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ABSTRACT Hardware cybersecurity has become a key issue, especially for very large integrated circuits.
If counterfeit, forged, or defective ICs present a significant threat to system reliability and security. The
growing complexity of digital and mixed-signal systems makes it increasingly challenging yet vital to
develop robust methods to assess and confirm the reliability and authenticity of ICs. We introduce a
new terahertz testing method for non-destructive and unobtrusive identification of counterfeit, damaged,
forged or defective ICs by measuring their response to incident terahertz and sub-terahertz radiation at
the circuit pins and analyzing the response using artificial intelligence (AI). These responses create unique
signatures for ICs. We generated 2D images by measuring the response on a selected pin of a radio frequency
IC (RFIC) scanned by a focused terahertz radiation. By applying the data augmentation processes, we created
a secure image data set to train the convolutional neural network (CNN) model. An unsecured image data
set representing altered or damaged ICs was generated by modifying the original image data. The trained
models identified secure devices with a ∼94% accuracy.

INDEX TERMS Terahertz, hardware cybersecurity, reliability, authentication, deep learning, convolution
neural network, artificial intelligence.

I. INTRODUCTION
With their ever-increasing complexity electronic devices and
circuits have become more prone to various security threats.
Deliberate alterations can be introduced to highly complex
integrated circuits (ICs) at the design, fabrication or pack-
aging stages. Unintended materials and device failures can
happen due to the effects such as limited lifetime, pre-
mature material deterioration, unpredicted external condi-
tions. Finally, legitimate components and systems can be
replaced with the counterfeit ones during shipments. Specif-
ically, the growing use of foreign off-the-shelf components
makes faked integrated circuits with additional built-in secret
components and/or with malicious software implemented
in hardware to be an increasing and powerful hardware
security threat. Moreover, considering the fast aging of the
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widely deployed cyberinfrastructure, it is vital to develop
preventive measures and response strategies against all hard-
ware security threats to avoid catastrophic and irreversible
consequences [1].

Compromised or untrusted ICs can endanger all additional
layers of national or international cyber systems and lead
to devastating and far-reaching consequences. It is difficult,
even unattainable, to ensure full fault detection using con-
ventional AC and DC electrical testing techniques. An addi-
tional security issue comes from fake circuits designed to
avoid identification by conventional testing techniques [2].
To differentiate the counterfeit, forged, or damaged ICs
from the authentic ICs, straightforward, thorough, non-
destructive, and ubiquitous inspection and testing meth-
ods are needed. Various non-destructive testing methods
have been developed by the IC packaging industry since
the 1970s [3], [4]. Besides visual inspection, X-ray [5],
[6], scanning acoustic microscopy (SAM) [7], [8], infrared
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thermography (IRT) [9], [10], surface acoustic waves (SAW)
[11]–[14] and terahertz transmission and reflection imag-
ing [15] have been adopted for the non-destructive test-
ing and inspection methods of IC packaging. Terahertz
imaging technology can be an ideal approach for defect
detection because several materials have unique spectral fin-
gerprinting characteristics in the terahertz spectral region.
Utilizing the advantages provided by terahertz systems it
is feasible to perform authentication [16], non-destructive
inspection [17]–[21], laser terahertz emission spectroscopy
(LTEM) [22], [23] for VLSI testing, terahertz time-domain
reflectometry (THz-TDR) [24], terahertz scanning near-field
optical microscope (THz-SNOM) and terahertz scanning tun-
neling microscope (THz-STM) [25], [26], large scale inte-
grated circuit (LSIC) inspection [27], 3D imaging [28]–[30],
quality control [31]–[35], airport security [36]–[40], art
investigations [41], tomography [29], [42]–[44], biomedi-
cal diagnosis and imaging [45]–[47], material characteri-
zation [48]–[53], thickness measurements [54], [55], and
holography [56], [57].

