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ABSTRACT Crowd counting is considered as the essential computer vision application that uses the
convolutional neural network to model the crowd density as the regression task. However, the vision-based
models are hard to extract the feature under low-quality conditions. As we know, visual and audio are used
widely as media platforms for human beings to touch the physical change of the world. The cross-modal
information gives us an alternative method of solving the crowd counting task. In this case, in order to solve
this problem, a model named the Audio-Visual Multi-Scale Network (AVMSN) is established to model the
unconstrained visual and audio sources for completing the crowd counting task in this paper. Based on the
Feature extraction and Multi-modal fusion module, in order to handle the objects of various sizes in the
crowd scene, the Sample Convolutional Blocks are adopted by the AVMSN as the multi-scale Vision-end
branch in the Feature extraction module to calculate the weighted-visual feature. Besides, the audio, which
is the temporal domain transformed into the spectrogram information and the audio feature is learned by
the audio-VGG network. Finally, the weighted-visual and audio features are fused by the Multi-modal
fusion module, which adopts the cascade fusion architecture to calculate the estimated density map. The
experimental results show the proposed AVMSN achieves a lower mean absolute error than other state-of-art
crowd counting models under the low-quality conditions.

INDEX TERMS Multi-scale architecture, audio-visual model, cascade fusion, crowd counting.

I. INTRODUCTION
Crowd counting is taken as the computer-vision task, which
is used in various fields such as intelligent transportation [1],
industrial manufacturing [2] and security systems [3]. Dif-
ferent from the other computer vision tasks such as image
classification [4] and scene understanding [5] and so on,
the crowd counting models equipped by the convolutional
neural network (CNN) should recognize arbitrarily sized peo-
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ple in various situations, including scenes with the extreme
conditions such as high-level noise, low-level illumination
and high-level occlusion. Consequently, the performance of
the vision-driven model can be easily broken and maybe not
very appropriate to deal with the crowd counting problem
under extreme conditions.

As for investigations in the field of neurobiology, humans
mainly depend on ears and eyes to build their perception
systems for listening to and looking at significant information
such as lip reading [6] and reasoning [7] the world’s wild
environment. According to the neurobiology phenomenon,
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for example, the louder sound denotes more people in the
scene. The auditory information can be adopted as the aux-
iliary cue for counting the number of objects in one crowd
scene. Meanwhile, the hardware devices such as smart-
phones, digital cameras and video surveillance equipment can
provide a cheaper way to obtain audio-visual information.

In this paper, a simple audio-visual crowd counting model,
namely the Audio-Visual Multi-Scale Network (AVMSN)
is proposed to count the objects by multi-modal informa-
tion. Unlike the traditional vision-based learning mechanism,
the image and audio sources are incorporated into the Feature
extraction module based on the two-stream learning frame-
work, which consists of the Vision-end and the Audio-end
branches to extract the features. For the Vision-end branch,
in order to model the density map under various scene geome-
tries, the multi-scale CNN formation is constructed to extract
the feature from visual information. As for the Audio-end
branch, the auditory information is converted into the spec-
trogram format and then incorporated into the Audio-VGG
network to extract the spectrogram feature.

The above merits are attributed to the following three
contributions of the AVMSN:

• the two-stream framework, which contains the Vision-
end and Audio-end branches of the Feature extraction
module, is adopted in the AVMSN to deal with the crowd
count tasks.

• the Vision-end branch in the Feature extraction module
uses the multi-scale CNN architecture constructed by
the different sizes of the average pooling procedure to
extract the weighted-visual feature with respect to the
visual channel.

• the Multi-modal fusion module, which adopts the cas-
cade fusion architecture, combines the convolution and
full connection layers to fuse the weighted-visual and
audio features for further calculating the estimated den-
sity map.

The rest of this paper is organized as follows: In Sec. II,
the methodology of the AVMSN is described. In Sec. III, the
configurations of network architecture for the AVMSN, con-
trast baselines and corresponding benchmarks are elaborated.
Sec. IV shows the qualitative and quantitative experiment
results when the AVMSN is applied to compare with the other
contrast baselines under the low-quality conditions such as
high-level noise, low-level illumination and high-level occlu-
sion conditions. Finally, the conclusions and future work are
given in Sec. V.

