However,
the SPEA has disadvantages of inaccurate fitness allocation
and poor diversity. In view of this problem, reference [20]
proposes the SPEA-II. Based on a new granularity allocation
strategy, it significantly accelerates the convergence speed
and enhances the distribution uniformity of the Pareto opti-
mal solution. In addition, the Pareto archive evolution strat-
egy (PAES) is proposed in [21], which is also an approach that
utilizes external set. The approach consists of a 1+1 strategy
and an external archive scheme, which is a relatively simple
MOEA and has a good performance in engineering applica-
tions. The above approaches can obtain the optimal solution
set. Then, the required solution can be selected according
to the practical condition. However, the choice of the final
solution is not easy [22]–[24].

The conventional reactive power optimization algorithms
will encounter high requirements for initial value and prone
to ‘‘dimensional calamity’’. Recently, artificial intelligence
algorithms, such as genetic algorithm [25], simulated anneal-
ing algorithm [26], tabu search algorithm [27] and particle
swarm optimization algorithm [28], [29], have been devel-
oped rapidly to solve them. Compared with other algorithms,
particle swarm optimization (PSO) is simple and converges
fast, however, it is easy to fall into the local optimal solution
during iteration [30], [31]. In recent years, researchers have
proposed various improved approaches, which are mainly
divided into three categories. The first category is to improve
the selection of inertia weight: reference [32] shows that the
original PSO has poor local search capability. The concept
of an inertia weight is developed to better control explo-
ration and exploitation. The inclusion of an inertia weight
in the particle swarm optimization algorithm (MeanPSO)
is reported in references [33], [34]. Reference [35] utilizes
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linearly decreasing inertia weight to make all particles have
a strong global search capability at the early stage of the
iteration, and a strong local search capability at the later
stage. It improves the search efficiency of the particle swarm
optimization algorithm; Reference [36] proposes to dynam-
ically adjust the inertia weight of all particles nonlinearly,
which further improves the processing capability of the algo-
rithm for nonlinear multi-dimensional functions. At present,
the shortcoming of searching in a single direction at the later
stage is not significantly solved by approaches of adjusting
the inertia weight of all particles consistently. They are still
easy to fall into the local optimal solution. The second cat-
egory involves information regarding social sharing. Refer-
ence [37] proposes dynamically adjusted neighbourhoods in
which directed structures are used for the topology of the ini-
tial population and during the subsequent generations edges
of the structures are randomly migrated from one source to
another. Reference [38] utilizes the additional information of
the nearby higher fitness particle that is selected according to
fitness-distance ratio (FDR) indicating the ratio of the fitness
improvement over the respective distance. These approaches
improve the efficiency of particle swarm search to a certain
extent, but they increase the amount of calculation. The third
improvement approach is to introduce mutation into the pro-
cess of particle swarm optimization: reference [39] proposes
to reinitialize the poorer half of the particles during each
iteration, thus increasing the diversity of particles and reduc-
ing the possibility of falling into a local optimal solution;
References [40], [41] based on the principle of crossover
and mutation of genetic algorithm, the velocity and position
of each particle are dynamically adjusted, which increases
the diversity of particles. Although approaches of random
mutation increase the diversity of particles, they increase the
amount of calculation, which may reduce the convergence
speed and search accuracy.

To solve these problems, this paper proposes a multi-
objective reactive power optimization method combining
improved particle swarm algorithm and Pareto archive algo-
rithm. The idea of ε-greedy strategy is adopted to dynamically
adjust the proportion of the global search and the local search
of the particles. It enables most particles to have larger inertia
weight at the early stage of iteration, and thus has stronger
global search capability. Meanwhile, other particles have
smaller inertia weight, so they will explore the local space,
which can significantly explore the possibility of optimal
solution in local space. On the contrary, most particles have
smaller inertia weight at the later stage, which makes them
have stronger local search capability, meanwhile, other parti-
cles have larger inertia weight. It enables them to jump out of
the local space for new space, which reduces the possibility
of falling into a local optimal solution. The Pareto optimal
solution selection problem is solved by minimizing the sum
of the difference between each objective function and its
optimal solution. Case studies on the modified IEEE39-bus
and IEEE118-bus system verify the validity of the proposed
approach.

The main contributions of this paper are as follows: 1) The
improved particle swarm optimization based on ε-greedy
strategy and Pareto archive algorithm is first proposed for
solving multi-objective reactive power optimization prob-
lem. 2) The idea of ε-greedy strategy is first adopted and
designed to improve PSO algorithm. It increases the diver-
sity of particles, and significantly reduces the possibility of
falling into a local optimal solution. 3) The Pareto optimal
solution selection problem is solved by the proposed selection
criterion. 4) Compared with approaches of random mutation,
the proposed approach can increase the diversity of parti-
cles as well. Since the proposed approach does not require
mutation calculations and operations, it has the advantages
of low calculation and avoiding the possible reduction of
convergence speed. 5) The simulation results on the IEEE39-
bus and IEEE118-bus test system show that the proposed
approach restores the nodes voltage to normal range, mean-
while, the performance of the proposed approach is superior
to that of standard particle swarm optimization and NSGA-II
in terms of multiple objective values.