Although terahertz imaging systems provide a broad spec-
trum of applications, they suffer from inherent low-resolution
imaging, which poses a significant hindrance to draw the
attention of the industrial sector to employ terahertz imag-
ing systems as practical tools for advanced very large scale
integration (VLSI) circuits (with minimum feature sizes
down to 7 nm, 5 nm and even 3 nm) [58], [59]. Instead
of using the terahertz imaging technique, a new approach
of terahertz testing of monolithic microwave integrated cir-
cuits (MMICs) and VLSI circuits is possible by measuring
the circuit’s DC bias responses at the pins or input/output con-
tacts or leads [60]–[64] and then analyzing these responses
with etalon responses [65]–[69]. Minor biasing modifi-
cations may also trigger significant changes to the tran-
sistor’s response, which improves the usefulness of the
approach. voltages induced by terahertz or sub-terahertz radi-
ation at the IC terminals can be used as a diagnostic mecha-
nism for defects or deviations from the expected outcome.
Such voltages may form specific signatures of defects. This
method can also predict the lifetime and reliability following
the fault diagnosis and identification process. At low terahertz
radiation intensities, the DC voltage will be proportional to
the intensity, while at high terahertz radiation intensities,
it will likely be proportional to the intensity’s square root
[70] or saturate [71]. For transistors with defects, such as high
leakage currents [72], for instance, this response will be very
different. Usually, the transistor gate size specifies the spa-
tial resolution of this defect-detection technique. Additional
testing details can be achieved when the impinging terahertz
beam is scanned through the circuit [72].

In our work, we have used the terahertz response of ICs
as signature data to classify secured and unsecured/faulty
ICs. We measured the DC response on a selected pin of a
radio frequency integrated circuits (RFIC) while scanning a
focused terahertz beam on it to obtain a 2D signature response
map. Resolution of our technique is in the nanometer range,

even though the radiation wavelength is hundreds of microm-
eters. By applying data augmentation processes, we have
created a secure image data set to train the convolutional
neural network (CNN) models. We have also used the data
augmentation method by adding randomized noise in the
authentic response data and produced randomized response
data. We have then divided all response data into two cat-
egories: 1) Secure response set and 2) unsecure response
set and fed these data sets into our CNN model. We distin-
guished the classified images with accurate prediction based
on the established MATLAB coded CNN data classification
process. We have also designed a graphical user interface
(GUI) using the MATLAB App Designer for end-users to
train CNN with new data and identify ICs easily. The focus
of the presented work is to demonstrate a novel terahertz
response-based testingmethod using well developed artificial
intelligence (AI) techniques.

The rest of the paper is organized as follows. In the next
section, we give a brief overview of the available IC test-
ing methods. Section III focuses on the terahertz based IC
response mapping used in this work. The experimental setup
using an IMPATT diode and a short review of the convolution
neural network (CNN) are presented in Section IV. Section V
presents the results and their detailed discussion and classifi-
cation of the secured and unsecured IC responses.

II. TERAHERTZ, IMPEDANCE-BASED, AND X-RAY IC
TESTING
An extensive range of test schemes is currently attainable for
detecting and identifying counterfeit parts. These techniques
intend to recognize the defects existing in a part or a batch
of parts. A counterfeit IC part may comprise one or more
diverse types of anomalies and deviations from an authen-
ticate component’s functionality. These anomalies could be
physical (i.e., related to the leads, package), electrical (e.g.,
degradation in its performance or a change in its specifica-
tions), or intentional (insertion of hardware trojan or back-
door software). In the following subsection, we will briefly
describe terahertz, impedance, and X-ray imaging-based IC
testing.

A. TERAHERTZ SCANNING SYSTEMS
The packaging materials of authentic and counterfeit ICs
might differ. Based on the package materials properties,
the effective refractive index and amplitude extinction coef-
ficient vary significantly. The intensity and time delay of
the traversed terahertz pulse through the packaging of both
authentic and counterfeit or defective ICs can be recorded
and compared by utilizing the terahertz time domain spec-
troscopy (THz-TDS) systems [15]. Generally, the traversed
terahertz pulses from the counterfeit ICs show different time
delays and attenuations than the authentic ICs, which results
from the different effective refractive index and the amplitude
extinction coefficient value. A different material profile for
each ICs can be deduced from the measured time delays and
attenuations using the terahertz reflected setup [15]. It is also
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possible to measure the thickness of the hidden layers in
the packaged ICs through the recorded terahertz pulses time
delays.