II. RELATED WORK
A. DETECTION-BASED COUNTING
The early works about counting mainly focus on the
detection-based mechanisms such as the joint likelihood
model [8], scale-invariant feature transform (SIFT) [9] and
part-template tree [10] and so on. The approaches men-
tioned above tend to detect the targets and count them with
hand-crafted features following the object detection mech-

anism. However, the performance of these detection-based
methods always has limitations on the highly congested scene
which contains the small-size and irregular objects.

B. CNN-BASED COUNTING
With the development of deep learning [11]–[14], the CNN-
based methods [15]–[18] can transform the highly congested
images into the density-estimation problem. The point-level
labeling is adopted to annotate the objects, and the density
map is generated following the Gaussian filter [17]. The
convolution neural networks are utilized to extract the local
features of the pixels andmodel the ground truth densitymaps
to count the objects in images. For example, theMulti-column
CNN (MCNN) [15] was put forward when using the cas-
cade architecture of the CNN to regress the density map.
The reverse perspective network (RPN) [16] was designed
by using perspective estimators and coordinate transform-
ers through the meta-learning for accomplishing the crowd
counting task. The CODA [17] provided the alternative way
which uses adversarial learning to match the predicted den-
sity map and the ground truth density map. Although the
CNN-based methods can yield good performance on the
objects that spread uniformly in images by the end-to-end
modeling procedure, the performances of these models are
severely influenced by some of the extreme conditions such
as high noise, occlusion, and low illumination [18].

C. AUDIO-VISUAL MODEL
The audio-visual model is based on the two-stream frame-
work that incorporates the audio and visual inputs respec-
tively to deal with the computer vision tasks. Ephrat [19] used
the visual modal as the auxiliary modal to localize the desired
sound objects in videos. The PiexelPlayer [20] separated the
spatial positions of the sound objects and freely adjusted the
volume of each sound source at the pixel level. Gao [21]
adopted the deep multi-instance multi-label (MIML) learning
framework to construct the audio-visual model when dealing
with the multiple labels for each time step to separate the
sound sources. As for the recent researches [19]–[21] about
the audio-visual modal information, they can provide us with
the theoretical inspiration for dealingwith the crowd counting
problem.

III. METHOD
In this section, the methodology of the AVMSN is pre-
sented. Sec. III. A shows the computation framework for the
AVMSN; the Sampling Convolutional blocks of the Feature
extraction module and the Multi-modal module are elabo-
rated in Sec. III. B and Sec. III. C respectively, while the loss
function of the AVMSN is discussed in Sec. III. D.

A. ARCHITECTURE OF THE AVMSN
The two-stream framework [22], [23] is adopted by the
Feature extraction module of the AVMSN, and audio-visual
sources can be incorporated as the input channel for the
AVMSN. The architecture of the AVMSN is depicted
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FIGURE 1. The architecture of the AVMSN. The Feature extraction and Multi-modal fusion modules are contained in the AVMSN to calculate the
estimated density map. In the feature extraction module of the Vision-end branch, the weighted-visual feature is extracted following the Visual-VGG
and Sampling Convolutional Blocks (SCBs) procedures. In the feature extraction module of the audio-end branch, the Audio-VGG net is employed to
extract the audio feature. Finally, the weighted-visual feature and the audio feature are incorporated into the Multi-modal module to calculate the
predicted density map.