The remaining parts are organized as follows. Section II
introduces multi-objective reactive power optimization
model. Section III describes improved PSO algorithm and
Pareto archive algorithm. The proposed approach is tested
in Section IV on the modified IEEE39-bus and IEEE118-
bus system. Finally, conclusions and future work are given
in Section V.

II. MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION
MODEL
A. OBJECTIVE FUNCTIONS
The objective function of reactive power optimization has cer-
tain differences due to different concerns. It mainly includes
economics index and security index. The classical model
considering economics takes the minimum active power loss
as objective function. The classic model considering system
security takes the minimum sum of squares of the system’s
operating state deviation from the expected value or the maxi-
mum static voltage stability as objective function. In addition,
there exists themulti-objectivemodels that consider these two
or more objectives simultaneously [42].

This paper considers both economics and security of the
system. Then the minimum active power loss is regarded
as the economics index, and the maximum static voltage
stability is regarded as the security index.

1) THE MINIMUM ACTIVE POWER LOSS
The active power loss on transmission lines is generated in
the process of power transmission. Reducing the active power
loss is an important means to achieve economic operation
for power utilities. The transmission loss is regarded as an
objective function, as follows:

min f1 = min (1Ploss)

=

∑
i,j∈NL

Gij
(
V 2
i + V

2
j − 2ViVj cos θij

)
(1)
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where NL is the number of branches in the system; Gij is the
conductance between node i and node j; Vi and Vj are the volt-
age value of node i and node j, respectively; θij is the voltage
phase angle difference between node i and node j.

2) THE MAXIMUM STATIC VOLTAGE STABILITY
Considering the secure operation of power system, voltage
instability has become an issue that must be solved. The static
voltage stability index can be used to evaluate the voltage
stability of power system. It is measured by the smallest
singular value δmin of the Jacobianmatrix. The larger the δmin,
the greater the static voltage stability. Here, the minimum
value of reciprocal of the smallest singular value is used
to calculate the index. In other words, the smaller 1

/
δmin,

the greater the static voltage stability:

max f2 = min
(
1
/
δmin

)
(2)

B. CONSTRAINTS
The mathematical formulas of constraints are as follows:

1) POWER FLOW CONSTRAINTS
Since the electricity is generated and consumed at the same
time in the power system, so the active power balance and
reactive power balance are two basic operating conditions that
must be met in power system operation. They are defined as
follows:

PGi − PLi − Vi
Ns∑
j=1

Vj
(
Gij cos θij + Bij sin θij

)
= 0

QGi − QLi − Vi
Ns∑
j=1

Vj
(
Gij sin θij − Bij cos θij

)
= 0

(3)

where Ns is the number of system nodes; PGi and QGi denote
the active and reactive power of generator node i, respec-
tively;PLi andQLi denote the active power and reactive power
of load node i, respectively; Vi and Vj are the voltage value of
node i and node j, respectively; θij is the voltage phase angle
difference between node i and node j; Gij is the conductance
between node i and node j; Bij is the susceptance between
node i and node j.

2) VARIABLE CONSTRAINTS
For the components in the power system, they need to meet
certain conditions during normal operation. And the variable
constraints are the normal operating range for them, which
include constraints of transformer, reactor, generator, voltage
value and branch current. They are defined as follows:

Timin < Ti < Timax i ∈ NT
Qcimin < Qci < Qcimax i ∈ NC
Vimin < Vi < Vimax i ∈ NPQ
VGimin < VGi < VGimax i ∈ NG
QGimin < QGi < QGimax i ∈ NG
0 ≤ lij ≤ Imax

ij i, j ∈ NL

(4)

where NT ,NC ,NPQ,NG are the number of on-load tap
changers, reactor compensation points, PQ nodes, gener-
ator nodes, respectively; Ti,Qci,Vi,VGi,QGi denote the
ratio of transformer i, the capacity of reactor i, the volt-
age value of PQ node i, the voltage value of generator
node i, and the reactive power of generator node i, respec-
tively; Timax,Timin,Qcimax,Qcimin,Vimax,Vimin,VGimax,

VGimin,QGimax,QGimin are the upper and lower limits of the
corresponding variable; lij and Imax

ij denote the current and
the upper limit of current for the branch from bus i to bus j,
respectively.