B. IMPEDANCE BASED IC TESTING
ICs offer unique frequency-dependent scattering responses
to an input RF signal for each pin [73]. These scattered
frequency-dependent responses can be used to represent a dis-
tinctive signature of an individual IC with high repeatability.
The underlying physics is linked to the origin of the input
impedance of external nodes. The impedance is a function of
frequency and signal path within a circuit due to the com-
plex mutual coupling effects at RF and higher frequencies.
The information on the IC device packaging is essential to
measure these frequencies and path-dependent signatures.
This impedance-based measurement technique is repeatable,
passive, and non-destructive, which can distinguish the coun-
terfeit or forged ICs.

C. X-RAY IMAGING FOR IC TESTING
Ptychographic X-ray laminography is capable of
non-destructively extracting the 3D design of a modern
microprocessor [74]. This process can further speed up by
starting with more information about the chip. This method of
non-destructive reverse engineering of electronic chips could
check that chip manufacturing was done according to the
original design. X-ray ptychography can be used in unthinned
integrated circuits up to 240 µm in thickness to image circuit
features at sub-20-nm resolution, allowing one to image
chips with no restrictions fragility and heat transport imposed
by thinning, thereby retaining the possibility for electrical
testing [75].

III. TERAHERTZ RESPONSE BASED IC TESTING
Our proposed method is based on the fact that a modern field-
effect transistor (FET) with a sufficiently short channel can
serve as a terahertz detector. This detection process has a
subwavelength resolution. The impinging terahertz radiation
on a transistor couples through the contacts or intercon-
nects and excites the overdamped or resonant plasma waves,
i.e., the waves of the electron density in the device channel.
The rectified response due to the transistor nonlinearities
results in an induced DC voltage on the I/O pins. A lock-
in amplifier is used to measure and record the frequency
modulated response. The IC can be placed on a nano-stage,
and the induced DC response can be scanned by moving the
IC in 3D (x, y, and z) under the impinging terahertz radiation.
The resulting spatial dependence of the response depends
on the collective response of all the FETs in the IC and
forms a unique signature that could be used to differentiate
genuine/healthy ICs from forged/defective ones. Feasibility
of this technique has been experimentally proven in [66]
and [76]. The method described in these references, although
successful, is not suitable for high throughput testing of
complex ICs. Our work here more specifically targets at
extending the previous work by adding automated scanning

FIGURE 1. (a) Schematic presentation of the terahertz scanning setup for
generating spatial terahertz response map for AI based image processing.
(b) Picture of the experimental setup.

and AI analysis to demonstrate a proof-of-concept platform
for fast and accurate IC testing. Fig. 1(a) shows the schematic
description of the terahertz IC testing method used in this
study.

A significant advantage of this new non-invasive and non-
destructive technique compared to other radiation enhanced
testingmethods is that this approach does not affect the device
operation and could work with no bias or under bias. In con-
trast to the conventional terahertz imaging, this technique
can use the intensity, polarization, frequency, and bias depen-
dences of the terahertz response at the VLSI or MMIC pins
for a more detailed IC response. It can also find applications
as a testing technique for Si and compound semiconductor
devices and circuits for defect identification, reliability pre-
diction, and fabrication process optimization. It should be
noted that the spatial resolution of our technique is aperture
(typically gate of the transistors) limited and therefore can
reach down to nanometer range, even though the radiation
wavelength is hundreds of micrometers. Such resolution has
been demonstrated in previous papers of ours [77] and oth-
ers [25]–[27].

IV. EXPERIMENTAL METHODS
A. TERAHERTZ IC SCANNING SYSTEMS
For the experimental data acquisition, we used a fixed
frequency IMPATT diode-based terahertz source operating
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FIGURE 2. Basic model of Convolution Neural Network (CNN).

at 0.289 THz with an 8.5 mW output power and with
26dB gain detachable horn antenna. This setup is shown
in Fig. 1(b).

The samples that were wire-bonded on the chip car-
riers placed on three-axis nano-stages controlled with a
computer connected KIM101 controller and had the steps
down to 5 µm. The Stanford Research SR830 DSP lock-
in-amplifier measured the response with an optical chopper.
Custom LabView codes performed all the equipment control
and data acquisition.