in Fig. 1, from which it can be seen that there are Fea-
ture extraction and Multi-modal fusion modules contained
in the AVMSN. The Feature extraction module consists
of the Vision-end and Audio-end stream branches. As for
the Vision-end branch, the front-end feature is extracted
by the popular Visual-VGG [24] network. In this paper,
the Visual-VGG contains the first 10 convolution layers of
the VGG16 network benchmarked on the ImageNet [24]
with 3 × 3 kernel sizes. The main motivation to use the
VGG16 as the backbone is to limit the network complex-
ity since the small sizes of convolution filters are used in
all layers of VGG16. However, as for the architecture of
Resnet [25] and Xception [26], the various sizes of the con-
volution filters such as 1∗1, 3∗3 and 5∗5 are employed in
the network, and the computation burden of the network is
heavier than that of VGG16. Then, the front-end feature is
incorporated into different blocks through several Sampling
Convolutional Blocks (SCBs) to calculate the multi-scale
feature. In order to retain more background information of
the front-end feature, the average pooling layer is adopted.
The SCBs are designed to furtherly extract the visual features
following the multi-scale architecture from the front-end
feature. The responsibility of the multi-scale architecture
belonging to the SCBs is applied to deal with the scale,
diversity and resolution issues between the different scenes
for the crowd counting problem. After being processed by
several SCBs, the front-end feature is concatenated and trans-
formed into a multi-scale feature. After that, the multi-scale
feature is linked with the front-end feature to calculate the
multi-scale weights by the element-wise product operator.
The multi-scale weights are added for the purpose of weight-
ing the front-end feature to calculate the weighted-visual
feature. The configuration for the Vision-end branch is shown
in Tab. 1. Considering the Audio branch, the temporal domain
of the audio sources can be transformed into the frequency
domain of the audio sources following the Short-Time Fourier
Transform (STFT) [27]. The audio feature is extracted fol-
lowing the 16-layer Audio-VGG network [28] that contains

some 3 × 3 convolution kernel sizes and 3 full connection
layers where hidden units are defined as 4096, 4096 and 128
in the Audio-end branch. The configuration for the Audio-
end branch is shown in Tab. 2. In this paper, after being pro-
cessed by the Audio-end branch, the obtained dimension of
each audio feature is 128. Subsequently, the weighted-visual
and audio features are incorporated into the Multi-modal
fusion module. In the Multi-modal fusion module, the cas-
cade fusion architecture is adopted to fuse the audio-visual
feature and then output the estimated density map. Finally,
the estimated density map can be optimized following the
simple least square loss function.

B. SAMPLING CONVOLUTIONAL BLOCK
In order to make the AVMSN enable to handle the huge
variation of the resolutions under the dense crowd scenes,
the front-end feature from Visual-VGG [24] is fed to the 4
blocks belonging to the multi-scale architecture of the Sam-
pling Convolutional Blocks that are adopted by the AVMSN.
Supposing the visual sources and the front-end feature are
defined as I and fg respectively in this paper, the front-end
feature can be calculated as follows:

fg = VGG(I ) (1)

In the actual scenario, one large size of the object that can
cover the areas in density maps is equal to the summation
of some small sizes of the objects. Hence, the high-density
areas in the density maps do not denote more objects in the
crowd counting scene. Inspired by the pyramid structure of
the network [29], [30], it can be found that the Sampling
Convolutional Block (SCB) is proposed in the AVMSN, and
the different sizes of the average pooling layers are adopted
to model the different sizes of the crowd in the front-end
feature. In the SCB, the average pooling layer is adopted for
the purpose of retaining more background information of the
front-end feature. In this paper, the pooling template sizes
of the average pooling layers are predefined as 1, 2, 3 and
6 regarding the 4 blocks of the SCBs. As shown in Fig. 2,
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FIGURE 2. The architecture of the sampling convolutional blocks. The front-end feature from the Visual-VGG is processed by the
multi-scale architecture which contains the average pooling and convolutional and upsample layers of four blocks. Then the weighting
summation procedure is adopted by the SCB to calculate the weighted-visual feature.