C. PROCESSING OF DISCRETE VARIABLES
Since the ratio of the transformer and the compensation
of the reactor are discrete variables, they need to be con-
verted into continuously changing integer variables. For the
ratio, it can be transformed into a continuously changing
tap gear. Similarly, the compensation capacity of reactor
can be transformed into a continuously changing switching
gear. Assuming that the transformer i has a total of ki taps,
and its step length of the gear is ai. Hence, the relationship
between the transformation ratio Ti and the corresponding
gear Bi (1 ≤ Bi ≤ ki) is:

Ti = Timin + ai × round (Bi − 1) (5)

Assuming that the single group capacity of the reactor at
node i is ci, and ni groups can be connected in total. Similarly,
the relationship between the reactor compensation capacity
Qci and its corresponding switching gearDi (0 ≤ Di ≤ ni) is:

Qci = ci × round (Di) (6)

III. IMPROVED PSO ALGORITHM AND PARETO ARCHIVE
ALGORITHM
A. STANDARD PSO ALGORITHM
The PSO algorithm is an intelligent optimization algorithm
proposed by Kennedy and Eberhart in 1995. It utilizes the
collaboration and information sharing among individuals for
the optimal solution [43]. Each particle updates its velocity
and position by tracking individual extreme values and global
extreme values in each iteration. The update formulas of
particle i at the k + 1 th iteration are as follows:

vk+1id = w · vkid + c1 · r
k
1 ·

(
pkbest − x

k
id

)
+

c2 · rk2 ·
(
gkbest − x

k
id

)
xk+1id = xkid + v

k+1
id

(7)

where i denotes the number of the particles; d denotes the
dimensional component of the search space; k denotes the
number of current iteration; w denotes the inertia weight,
which is a fixed value; vi and xi denote velocity and posi-
tion of the particle, respectively; pbest denotes the individ-
ual extreme value of the particle, gbest denotes the global
extremum of the particle swarm; c1 and c2 denote the learning
factor; r1 and r2 are random numbers in (0,1).
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The inertia weight determines the capability of the parti-
cle’s global search and local search. The larger the inertia
weight, the stronger the global search capability; the smaller
the inertia weight, the stronger the local search capability.

B. IMPROVE PSO ALGORITHM BASED ON ε-GREEDY
STRATEGY
The ε-greedy strategy achieves a balance of exploration and
exploitation based on probability. Set a probability ε(0 <

ε < 1), when the agent is making a decision, it explores
an unknown action with a small probability ε. Furthermore,
it selects the maximum action from the previous actions with
a probability of 1-ε [44]. The ε-greedy strategy aims for
execution of all the possible actions in a certain state, thereby
ensuring continuous exploration.

Inspired by the ε-greedy strategy, the strategy is modified
to improved PSO algorithm. The specific improvement pro-
cesses are as follows: assign a random probability to each
particle, and set the probability ε, where the ε increases
from 0.1 to 0.9 following the number of iterations. When
the probability of particle i satisfies Pi ≥ ε, the particle is
given a larger inertia weight, which makes its global search
capability stronger. When it satisfies Pi < ε, the particle is
given a smaller inertia weight, which makes its local search
capability stronger. Since the ε is small at the early stage
of the iteration, most of the particles have a stronger global
search capability. Meanwhile, other particles will search in
the local space, which can significantly explore the possibility
of the optimal solution in the local space. With the prolifer-
ation of iteration, the ε gradually increases. The ε is larger
at the later stage, thus most of the particles have stronger
local search capability.Meanwhile, other particles have larger
inertia weight. It enables them to jump out of the local space
for new space, which reduces the possibility of falling into a
local optimal solution. Since each particle is given a random
probability, they can have larger or smaller inertia weight in
the process of iteration. The mathematical formulas are as
follows:

ε = εmin +
iter

MaxIter
× (εmax − εmin) (8)

wi =

{
wl , if Pi ≥ ε
ws , if Pi < ε

(9)

where εmin = 0.1, εmax = 0.9; iter is the number of current
iteration,MaxIter is the maximum number of iterations, wi is
the inertia weight of particle i,wl is the larger inertia weight,
ws is the smaller inertia weight, Pi is the random probability
of particle i.

C. PARETO ARCHIVE ALGORITHM
The PSO algorithm cannot directly solve the multi-objective
reactive power optimization problem. It is necessary to trans-
form the multi-objective function into a single objective func-
tion or combine the intelligent algorithm to solve. Combined
with the Pareto archive algorithm, each objective function
value and the optimal solution set can be obtained. With

them, the solution can be selected according to the practical
condition.

The Pareto archive algorithm saves the optimal solutions
in an external archive. The core is to determine whether the
optimal solution can be stored in the external archive. The
criterion for judgment is whether the scale of the external
archive exceeds its specified maximum value during the pro-
cess of iteration. If it does not exceed, then the optimal solu-
tion generated can be directly saved in the external archive.
If it exceeds and the original solution in the external archive is
dominated by the newly generated optimal solution, then the
new optimal solution will be added to the external archive,
meanwhile, the original dominated solution will be deleted.
If the original solution is not dominated, the new optimal
solution will not be added to the external archive.