B. DEEP LEARNING – CONVOLUTION NEURAL NETWORK
(CNN)
We have implemented the standard Convolutional Neu-
ral Network (CNN) offered by the deep network designer
app from MATLAB in our study. To design the CNN model,
we selected one image input layer, three convolution 2D
layers, two batch normalization layers, three rectified linear
unit (ReLU) layers, two max-pooling layers, one fully con-
nected layer, one SoftMax, and one classification layer. CNN
is the best method for data classification in deep learning
neural networks inspired by the visual cortex layout. Fig. 2
shows the basic convolutional neural network model that we
have used for image classification. The whole CNN consists
of two categories: i) Feature learning and ii) classification.
The feature learning section consists of convolutional lay-
ers, ReLU layers, and pooling layers, and the classification
section consists of fully connected layers and SoftMax acti-
vation function. The convolution layer usually consists of
convolution operation (also known as a convolution filter
or kernel), activation function, feature map, or an activation
map. The convolution operation is intended to extract high-
level features from the input image, such as edges. For CNN
to capture the low-level features such as edges, color, and
gradient orientation, only one convolution layer is required.
The framework adapts to the high-level characteristics with
added layers and forms amodel with a detailed understanding
of the dataset’s images. For the activation function, CNN uses
ReLU sigmoid, and tanh function based on the application.
Among these, to increase nonlinearity in neural networks,
especially in CNNs, ReLU is the most used activation func-
tion. The number of generated feature maps is the same as
the number of the convolution filters, and the result of the

FIGURE 3. Measured terahertz response on a selected pin (Inset:
CE3520K3 IC).

convoluted feature map is smaller than the original image.
In order to get different results, a feature detector can be set
with different values, such as sharpening and focusing on an
image or blurring an image.

The pooling layer’s primary function is to reduce the con-
voluted feature’s spatial size, which decreases the compu-
tational power needed to process the data. After applying
the pooling layer to the feature map, the pooled feature
map is formed. Pooling is carried out using either the Max
Pooling or the Mean Pooling forms. Max Pooling returns
the maximum value, whereas the Mean Pooling returns the
average of all the image portion values. The feature learning
portion’s fundamental objective is to extract the features and
preserve them in a feature map while retaining the pixels’
spatial relationship. All the inputs from other layers will be
flattened into a vector and render the classes through voting
in a fully connected layer. This layer using the SoftMax
activation operator will transform the output into the desired
number of classes by the network; in our case, the classes are
secure and insecure. The CNN model trains the images using
forward and backward propagation for a consecutive number
of epochs.

V. RESULTS AND DISCUSSIONS
We measured the terahertz response of super-low noise
and high gain amplifier integrated circuits (CE3520K3).
Fig. 3 shows the measured DC voltage response on a selected
pin of the device under large area unfocused terahertz expo-
sure at 0.289 THz while Fig. 4 shows the measured response
for scanning a tightly focused terahertz beam over the chip.
This response can generate a terahertz -response signature
for an IC. For the classification study, 2D measurements
scans have been recorded using a 3D nano-stage. The focused
terahertz beam was scanned over the IC and moved 25 steps
in x and y directions. We have acquired six data sets shown
in Fig. 4 through the scan of the sample under terahertz
radiation. The response measured at the selected in of the
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FIGURE 4. Measured position dependent DC response at a selected pin of the tested IC
while a 0.289 THz beam is scanned in 2D.

FIGURE 5. Algorithms used for secure image data augmentation.

FIGURE 6. Algorithms The algorithm used to obtain unsecure data sets
for training and testing.

same device under the same biasing conditions. The image 1
and image 2 are results of the two subsequent scans. These
two images illustrate the reproducibility of our technique.
The height of the device holder was then changed for the
next scans resulting in images 3 to 6. The differences in the
measured scans 2 to 6 are due to the different focal point in
the vertical direction. This process allowed us to obtain secure
images accounting for different vertical positions of the scan-
ning beam. Measuring the response of different pins would
have different 2D response map for each pin which could
also be used for classification. Such measurements would be
especially useful for complicated VLSI with a large number
of transistors. We have performed preliminary measurements
of the different pin response for IntelTM i7 microproces-
sor. A generalization of our AI approach for such complex
VLSI is in progress and will be reported elsewhere. The
measured data smoothened to 50 × 50-pixel data sets are
considered as the original or secure images. The similarity of
the data obtained by the subsequent scans, except for the set
of the images 3 and 4, clearly shows the repeatability of the
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FIGURE 7. Image generated by multiplying the original image set with (a) sin(π j/Vmax) and cos(πk/Vmax), and (b) sin(π j/Nmax) and cos(πk/2Nmax).