TABLE 1. The configuration of the Vision-end branch that contains the
Visual-VGG and several SCBs for the AVMSN.

it is supposed that the height and the width dimension of
the front-end feature fg are H × W and the pooling size of
the average pooling layers Lavp for the ith block of the SCB
is pi. After being processed by the Lavp in different SCBs,
the height and width of the features become 1×1, 2×2, 3×3

TABLE 2. The configuration of the Audio-end branch that contains the
Audio-VGG and full connection layers for the AVMSN.

and 6× 6. The convolution layer Lcov with the convolutional
size θi is applied to calculate these features following the Lavp
to build the multi-scale architecture of the SCB. Then, the
Upsample Layer Lup is adopted in the multi-scale architecture
to restore the multi-scale feature fi, which is kept as the same
size as the front-end feature fg. In this paper, the bilinear
interpolation mechanism is adopted in the Lup. Hence, the fi
for different blocks of the SCBs can be denoted as follows:

fi = Lup(Lcov(Lavp(fg,pi),θi)) (2)
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FIGURE 3. The architecture of the Multi-modal fusion module. The architecture of the Multi-modal fusion module is
constructed by the six levels of the cascade fusion architecture which contains the convolution and full connection layers for
each level. The mechanism is applied to link the convolution and full connection layers to calculate the fusion feature. Finally,
fusion feature is processed by the convolution layer to calculate the Estimated density map.

Then the multi-scale weight fw is calculated to model
the difference between the position and their neighbors of the
objects for the visual sources. In order to link the fg and the
fi, the fi from different blocks of SCBs is concatenated to
calculate the fw as shown below:

f(i)w = Sigmoid(Lcov(fi ⊗ fg, θi)) (3)

From (3), it can be seen that the multi-scale weight is
obtained after the element-wise product operator ⊗, the
convolutional layer and the Sigmoid operator. The Sigmoid
operator is adopted to score the importance of different SCB
channels. Then the multi-scale weights are applied to calcu-
late the weighted-visual feature f as follows:

f =
4∑

i=1

f(i)w fi (4)

As described in Fig. 2, compared with the 2D dimension
of the density map, the dimension of f is 3D, which is hard
to fuse the weighted-visual and audio feature. In order to
transform the 3D dimension of f to the same size of the
density map, the f is incorporated into the multi-modal fusion
module in the AVMSN. In Section 2.3, the multi-modal
fusion module of the SCB is described.

C. MULTI-MODAL FUSION MODULE
The architecture of the Multi-modal fusion module is drawn
in Fig. 3. As shown in Fig. 3, the multi-modal fusion mod-
ule adopts the cascade fusion architecture that contains 6
fusion levels of the convolutional and full connection. In
Fig. 3, the convolution and full connection layers in six
fusion levels are denoted as L(1)

conv, L
(2)
conv, . . . ,L

(6)
conv andFC (1),

FC (2), . . . ,FC (6) respectively. Supposing the hidden units for
the ith full connection layer are denoted as h(i). For the first
layer of the Multi-modal fusion module, the convolutional
layer is applied to filtering the weighted-visual feature f and
the full connection layer is applied to the audio feature fa to

calculate the fusion feature fat as shown below:

f(1)
at
= L(1)

conv(f )FC
(1)

1: h
(1)
2

(0(fa))+ FC
(1)
h(1)
2 :h

(1)
(0(fa)) (5)

Operator 0 shows the unsqueeze and extension operator,
which keeps the fa as the same size as the f. According to
Eq. 5, when the level stage is greater than 1, the fat is con-
ducted as the input of the next level stage and concatenated
with the audio feature fa. The number of fusion levels is
randomly predefined, and besides, it could be set as other
numbers of the fusion level. Eq. (5) shows that number of
units in the convolution layer is defined as the half size
for full connection for each layer. Through several levels of
the cascade architecture, the fusion feature fat finally passes
through the convolution layer as the output layer to calculate
the predicted density map Dpred .

D. LOSS FUNCTION OF THE AVMSN
In this paper, the loss function for the AVMSN uses the least
square loss function to learn the ground truth density mapDgt

as follows:

loss =
∥∥∥Dgt − Dpred

∥∥∥2
2

(6)

To minimize the loss function of the AVMSN, the Adam
optimization [31] method with batch size 32 for the training
dataset is adopted. In order to obtain the Dgt, the point-wise
method is used to calibrate the 2D positions of the counting
objects in the images. TheDgt is generated following the fixed
Gaussian Kernel [32], and the sum of the density maps equals
the crowd count. Supposing the total 2D points are C and
the computation concerning the Dgt of the image I equals the
summation of the normal distribution of calibration points,
then there is:

Dgt (p|I ) =
C∑
c=1

N (p|µ = P(c), σ 2) (7)
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FIGURE 4. Some examples from DISCO. The left panes show the original images and the right panes show the sound
waves for the left images.

