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ABSTRACT As dynamic graph data have been actively used, incremental graph partition schemes have
been studied to efficiently store and manage large graphs. In this paper, we propose a vertex-cut based
novel incremental graph partitioning scheme that supports load balancing in a distributed environment. The
proposed scheme chooses the load of each node that considers its storage utilization and throughput as
the partitioning criterion. The proposed scheme defines hot data that means a particular vertex frequently
searched among graphs requested by queries. We manage and utilize hot data for graph partitioning. Finally,
we perform vertex-cut based dynamic graph partitioning by using a vertex replication index, the load each
node, and hot data to distribute the load evenly in a distributed environment. In order to verify the superiority
of the proposed partitioning scheme, we compare it with the existing partitioning schemes through a variety
of performance evaluations.

INDEX TERMS Distributed processing, graph partitioning, graph stream, hot data, vertex-cut partitioning.

I. INTRODUCTION
Graph data are used to express the relationship or interaction
between users or objects. As graph data have become actively
used, studies have been performed for graph partitioning
schemes to efficiently store and manage large graphs [1]–[4].
The graph partitioning schemes are classified as the edge-cut
partitioning and vertex-cut partitioning based on the partition-
ing policy [5]–[8]. The edge-cut scheme partitions a graph
based on a certain edge and aims to minimize the number
of cut edges that interconnect the partitioned subgraphs. The
vertex-cut scheme partitions a graph based on a certain vertex,
and replicates and stores the partitioned vertices.

In the early days, studies on static graph partitioning
schemes were conducted such that the distributed storage
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of a static graph that there are no changes in its structures
can be performed. As a typical graph partitioning scheme,
METIS has proposed an edge-cut-based partitioning scheme
to minimize the communication cost between partitioned
subgraphs [5]. PowerGraph supports the vertex partitioning
scheme that uses the characteristic where vertices and edges
presented a power-law distribution [6]. In the social network
and Internet of Things (IoT) services, dynamic graph are gen-
erated, whereby the vertices and edges constituting the graph
change constantly [9]–[12]. For the distributed storage of
large dynamic graph data, a partitioning strategy is required
for the distributed storage in real time by considering a change
of graph data. [13]–[16]. If the throughput of a particular
node contained in a cluster is high or the memory space is
insufficient, the overall system processing performance can
decline, and a partitioning strategy is required to store the sub-
graphs by considering the load state of the nodes [17]–[20].
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Therefore, in order to partition dynamic graph data, the load
status information of the entire cluster should be managed
and determined based on the partitioning policy that considers
continuously modified and updated graphs. [21]–[25].

Recently, various schemes have been proposed for the
distributed storage of dynamic graphs [26] and [27]. In [21], a
vertex-cut-based partitioning scheme was proposed to apply
real-time dynamic graphs in the programming model pro-
posed by PowerGraph. In [22], an edge-cut-based partitioning
scheme was proposed to minimize the number of cut edges
that were generated owing to the addition of new subgraphs.
In [23], a partitioning strategy was proposed, in which vertex
cutting was performed by considering the processing perfor-
mance and a memory capacity. However, in [21], the state
of nodes existing in a cluster could not be considered since
it only considers the ratio of the vertex replication. Further-
more, in [22], although the memory capacity was considered
to account for the state of the nodes, the throughput of a
node was not considered. In [23], the processing performance
and memory capacity were considered when partitioning was
performed.

Distributed dynamic graph partitioning schemes consider
three main things. The first is throughput, which means the
amount of graphs currently being processed by the node.
[12] defined the amount of graphs stored for a given period
of time. The second is memory utilization. It is a measure
of how the nodes utilize the maximum amount of memory
that can be managed so that data can be allocated evenly
across all nodes. Finally, it is the replication rate. It represents
the corresponding proportion to make the vertex split and
stored according to the distributed storage characteristics as
little as possible. Considering replication rates, communica-
tion costs can be reduced. Existing schemes have a problem
of considering only some of the three characteristics. Since
the three characteristics have very important implications
for graph partitioning, new schemes are needed to consider
them all. In addition, we need to redefine throughput. The
amount of graphs stored over a specific period of time does
not actually imply the amount of computation performed by
a node to process graph data. Finally, if specific graph pat-
terns or vertices are frequently utilized, storing these data on
only one node results in performance imbalances. To prevent
performance imbalances, frequently accessed graph vertices
should be managed to balance the performance of nodes as
much as possible.