FIGURE 8. (a) 0◦,90◦, 180◦- and 270◦-degree counter-clockwise rotational images, and (b) randomized image generation from its original image
through 10%, 15%, 20%, 50%, 75%, 100%, and 200% randomized image sets.

measurements. The apparent distortion of the data in image
3 was attributed to a measurement setup malfunction. Nev-
ertheless, we used in our data analysis to augment the data
for AI training. We have considered four algorithms to create
altered images data set using the data augmentation (Fig. 5
and 6).
Algorithm 1: We have multiplied the six images data set

first by sin(π j/Vmax) and then by cos(πk/Vmax), where Vmax
is the maximum measured response value and the value of j,
k is in the range from 1 to Nmaxthat is the maximum number
of pixels in a row/column (50 in the present case). Fig. 5(a)
shows the sample images generated using the trigonomet-
ric function depending on the Vmax to increase the data
set number. We further rotated each image by 90◦, 180◦,
and 270◦. Hence, this algorithm has produced 48 total new
images.
Algorithm 2:We have multiplied the same six initial image

data set by sin(π j/Nmax) and by cos(πk/2Nmax), where Nmax
is the maximum number of pixels in a row/column (50) and
the value of j, k is in the range from 1 to Nmax. Fig. 5(b)
shows the image generation using this method. All images

were then rotated by 90◦, 180◦, and 270◦ to obtain 48
images (Fig 5(b).
Algorithm 3:This data augmentation algorithmwas adding

random noise with a maximum amplitude of 10%, 15% of the
measured response value to the measured data set. To gen-
erate 10% (15%) random data, we used each pixel value of
the original image. We added a random value in between
± 10% (± 15%) of the original image’s pixel value to
create the 10% randomized images data set. This approach
inherently assumes that variations up to 15% are acceptable
in device geometries and characteristics are acceptable. The
rate can be changed for specific devices/process fabrication
foundries to train the AI for improved accuracy. All images
then were rotated by 90◦, 180◦ and 270◦ to obtain 48 more
images. Fig. 5(c) shows the image generation using this
method.
Algorithm 4: Like the previous one, we added random

noise with the maximum amplitude of 20%, 50%, 75%,
100%, and 200% of the measured response value to the
measured data set (Fig. 6). All images then were rotated by
90◦, 180◦ and 270◦ to have the final set of altered images.

64504 VOLUME 9, 2021



N. Akter et al.: AI-Powered Terahertz VLSI Testing Technology for Ensuring Hardware Security and Reliability

FIGURE 9. Our CNN model training progress chart for (a) approach 1, and (b) approach 2.

FIGURE 10. CNN model training progress chart for approach 3.

We have classified the images as secure and unsecured
as shown in Fig. 7 (a) & (b) and Fig. 8 (a) & (b) respec-
tively. We have categorized all images generated from
Algorithms 1-3 as secure image data sets, while images gen-
erated by Algorithm 4 have been considered unsecure image
data sets.

We have separated 80% of the data sets into secure and
unsecure categories for CNN training and the remaining 20%
for testing the trained CNN. All the training samples pass
through the learning algorithm concurrently in one epoch
before the weights are updated. All the weights are updated
for sequential training after each training vector is passed
sequentially through the training algorithm. For a small num-
ber of epochs in the training algorithms, the training is poor,
and underfitting effects happen. If the network is trained too
much, it will memorize the desired outputs for the training
inputs. Considering how important the number of epochs is,
we have set the maximum epoch value as initially 80 and
50. The initial learning rate of our model is 10-4. Validation
frequency, which is also an important parameter defining
the number of iterations between evaluations of validation

FIGURE 11. Confusion matrix.

metrics, was set to 2 for our model set. To validate our CNN
model accuracy, we have used three different approaches.
Approach 1: In the first approach, we have considered

the original images, their rotations, and the images obtained
using Algorithm 3 described above, resulting in 72 images for
the secure images set. For the unsecure images set, we have
considered the 120 images obtained using Algorithm 4. After
using 80% of each set for training the CNN model, we tested
it using the remaining 20%. The model yielded 83.33 %
training accuracy and an 87.12 % testing accuracy, as shown
in Fig. 9(a).
Approach 2: We took the original images, and their

rotational variants, and the images obtained using Algo-
rithms 1 and 3, resulting in 120 images for the secure images
set. The same data set yielded by the previous approach was
used for the unsecure images. We trained the CNN model
using 80% of each data set and tested using 20%. This
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FIGURE 12. Screenshot of the AI-Powered THz IC testing application user interface.