In this paper, the mean absolute error (MAE) is adopted as
the computing metrics as follows:

MAE =
1
N

N∑
i=1

∣∣∣Pi − P̂i∣∣∣ (8)

where N denotes the number of the images, while Pi and
P̂i are the number of the estimated and ground-truth crowd
objects, respectively.

IV. EXPERIMENT EXPERIMENTAL SETUP
A. TRAINING DETAILS AND DATASETS
In terms of the audio source for the AVMSN, the hot length
and sliding window size for the STFT are defined as 256 and
1022 for the frequency domain. In addition to that, as for the
visual source for the AVMSN, each static image is cropped
into the 224 × 224 size from different inputs. The image
enhancement operation is executed following the flipping,
brightness, and color enhancement. Besides, the learning
rates for sub-modules such as Audio-VGG, Visual-VGG and
multi-modal fusion modules are defined as 0.0005, 0.0005
and 0.002 accordingly. The maximum training epoch is set as
500. For each epoch, the several trained models are evaluated
on the validation dataset, and one of the best performances
is left behind. The AVMSN is implemented by the PyTorch
platform on the TITAN-X GPU processor under Windows
Operating System.

In order to evaluate the performance of the model under the
high-noise, low-illumination and high-occlusion conditions,
the AVMSN is applied to the DISCO [29] dataset. Some
examples for the DISCO dataset are shown in Fig. 4. The
visual sources are drawn in the left pane, and corresponding
audio sources are drawn in the right panel.

The visual sources for the DISCO dataset are collected
by the HDR-CX900E of the Sony camera, which is used as
the benchmark in other works [29]. The resolution of each
image is 1920 × 1080. The audio sources are subsampled
by 48000Hz, and the frame number equals 25. The DISCO
dataset consists of 8095 images and corresponding audios.
The average, minimum and maximum number of the crowd

TABLE 3. Dataset specifications.

objects in DISCO are 87.99, 1 and 709 accordingly. When
compared with the famous Crowd counting benchmarks such
as SHHA, UCF-QNRF and SHHB [30], [31], the statistics
about illumination and crowd degree are calculated in Tab. 3
that shows the range of the counting numbers is [15], [33]
more widespread than other datasets for DISCO datasets.

B. CONTRASTS
In order to evaluate the audio-visual model for further model-
ing the crowd scene, several state-of-art vision-based count-
ing models are used as contrast baselines for the AVMSN:
MCNN [15]:Different from the AVMSN, the MCNN only

adopts the images as the visual source of the network. One
image is incorporated into the ‘L, M, S’ column branches by
different sizes of the convolutional kernel sizes. For the L
column, the convolutional kernel sizes are set as 9× 9, 7× 7,
7× 7 and 7× 7. For the M column, the convolutional kernel
sizes are set as 7× 7, 5× 5, 5× 5 and 5× 5. For column S,
the convolutional kernel sizes are set as 5 × 5, 3 × 3, 3 × 3
and 3 × 3. Then, the output concerning the last layers of the
three branches is merged into the feature maps.
CAN [17]: In the CAN model, the multi-scale contextual

framework that contains the front-end network, multi-scale
network and back-end decoder is proposed. Different from
the AVMSN, the perspective map information for the crowd
can also be modelled as an addition branch to enhance the
performance and then be inserted into the CAN model.
CSRNet [34]: The CSRNet uses the Visual-VGG as the

front-end network to extract the visual feature and dilated
convolution layer as the back-end network to extract the
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FIGURE 5. The illumination and crow statistics. Fig. 5(a) draws the illumination statistics of DISCO, SHHA, UCF-QNRF and SHHB. Fig. 5(b)
draws the crowd statistics of DISCO, SHHA, UCFQNRF and SHHB.

saliency information of the density maps. The dilated convo-
lution layer helps the CSRNet to model the highly congested
scenes.