In this paper, we propose a novel dynamic graph parti-
tioning scheme to improve the graph query processing per-
formance to handle a large dynamic graph. The proposed
scheme presents a partitioning policy that considers the ver-
tex replication ratio, storage utilization, and throughput to
improve the system processing performance through the load
distribution. The throughput is defined as the number of
directly processed queries to facilitate the control of hot data
distribution. When a new subgraph that is related with hot
data is produced, the new subgraph is regarded as hot data,
and by assigning a large weight on the throughput, the load

concentration on a particular node is prevented. In this paper,
we propose a novel graph partitioning scheme to improve the
processing performance of graph queries in a large dynamic
graph environment. The contribution of the proposed scheme
is as follows.

1) Load management of a node: The proposed scheme
manages the load on each node to improve distributed
processing performance. In this paper, we define the
load of a node as throughput and memory usage.
Throughput indicates how many vertices of a query are
included in a particular node. Memory utilization refers
to the graph size currently stored relative to the max-
imum storable capacity of each node. The proposed
scheme utilizes two values for graph partitioning.

2) Hot data management: Hot data means a particular
vertex frequently searched among graphs requested by
queries. The proposed scheme records the number of
requests per vertex and manages them so that hot data
is not driven to a particular node. As with the load of
nodes, it is utilized for graph partitioning.

3) Vertex-cut based dynamic graph partitioning on dis-
tributed systems: The proposed scheme utilizes a vertex
replication index in addition to node load and hot data
to perform vertex-cut based dynamic graph partition-
ing. The vertex replication index means how much the
vertex neighbor overlaps with the graph beingmanaged
by an existing node for a newly introduced graph to
store the graph efficiently. The proposed scheme fur-
ther considers the vertex replication index because the
higher the number of nodes is, the lower the load to
store is. It performs efficient dynamic graph partition-
ing by reflecting these three characteristics.

4) Performance evaluation based on real world graphs:
We perform various performance evaluations based
on real-world graph data. We show the feasibility
and excellence of the proposed scheme compared to
the existing vertex-cut and edge-cut based partitioning
schemes.

This paper is organized as follows. In Section 2, the char-
acteristics and problems of previous studies mentioned in
the introduction are explained; in Section 3, the proposed
scheme is described in detail; in Section 4, the superiority of
the proposed scheme is demonstrated through performance
evaluation. Finally, in Section 5, the conclusions of this study
are presented.

II. RELATED WORK
As graph data have become larger, schemes for dividing
and storing large amounts of graph data have been studied.
[5]–[8], [13], [16]–[18], [20]–[31]. Research on early graph
partitioning schemes has mainly been done on static graphs
where data does not change in real time. They are divided
into vertex-cut based schemes and edge-cut based schemes
according to graph partitioning criteria. Graph partitioning
schemes aim to minimize the vertices or edges that are split,
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and the vertices and edges that are split are replicated and
stored on each node.

METIS [5] is the most typical static graph partitioning
scheme and it is an edge-cut partitioning scheme used to
minimize the number of edges cut through partitions. METIS
performs a multilevel graph partitioning, consisting of three
phases. Phase 1 performs graph compression based on the
heavy-edgematching (HEM) algorithm as a graph coarsening
phase. Graph compression is compressed into smaller and
smaller graphs at multiple levels. After step 1, the original
graph is compressed into a graph consisting of a few hundred
vertices. Phase 2 performs graph partitioning so that the
weights of the vertices equal to the minimum edge-cut can be
distributed based on the compressed graph. Graph partition-
ing is based on a compressed graph, so the computations are
very small. Finally, we perform a recovery of the partitioned
compressed graph (graph uncoarsening phase). Multithread-
based mt-METIS has been further studied to further improve
the performance of METIS [28].