D. SELECTION AND IMPROVEMENT OF OPTIMAL
SOLUTION
The Pareto optimal solution set is obtained by the improved
PSO algorithm and Pareto archive algorithm. The final solu-
tion needs to be selected from the set according to the prac-
tical condition. The general selection approaches are ran-
dom selection and weight coefficient. The random selection
approach selects a pair of solutions randomly, while the
weight coefficient approach performs a weighted summation
of each optimization objective, and then the overall evaluation
index is obtained. Finally, it utilizes the overall index to select
the optimal solution.

Since the random selection approach selects the optimal
solution by chance, and the weight of the weight coefficient
approach is difficult to be determined, this paper defines a
new optimal solution selection approach: the pair of solu-
tions, which has the minimum sum of the difference between
each objective function and its optimal solution, is the final
optimal solution. By doing like this, it takes into account
of better performance of each objective function. What’s
more, in order to eliminate the influence of dimension and
magnitude, the value of each objective function needs to be
standardized before calculation. The mathematical formula is
as follows:

W =
(
f ′1 − f

′

1min
)
+
(
f ′2 − f

′

2min
)

(10)

where W denotes the optimal solution selection index; f ′1
and f ′2 denote the value of the standardized objective func-
tion 1 and objective function 2, respectively; f ′1min and f

′

2min
denote the optimal value of the standardized objective func-
tion 1 and objective function 2, respectively.

E. MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION
STEPS
The flow chart of multi-objective reactive power optimization
based on the improved PSO algorithm and Pareto archive
algorithm is shown in Fig. 1. The steps are as follows:
Step 1: Initiation of particle swarm S and calculation of

each particle’s fitness, and then the optimal solutions are
added to the external archive.
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FIGURE 1. Flow chart of reactive power optimization.

Step 2: Determination of each particle’s optimal position
pbest , and then global optimal position gbest is obtained
according to the pbest .
Step 3:Update of velocity and position of the particles, and

reselection of the pbest .
Step 4: Update and maintenance of external archive, and

selection of gbest for each particle.
Step 5: Judgingwhether themaximumnumber of iterations

is reached, if it reaches, then the result is output; otherwise,
go to step 3) to continue the loop calculation.

IV. CASE STUDY
The proposed approach is tested on the IEEE39-bus and
IEEE118-bus system. The simulations are conducted the
MATLAB 2018b on a 64-bit laptop with 2.60 GHz CPU and
16.0 GB RAM.

In order to make the IEEE39-bus and IEEE118-bus system
more complete, this paper adjusts the standard IEEE39-bus
and IEEE118-bus system according to case39 and case118 in
the Matpower7.0 software [45], [46], respectively. The upper
and lower limits of generators active power and reactive
power are added, as well as the upper limit of branches
current. Furthermore, in order to verify the voltage regulation
capability of the proposed approach, the IEEE39-bus and
IEEE118-bus system are adjusted to the light-load system by
reducing loads’ power and active power of generators. As a
result, the PQ nodes voltage will be high when the power flow
converges. In order to verify the performance of the approach
proposed in this paper, it is compared with the following two
approaches: 1) standard PSO algorithm combinedwith Pareto
archive algorithm; 2) NSGA-II algorithm.

A. CASE PARAMETERS
The single-line diagram of the IEEE39-bus and IEEE118-bus
system are shown in Fig. 2 and Fig. 3, respectively. Except for

FIGURE 2. Chart of IEEE 39-bus single line.

FIGURE 3. Chart of IEEE 118-bus single line.

the balance node, the generator nodes are treated as PV nodes,
and the other nodes are PQ nodes. In the modified IEEE39-
bus system, the total active power of loads is 2456.3MW,
and reactive power is 561.7Mvar. In the modified IEEE118-
bus system, the total active power of loads is 573.2MW, and
reactive power is 210.0Mvar. The normal range of PQ nodes
voltage is 0.95-1.05 pu. Assuming that the upper and lower
limit of the transformers’ ratio are 1.1 and 0.9, respectively.
The adjustment range of the ratio is 1± 0.0125× 8, and the
transformer gear is 17 in total. The adjustment range of the
generators terminal voltage is 0.9-1.1 pu. Due to the voltage
of PQ nodes is high under light load, reactors need to be
used to reduce the voltage. The range of reactor switching
groups is set to 0 ∼ 5, and the single group capacity is -
8Mvar. The number of particles in the population is 100, and
the maximum number of iterations is 100. The range of ε is
0.1 ∼ 0.9, the larger inertia weight wl is 0.9, and the smaller
inertia weight ws is 0.4. The maximum number of Pareto
optimal solutions that can be stored in the external archive is
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FIGURE 4. Comparison chart of PQ nodes voltage values.

TABLE 1. Voltage values of PQ nodes.

100. The inertia weight in the standard PSO algorithm is set to
0.73, and the maximum number of iterations of the standard
PSO algorithm and NSGA-II are both 100.