C. EXPERIMENTAL RESULTS
In order to evaluate the performance of the AVMSN under
low-quality conditions such as the images corrupted from the
Gaussian noise, shrinking of the brightness and shrinking of
the occlusion. In this paper, the hyperparameters rate σ, r, c
are adopted to denote the decay rates of the noise, illumina-
tion and occlusion, respectively.

1) THE IMPORTANCE OF AUDIO-END BRANCH
Theoretically speaking, the Audio-Visual Multi-Scale Net-
work (AVMSN) introduces the audio processing branch
against extreme conditions because the audio can be used as
the auxiliary modal of visual images to present the crowd
scene when images are decayed by the extreme conditions.
In other words, the audio feature extracted by theAudio-VGG
is kept the same under the different levels of extreme condi-
tions. According to the content of Section III. A of the revised
manuscript, the predicted density map Dpred is calculated
from themulti-scale feature fi and audio feature fa. Therefore,
the quality of the Dpred can be employed to explicate how
the AVMSN can be against extreme conditions. In order to
demonstrate our description, the Structural SIMilarity metric
(SSIM) [35] is utilized to measure the similarity between the
predicted and ground truth density maps (Dpred and Dgt) of
the crowd scene.

SSIM =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
(9)

where the l(x, y), c(x, y) and s(x, y) denote the luminance,
contrast and structure degrees respectively, while α, β and γ
are the parameters that control the mean and variance.

Fig. 6 shows the visual image decayed by different
levels of noise and illumination, respectively. Besides,
the (AVMSN-V) denotes the AVMSN only dominated by
the multi-scale architecture of the Sampling Convolutional
Blocks and without the audio processing branch. From

FIGURE 6. The comparison between the AVMSN and AVMSN-V with the
decay rate of the noise 6(a) and illumination 6(b).

Fig. 6(a) and (b), It can be seen that the similarity between
the Dpred and Dgt that achieved by the AVMSN is better than
that achieved by the AVMSN-V.

2) THE QUANTITATIVE AND QUALITATIVE ANALYZATION
UNDER THE NOISY CONDITION
In this section, the performance of the AVMSN is evaluated
under the high-level noise condition. Fig. 7 shows the quanti-
tative performance of the five example images selected from
the DISCO, and the performances after 200 training epochs
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FIGURE 7. The comparisons about crowd counting among four models.
The performances for the AVMSN, CSRNet, MCNN, and CAN under the
decay rate 0.2 of the Gaussian noise.

TABLE 4. The comparisons about crowd counting among four models.
The performances for the AVMSN, CSRNet, MCNN, and CAN with the
decay rate of the noise from 0-0.8.

for the AVMSN, CSRNet, MCNN and CAN are depicted
in the third, fourth, fifth and sixth columns. Furthermore,
the decay rate σ of the Gaussian noise is predefined as 0.2.
The noisy images are depicted in the second column.

The numbers with red color on the Ground truth density
maps denote the real crowd counts, while those with black
color are the estimated crowd counts. For example, as shown
in the first row of Fig. 7, it can be seen that the AVMSN
predicts 100.32 numbers in the crowd scene, and it is the
value closest to the ground truth number 104.00. Besides,
estimated crowd counts for the CSRNet, MCNN and CAN
are 71.64, 119.03, 29.58, respectively. From the estimated
density maps of Fig. 7, it can be seen that the performance
of the AVMSN is better than that of other contrast baselines
under the noisy condition.

In order to make a qualitative analysis on the performance
of the AVMSN, the images are learned by models under the
decay rate σ of the noise, which ranges from 0-0.8. The σ
equals 0 denoting the image without suffering any noise. The
performances for the AVMSN, CSRNet, MCNN and CAN
are shown in Tab. 4. The MAE is adopted as the metric and
the performance of the models after the 200 training epochs.
In addition to that, it can be seen that the performance of the
four models is shrunk with an increase in noise decay rate.