approach achieved 84.21 % training accuracy and a 93.75 %
testing accuracy as shown in Fig. 9(b).
Approach 3: In the third approach, we used the original

images, and their rotational variants, and the images obtained
by using Algorithms 1, 2, and 3 to form a secure date set
of 168 images. For the unsecure data set, we used the same
data set of 120 images as in the previous approach. The tests
performed using 20% of the sets resulted in 84.78 % training
accuracy and 86.21 % testing accuracy, as shown in Fig. 10.

For the first approach, the max epoch was set to 80. For the
second and third approaches, the max epoch was set to 50.
For the first approach, only one convolution layer was used,
while for the second and third approaches, three convolution
layers were used to avoid the data overfitting issue and to
increase the CNN model performance. Based on our model,
we can conclude that the number of samples significantly
impacts attaining a higher accuracy rate. Suppose both the
classification has the same amount of sample images. In that
case, the model has a 94% chance to correctly classify images
that are very similar to the trained data, which is a pretty good
accuracy rate for image processing and training.

A confusion matrix is a method to summarize the pre-
dicted results of a classification algorithm’s performance.
Using the Approach 3, we processed 288 images (168 secure
images and 120 unsecure images) out of which, 80% were
used for training, and 20% were used for testing. We have
used the testing dataset (33 secure and 25 unsecure, totaling
58 images) to plot the confusion matrix shown in Fig. 11.
In the figure, the first two diagonal cells (green shaded)
show the number of the correct classifications by the trained
network.

Row1-Column1 shows that 22 unsecure images (out
of 25 total) were correctly classified as unsecure images,
and Row2-Column2 shows that 31 images (out of 33 total)
were correctly classified as secure. Row1-Column2 shows
that 3 of the unsecure images were incorrectly classified
as secure, which corresponds to 5.2% false-negative of all
58 images in the data. Similarly, Row2-Column1 shows
2 of the secure images were incorrectly classified as unse-
cure, which corresponds to 3.4% false-positive of all data.
Row3-Column1 shows that out of 24 unsecure predictions,
91.7% were correct, and 8.3% were wrong. Row3-Column2
shows that out of 34 secure predictions, 91.2% were cor-
rect, and 8.8% were wrong. Row1-Column3 shows that out
of 25 unsecure predictions, 88.0% were correct, and 12.0%
were wrong. Row2-Column3 shows that out of 33 secure
predictions, 93.9% were correct, and 6.1% were wrong.
Row3-Column3 represents the overall predictions where
91.4% were correct, and 8.6% were wrong. Based on these
results, we can claim that our proposed approach can accu-
rately classify the image type although we have used a small
number of image datasets and a simple CNN model. The
accuracy can be further improved using a significant number
of datasets and optimized CNN.

We have also developed a MATLAB application, and
a standalone application with a graphical user inter-
face (GUI) using the MATLAB App Designer, as shown
in Fig. 12. The GUI-based application allows end users
to input known secure and unsecure images for training
as well as unknown images for identification effortlessly.
It makes the presented system easy to use with minimal
training.
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VI. CONCLUSION
In conclusion, we successfully demonstrated a novel tera-
hertz AI testing method for non-destructive and unobtrusive
identification and classification of genuine ICs and coun-
terfeit, damaged, or forged ICs. Our applied approach is
based on measuring the IC response to terahertz and sub-
terahertz radiation at the circuit pins. Measuring at a larger
number of pins under different frequencies and polarizations
of terahertz radiation can produce more complex terahertz
response signatures, which would result in higher classi-
fication accuracy. Our proposed approach does not affect
the IC operation and could provide detailed IC signatures.
We explained the classification process between the secure
and unsecure IC images using the convolution neural network
with ∼86 to 94% accuracy and its graphical user interface.
This accuracy level can be further improved by using transfer
learning to suppress any data overfitting issues. Terahertz
signatures of the individual ICs can be generated by applying
different measurement processes under different polarization,
frequency, and depth of focuses.
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