B. RESULTS AND ANALYSIS
1) IEEE39-BUS SYSTEM
Table 1 shows the PQ nodes voltage values obtained by three
approaches, and the corresponding voltage values compari-
son chart is shown in Fig. 4. It can be seen from Table 1 and

FIGURE 5. Comparison chart of Pareto optimal frontier.

TABLE 2. Extremum of two objective functions.

Fig. 4: 1) The initial voltage values of the PQ nodes are
generally high; 2) By adjusting the generators terminal volt-
age, the transformers ratio and switching reactors, three opti-
mization approaches can restore the PQ nodes voltage to the
normal range. 3) The deviation between the voltage value of
each node obtained by the standard PSO algorithm and the
rated voltage value is obviously better than that of NSGA-II
and the proposed approach.Meanwhile, voltage value of each
node obtained by NSGA-II and the proposed approach is very
close. The reason for this phenomenon is that the minimum
voltage deviation and the minimum active power loss or
the maximum static voltage stability cannot be considered
simultaneously. They are contradictory objective functions.

Table 2 shows the extreme values of the two objec-
tive functions obtained by three optimization approaches.
Fig. 5 shows the Pareto optimal frontier comparison chart of
three approaches, where the abscissa denotes the value of the
active power loss f1, and the ordinate denotes the value of
the static voltage stability index f2. According to Table 2 and
Fig. 5, the minimum values of the active power loss and
the static voltage stability index obtained by the proposed
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TABLE 3. Voltage values of PQ nodes.

approach are 9.6515MW and 0.001471, respectively. We can
obtain the following conclusions: 1) Compared with stan-
dard PSO and Pareto archive algorithm: the minimum val-
ues of two objective functions are smaller than the standard
algorithm, respectively. In addition, the maximum values of
two objective functions obtained by the proposed approach
are smaller than the minimum values of standard algorithm,
respectively. As a result, the Pareto optimal frontier of pro-
posed approach is better. 2) Compared with NSGA-II algo-
rithm: the minimum and maximum values of the active power
loss obtained by the proposed approach are both smaller.
Meanwhile, the static voltage stability obtained by the two
algorithms is very close. As a result, the Pareto optimal fron-
tier obtained by the proposed approach is more ideal, so the
performance of the proposed approach is better. In a word,
the improved approach proposed in this paper significantly
improves the efficiency of particle swarm search. It can obtain
better value of the objective function and a more ideal Pareto
optimal frontier.

Finally, with the proposed optimal solution selection
approach, a pair of solutions considering both the active
power loss and the static voltage stability is obtained:
f1 = 9.6590 MW, f2 = 0.001473. In summary, for the
reactive power optimization problem of the power system,
the proposed approach can bring better economics and secu-
rity to the operation of the power grid.

2) IEEE118-BUS SYSTEM
In order to further verify the performance of the proposed
approach in a large system, we choose the IEEE118-bus
system for testing. Meanwhile, in order to simplify the com-
parison, we only show the high voltage PQ nodes and the
optimized voltage values, as shown in Table 3. The com-
parison chart of the corresponding voltage values is shown
in Fig. 6. Some similar conclusions with IEEE39-bus system
can be drawn: 1) Three optimization approaches can restore
the PQ nodes voltage to the normal range. 2) The deviation
between each node voltage value and the rated voltage value:
the standard PSO algorithm is the smallest, and NSGA-II is
very close to the approach proposed in this paper. Therefore,

FIGURE 6. Comparison chart of PQ nodes voltage values.

FIGURE 7. Comparison chart of Pareto optimal frontier.

TABLE 4. Extremum of two objective functions.

the proposed approach can still adjust the voltage to the
normal range in a larger system, indicating that the approach
has excellent voltage regulation capability.

Table 4 shows the extreme values of the two objective
functions obtained by three optimization approaches. The
Pareto optimal frontier comparison chart of three approaches
is shown in Fig. 7. According to Table 4 and Fig. 7, the
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minimum values of the active power loss and the static
voltage stability index obtained by the proposed algorithm
are 30.0075MW and 0.004314, respectively. We can obtain
the following conclusions: 1) Compared with the other two
approaches, the proposed approach can achieve a smaller
objective function value. 2) The Pareto optimal frontier
obtained by the proposed approach is more ideal. Therefore,
even in a large system, the proposed approach can still explore
and obtain a better value of the objective function. Mean-
while, it obtains a more ideal Pareto optimal frontier. In a
word, the proposed approach has excellent reactive power
optimization capability.

Finally, with the proposed optimal solution selection
approach, a pair of solutions considering both the active
power loss and the static voltage stability is obtained:
f1 = 30.6323 MW, f2 = 0.004314 MW.