FromTab. 4, the performances of the AVMSN and CSRNet
are better to achieve better results when compared with the
CAN and MCNN models for the MAE metric. At the σ
equals to 0, the performance of the AVMSN and CSRNet
is better than that of the AVMSN. When the decay rate of

FIGURE 8. The quantitative visualization about crowd counting among
four models. The performances for the AVMSN, CSRNet, MCNN, and CAN
under the decay rate 0.8 of the illumination.

the noise increased, the performance (from 7.0 to 7.3) of the
AVMSN is not decayed obviously. According to the results
from Tab. 4, the AVMSN is robust to the noisy image. In this
paper, it is believed that the success of the AVMSN’s perfor-
mance under the high-level noise results from the multi-scale
architecture of the Sampling Convolutional Blocks adopted
by the AVMSN. The learning effect for the visual channel of
the Vision-end branch is not easily decayed by the noise.

3) THE QUANTITATIVE AND QUALITATIVE ANALYSIS UNDER
THE LOW ILLUMINATION CONDITION
In this section, the performance of the AVMSN is evaluated
under the low-level illumination condition. Fig. 8 shows the
five example images selected from the DISCO, and the per-
formance after 200 training epochs for AVMSN, CSRNet,
MCNN and CAN are depicted in the third, fourth, fifth and
sixth columns. Furthermore, the decay rate r of the illumina-
tion for each image is predefined as 0.8.

The numbers with red color on the Ground truth density
maps are the real crowd counts, while those with black color
on the estimated densitymaps are the estimated crowd counts.
For example, from the first row of Fig. 8, it can be seen that the
AVMSN predicts 99.95 numbers in the crowd scene, which is
the value closest to the ground truth number 97.00. Besides,
estimated crowd counts for the CSRNet, MCNN and CAN
are 130.62, 132.71, 64.50, respectively. From the estimated
density maps of Fig. 8, it can be seen that the performance
of the AVMSN is better than that of other contrasts under the
low illumination condition.

In order to perform quantitative analysis on the AVMSN,
the images are learned bymodels under the decay rate r of the
illumination control, which ranges from 0-0.8. The r is equal
to 0, which refers to the image without suffering any illumi-
nation decay. The performances for the AVMSN, CSRNet,
MCNN and CAN are shown in Tab. 5. In addition to that, the
MAE is adopted as the metric or the models after 200 training
epochs. Furthermore, it can be seen that the performance of
the four models is shrunk with the illumination decay rate
increase.
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TABLE 5. The comparisons about crowd counting among four models.
The performances for the AVMSN, CSRNet, MCNN, and CAN with the
decay rate of the illumination from 0-0.8.

FIGURE 9. The quantitative visualization about crowd counting among
four models. The performances for the AVMSN, CSRNet, MCNN, and CAN
under the decay rate 0.2 of the occlusion.

FromTab. 5, the performances of the AVMSN and CSRNet
are better when compared with the CAN and MCNN models
for the MAE metric. The results are kept the same with the
quantitative visualization in Fig. 8. As for the comparison
between the AVMSN and CSRNet, when the decay rate
is equal to 0.2 of the illumination for the visual sources,
the performance of the AVMSN is worse than that of the
CSRNet. However, when the decay rate increased (decay
rate equals to 0.8), the performance gap of the AVMSN and
CSRNet becomes smaller than that of the decay rate that is
0.2. It is thought in this study that the success of theAVMSN’s
performance is due to the Audio-end branch is added in the
AVMSN as the auxiliary procedure, and the low-illumination
condition cannot have a severe impact on the audio channel.

4) THE QUANTITATIVE AND QUALITATIVE ANALYSIS UNDER
THE HIGH OCCLUSION CONDITION
In this section, the performance of the AVMSN is evaluated
under the high-level occlusion condition. Fig. 9 shows the five
example images selected from the DISCO, and the perfor-
mances after 200 training epochs for the AVMSN, CSRNet,
MCNN and CAN are depicted in the third, fourth, fifth and
sixth columns. Besides, the decay rate c of the occlusion for
each image is predefined as 0.2 for Fig. 9.

The numbers with red color on the Ground truth density
maps are the real crowd counts, while those with black color
on the estimated densitymaps are the estimated crowd counts.
For example, from the first row of Fig. 9, it can be seen that the
AVMSN predicts 306.47 numbers in the crowd scene, which

TABLE 6. The comparisons about crowd counting among four models.
The performances for the AVMSN, CSRNet, MCNN, and CAN with the
decay rate of the occlusion from 0-0.8.

is the closest value to the ground truth number 303.56. Fur-
thermore, estimated crowd counts for the CSRNet, MCNN
and CAN are 292.34, 213.25, 155.05, respectively. From the
estimated density maps of Fig. 9, it can be found that the
performance of the AVMSN is better than other contrast
baselines under the high-level occlusion condition.

In order to make a quantitative analysis on the performance
of the AVMSN, the images are learned by models under the
decay rate c of the occlusion of the images, ranging from
0-0.8. The c is equal to 0 which means the image without
suffering the occlusion. The performances for the AVMSN,
CSRNet, MCNN and CAN are shown in Tab. 6, and theMAE
is adopted as the metric.

From Tab. 6, it can be seen that the better performances
of the AVMSN and CSRNet are achieved when compared
with the CAN and MCNN models for the MAE metric. As c
equals 0, the comparable performances between the AVMSN
and CSRNet are achieved. The performance of the AVMSN
varies from 13.1 to 30.23 when c ranges from 0 to 0.8.
However, when the decay rate of the occlusion increases, the
performance of the CSRNet is decayed severely.

V. CONCLUSION
In this paper, as the audio-visual model, the AVMSN is
proposed to solve the crowd counting task following the two-
stream learning framework by adopting the visual and audio
sources as the input channel. The Feature extraction module
in the AVMSN fuses the Vision-end and Audio-end branches
to learn the input sources and extract the weighted-visual
features and audio features for them, respectively. As for
the Vision-end branch, ten layers of the VGG network are
adopted to extract the front-end visual feature. In order
to handle the variation of the resolutions under the dense
crowd scenes, the average pooling operator is adopted as
the multi-scale architecture to model front-end features by
four Sampling Convolutional Blocks (SCBs) to calculate the
visual feature. For SCBs, the front-end feature is processed
through the convolution, average pooling and upsample lay-
ers for further calculating the multi-scale features. Then
the multi-scale features from different SCBs are adapted to
the front-end feature by the element-wise product operator
to obtain the multi-scale weights from the VGG network.
Finally, the front-end feature is weighted by the multi-scale
weights to compute the weighted-visual feature.

The size of the weighted-visual feature is 3D-dimensional,
and hard to keep the same dimension with the esti-
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mated density map. After the Feature extraction module,
the Multi-modal fusion is put forward. The weighted-visual
feature passes through the six levels of the cascade architec-
ture belonging to the Multi-modal fusion module. After pro-
cessing through the convolution layer, the estimated density
map is calculated and optimized continuously according to
the ground truth density map.

In this paper, the advantage of introducing the audio-end
branch against high-noise and low-illumination is explored
theoretically. The experiment results from crowd counting
tasks show that the AVMSN can achieve better performance
on the mean absolute error (MAE) metric than other state-
of-the-art works. Furthermore, the experiment results demon-
strate that the AVMSN is characterized by a more accurate
prediction for the crowd numbers than other state-of-art mod-
els under low-quality images.

Overall, the experiment results show that the AVMSN
can adaptively model the content of the audio and visual
sources under low-quality conditions such as high-level
noise, low-level illumination and high-level occlusion con-
ditions. It is expected that our work can give inspiration
to the crowd counting task for unconstrained videos when
introducing the audio modal as the axillary information to
enhance the performance.

Furthermore, the performance of the AVMSN will be
enhanced when the audio modal is fused into the visual
modal. However, for the generation of the density map,
the fixed size of the Gaussian kernel is adopted. Are the
different sizes of kernels suitable for the particular crowd
scene? Our future work will focus on the crowd counting
learning tasks under the adaptive density map generation for
crowd counting tasks.
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