V. CONCLUSION AND FUTURE WORK
This paper proposes an improved PSO algorithm based on the
ε-greedy strategy. It significantly explores the possibility of
optimal solution in local space at the early stage of iteration,
in addition, it mitigates the tendency to fall into the local
optimal solution at the later stage. Meanwhile, in order to
solve the multi-objective reactive power optimization model,
this paper introduces an algorithm combining the Pareto
archive algorithm and the improved PSO algorithm. The sim-
ulation results verify that the proposed approach can be well
applied to the multi-objective reactive power optimization
of the power system. It not only restores the nodes voltage
to the normal range, but also explores to achieve the better
objective function value, which can significantly reduce the
active power loss and improve the static voltage stability of
the system.

The Pareto optimal solution selection problem is solved by
minimizing the sum of the difference between each objective
function and its optimal solution. The obtained optimal solu-
tion considers the performance of each objective function. For
the decision-maker, it provides a good basis for the selection
of the optimal solution.

The improved PSO algorithm enables few particles to ran-
domly explore the local space at the early stage of iteration
and global space at the later stage of iteration. In the future
work, it is necessary to study that each particle can explore
more intelligently, thereby further improving the efficiency
of the particles for the optimal solution.

REFERENCES
[1] Q. Guo, H. Sun, M. Zhang, J. Tong, B. Zhang, and B. Wang, ‘‘Optimal

voltage control of PJM smart transmission grid: Study, implementation,
and evaluation,’’ IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1665–1674,
Sep. 2013.

[2] M. Niu, N. Z. Xu, H. N. Dong, Y. Y. Ge, Y. T. Liu, and H. T. Ngin,
‘‘Adaptive range composite differential evolution for fast optimal reactive
power dispatch,’’ IEEE Access, vol. 9, pp. 20117–20126, Feb. 2021.

[3] M. H. Hassan, S. Kamel, M. A. El-Dabah, T. Khurshaid, and
J. L. Dominguez-Garcia, ‘‘Optimal reactive power dispatch with time-
varying demand and renewable energy uncertainty using Rao-3 algo-
rithm,’’ IEEE Access, vol. 9, pp. 23264–23283, Feb. 2021.

[4] M. Bagheri, V. Nurmanova, O. Abedinia, and M. S. Naderi, ‘‘Enhancing
power quality in microgrids with a new online control strategy for DSTAT-
COM using reinforcement learning algorithm,’’ IEEE Access, vol. 6,
pp. 38986–38996, Jul. 2018.

[5] W. Wang, N. Yu, Y. Gao, and J. Shi, ‘‘Safe off-policy deep reinforcement
learning algorithm for volt-VAR control in power distribution systems,’’
IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3008–3018, Jul. 2020.

[6] J. Duan, D. Shi, R. Diao, H. Li, Z. Wang, B. Zhang, D. Bian, and
Z. Yi, ‘‘Deep-reinforcement-learning-based autonomous voltage control
for power grid operations,’’ IEEE Trans. Power Syst., vol. 35, no. 1,
pp. 814–817, Jan. 2020.

[7] M. Zhang and Y. Li, ‘‘Multi-objective optimal reactive power dispatch of
power systems by combining classification-based multi-objective evolu-
tionary algorithm and integrated decision making,’’ IEEE Access, vol. 8,
pp. 38198–38209, Mar. 2020.

[8] K. Ayan and U. Kılıç, ‘‘Artificial bee colony algorithm solution for optimal
reactive power flow,’’ Appl. Soft Comput., vol. 12, no. 5, pp. 1477–1482,
May 2012.

[9] M. Basu, ‘‘Multi-objective optimal reactive power dispatch using multi-
objective differential evolution,’’ Int. J. Electr. Power Energy Syst., vol. 82,
pp. 213–224, Nov. 2016.

[10] H. Zhou, Y. Zhang, W. Duan, and H. Zhao, ‘‘Nonlinear systems modelling
based on self-organizing fuzzy neural network with hierarchical pruning
scheme,’’ Appl. Soft Comput., vol. 95, no. 10, pp. 1–17, Oct. 2020.

[11] D. Raz andY. Beck, ‘‘An operational approach tomulti-objective optimiza-
tion for volt-VAr control,’’ Energies, vol. 13, no. 22, p. 5871, Nov. 2020.

[12] Z. Wang, J. Wang, B. Chen, M. M. Begovic, and Y. He, ‘‘MPC-based
voltage/var optimization for distribution circuits with distributed genera-
tors and exponential load models,’’ IEEE Trans. Smart Grid, vol. 5, no. 5,
pp. 2412–2420, Sep. 2014.

[13] J. Castro, M. Saad, S. Lefebvre, D. Asber, and L. Lenoir, ‘‘Coordinated
voltage control in distribution network with the presence of DGs and
variable loads using Pareto and fuzzy logic,’’ Energies, vol. 9, no. 2, p. 107,
Feb. 2016.

[14] N. Srinivas and K. Deb, ‘‘Multiobjective optimization using nondominated
sorting in genetic algorithms,’’ IEEE Trans. Evol. Comput., vol. 2, no. 3,
pp. 221–248, Sep. 1994.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[16] H. Li and Q. Zhang, ‘‘MOEA/D: A multi-objective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[17] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, ‘‘A survey of multi-
objective evolutionary algorithms based on decomposition,’’ IEEE Trans.
Evol. Comput., vol. 21, no. 3, pp. 440–462, Jun. 2017.

[18] H. Zhou and J. Qiao, ‘‘Multiobjective optimal control for wastewater treat-
ment process using adaptive MOEA/D,’’ Int. J. Speech Technol., vol. 49,
no. 3, pp. 1098–1126, Mar. 2019.

[19] E. Zitzler and L. Thiele, ‘‘Multiobjective evolutionary algorithms: A com-
parative case study and the strength Pareto approach,’’ IEEE Trans. Evol.
Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[20] E. Zaenudin and A. I. Kistijantoro, ‘‘PSPEA2: Optimization fitness and
distance calculations for improving strength Pareto evolutionary algorithm
2 (SPEA2),’’ in Proc. Int. Conf. Inf. Technol. Syst. Innov., Bandung,
Indonesia, Oct. 2016, pp. 1–5.

[21] J. Knowles and D. Corne, ‘‘The Pareto archived evolution strategy: A new
baseline algorithm for Pareto multiobjective optimisation,’’ in Proc. Congr.
Evol. Comput., Washington, DC, USA, 1999, pp. 98–105.

[22] W. Zhang and Y. Liu, ‘‘Multi-objective reactive power and voltage control
based on fuzzy optimization strategy and fuzzy adaptive particle swarm,’’
Int. J. Electr. Power Energy Syst., vol. 30, no. 9, pp. 525–532, Nov. 2008.

[23] P. K. Roy, S. P. Ghoshal, and S. S. Thakur, ‘‘Optimal VAR control for
improvements in voltage profiles and for real power loss minimization
using biogeography based optimization,’’ Int. J. Electr. Power Energy Syst.,
vol. 43, no. 1, pp. 830–838, Dec. 2012.

[24] X. Zhuansun, A. Zhu, J. Wu, T. Han, and Y. Chen, ‘‘Many-objective
reactive power optimization using particle swarm optimization algorithm
based on Pareto entropy,’’ in Proc. IEEE PES Asia–Pacific Power Energy
Eng. Conf., Xi’an, China, Oct. 2016, pp. 923–928.

[25] P. A. Jeyanthy and D. Devaraj, ‘‘Multi-objective genetic algorithm for
reactive power optimization inclusing voltage stabilityy,’’ Int. J. Eng. Sci.
Technol., vol. 2, no. 7, pp. 2715–2729, Jul. 2010.

65658 VOLUME 9, 2021



X. Liu et al.: Multi-Objective Reactive Power Optimization Based on Improved Particle Swarm Optimization

[26] K. Lenin, B. R. Reddy, and M. Suryakalavathi, ‘‘Hybrid tabu search-
simulated annealing method to solve optimal reactive power problem,’’ Int.
J. Electr. Power Energy Syst., vol. 82, pp. 87–91, Nov. 2016.

[27] D. Silas Stephen and P. Somasundaram, ‘‘Solution for multi-objective
reactive power optimization using fuzzy guided tabu search,’’ Arabian J.
Sci. Eng., vol. 37, no. 8, pp. 2231–2241, Dec. 2012.

[28] L. Srivastava andH. Singh, ‘‘Hybridmulti-swarm particle swarm optimiza-
tion based multi-objective reactive power dispatch,’’ IET Gener. Transm.
Distrib., vol. 9, no. 8, pp. 727–739. May 2015.

[29] F. R. C. Soldevilla and F. A. C. Huerta, ‘‘Minimization of losses in power
systems by reactive power dispatch using particle swarm optimization,’’ in
Proc. Int. Univ. Power Eng. Conf., Bucharest, Romania, Sep. 2019, pp. 1–5.

[30] Q. Huang, J. Tang, H. Li, and J. Nie, ‘‘Reactive power optimization for dis-
tribution network based on improved bacterial chemotaxis particle swarm
optimization,’’ in Proc. Int. Symp. Comput. Intell. Design, Hangzhou,
China, Dec. 2019, pp. 189–191.

[31] S. Gao, H. Wang, C. Wang, S. Gu, H. Xu, and H. Ma, ‘‘Reactive power
optimization of low voltage distribution network based on improved par-
ticle swarm optimization,’’ in Proc. Int. Conf. Electr. Mach. Syst., Sydney,
NSW, Australia, Aug. 2017, pp. 1–5.

[32] P. J. Angeline, ‘‘Evolutionary optimization versus particle swarm optimiza-
tion: Philosophy and performance differences,’’ in Proc. Int. Conf. Evol.
Program., in Lecture Notes in Computer Science, San Diego, CA, USA,
1998, pp. 601–610.

[33] Y. Shi and R. Eberhart, ‘‘A modified particle swarm optimizer,’’ in Proc.
IEEE Int. Conf. Evol. Comput. (ICEC), Anchorage, AK, USA, 1998,
pp. 69–73.

[34] Y. Shi and R. C. Eberhart, ‘‘Parameter selection in particle swarm optimiza-
tion,’’ in Proc. Int. Conf. Evol. Program., in Lecture Notes in Computer
Science, San Diego, CA, USA, 1998, pp. 591–600.

[35] R. C. Eberhart and Y. Shi, ‘‘Comparing inertia weights and constriction
factors in particle swarm optimization,’’ in Proc. Congr. Evol. Comput.,
La Jolla, CA, USA, 2002, pp. 84–88.

[36] A. Chatterjee and P. Siarry, ‘‘Nonlinear inertia weight variation for
dynamic adaptation in particle swarm optimization,’’ Comput. Oper. Res.,
vol. 33, no. 3, pp. 859–871, Mar. 2006.

[37] A. S. Mohais, C. Ward, and C. Posthoff, ‘‘Randomized directed neigh-
borhoods with edge migration in particle swarm optimization,’’ in Proc.
Congr. Evol. Comput., Portland, OR, USA, 2004, pp. 548–555.

[38] T. Peram, K. Veeramachaneni, and C. K. Mohan, ‘‘Fitness-distance-ratio
based particle swarm optimization,’’ in Proc. IEEE Swarm Intell. Symp.,
Indianapolis, IN, USA, Apr. 2003, pp. 174–181.

[39] T. Zhang and G. Geng, ‘‘Reactive power optimization for medium voltage
distribution network based on improved particle swarm optimization,’’
Power Syst. Technol., vol. 36, no. 2, pp. 158–162, Feb. 2012.

[40] S. Cao, X. Ding, Q.Wang, and B. Chen, ‘‘Opposition-based improved PSO
for optimal reactive power dispatch and voltage control,’’Math. Problems
Eng., vol. 2015, pp. 1–8, Jan. 2015.

[41] R. Poli, W. B. Langdon, and O. Holland, ‘‘Extending particle swarm opti-
misation via genetic programming,’’ in Proc. Eur. Conf. Genetic Program.,
in Lecture Notes in Computer Science, Lausanne, Switzerland, 2005,
pp. 291–300.

[42] J. Liu, P. Li, G. Wang, Y. Zha, J. Peng, and G. Xu, ‘‘A multitasking electric
power dispatch approach with multi-objective multifactorial optimization
algorithm,’’ IEEE Access, vol. 8, pp. 155902–155911, Aug. 2020.

[43] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE
Int. Conf. Neural Netw. Conf., Piscataway, NJ, USA, Nov./Dec. 1995,
pp. 1942–1948.

[44] X. Guo and Y. C. Fang, Deep Understanding Reinforcement Learning: An
Introduction to Principles. Beijing, China: PHEI, 2018, pp. 28–31.

[45] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, ‘‘MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,’’ IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 12–19, Feb. 2011.

[46] Matpower. Accessed: Jun. 20, 2019. [Online]. Available: https://matpower.
org/

XIAOFEI LIU was born in Henan, China, in 1989.
He received the B.S. degree in electrical engi-
neering from Tarim University, Xinjiang, China,
in 2014, and the M.Sc. degree in electrical engi-
neering from the Xi’an University of Science and
Technology, Xi’an, China, in 2017. He is cur-
rently pursuing the Ph.D. degreewith the School of
Electrical Engineering, Beijing Jiaotong Univer-
sity, China. His research interests include reactive
power optimization and voltage control.

PEI ZHANG (Senior Member, IEEE) received
the Ph.D. degree from the Imperial College of
Science, Technology and Medicine, University
of London, U.K. He was the Director of the
Smart Grid in Resource Group of Accenture and
the Program Manager leading the Power System
Analysis, Operation and Planning Group, Electric
Power Research Institute (EPRI), USA. He is cur-
rently the Vice Dean with the Hanergy School of
Renewable Energy, Beijing Jiaotong University.

His research interests include power system stability analysis and application
of advanced IT technologies to power systems.

HUI FANG was born in Chongqing, China,
in 1988. She received the Ph.D. degree in electrical
engineering from Southwest Jiaotong University,
Sichuan, China, in 2016. She is currently an Elec-
trical Engineer with State Grid Chongqing Electric
Power Research Institute. Her research interest
includes power system analysis and optimization.

YINGLU ZHOU was born in Chongqing, China,
in 1974. She received the M.Sc. degree in elec-
trical engineering from Chongqing University,
Chongqing, in 2003. She is currently a Senior
Electrical Engineer with State Grid Chongqing
Electric Power Company. Her research interest
includes power system analysis and optimization.

VOLUME 9, 2021 65659