PowerGraph [6] is a vertex-cut partitioning scheme that
uses the following characteristic: a graph produced in real
life shows the distribution shape of the power-law degree.
The power-law degree distribution refers to the distribution
of graph data in which a small number of vertices constitute
the majority of edges, i.e., small numbers of vertices with
high degrees exist and the majority of vertices exhibit low
degrees. For graphs demonstrating such a distribution, results
have shown that the vertex-cut method is more effective than
the edge-cutmethod. PowerGraph performs a balanced p-way
vertex-cut for graph partitioning. It allowed p partitions to
have uniform edges, with the aim of minimizing the number
of vertices that are split. In addition, PowerGraph proposed a
GAS (Gather, Apply, Scatter) programming model. The GAS
model is a vertex-centric programming model for performing
graph algorithms on partitioned graphs.

Since static graph-based partitioning schemes minimize
the replication ratio of vertices or edges, the amount of
communication is minimized when the graph algorithms are
performed. However, the dynamic graph environment that
vertices or edges are added or deleted is common in the real
world. Because it is very inefficient to perform partitioning
whenever graph data changes, studies on dynamic graph-
based graph partitioning have been conducted. Dynamic
graph partitioning, like static graph partitioning schemes,
is divided into vertex cut-based or edge cut-based schemes.

Reference [22] proposed a method for the distributed stor-
age of dynamic graphs in a state where the static graph is
partitioned using the edge-cut method. Considering a case
of vertices and edges added or deleted in a dynamic graph,
a method has been proposed for the distributed storage of
a graph. In the case of adding a new vertex, partitioning is
performed by considering the communication cost, number of
cut edges, and a memory utilization based on the assignment
of a new vertex. In the case of an existing vertex being deleted,
if a storage utilization of a particular node falls below a
particular amount owing to the deletion of a vertex, the vertex

stored in a different node is moved to the corresponding node.
In the case of a new cut edge being added, if there are more
cut edges than the number of internal edges in the edges
contained by a particular vertex, the corresponding vertex is
moved to a node that has many cut edges. When an internal
edge is added, it is simply added. Finally, in the case of
deleting an edge, the corresponding edge is simply deleted
as well. Recently, an edge-cut based incremental partition-
ing scheme has been proposed for large-scale RDF dynamic
graph processing [29]. It performs partitioning by calculating
the minimum edge cut and load balancing index, just like the
existing techniques. [29] further deals with graph data that
is entered and deleted dynamically by computing partition-
specific cohesion and connection indices.

Reference [23] proposed the vertex-cut-based partitioning
scheme to partition a dynamic graph in a clustered envi-
ronment of heterogeneous devices whereby the CPU speed
and memory sizes are different. This scheme was performed
based on the GAS model proposed by PowerGraph. In a
state where a particular number of subgraphs have already
been partitioned and stored based on the vertex-cut method,
the replication ratio of the vertex, memory utilization, and
a processing performance are considered after assigning a
new subgraph. The processing performance is calculated by
measuring the time for executing each stage of the GAS
model, and dividing the size of the subgraph stored in each
node by time.

Reference [30] proposed an incremental graph partitioning
scheme. Each time a graph change occurs, an increment
graph partitioning is performed with the aim of balanc-
ing the load, minimum cut-size, and minimizing partition
changes. It solved the problem through a heuristic approach
because optimizing the three indices is an NP-complete
problem. It transforms existing partitioning techniques
(vertex-cut, edge-cut) into an incremental method by exploit-
ing the proposed formula and demonstrates validity through
experiments. Reference [31] performs hybrid (vertex-cut and
edge-cut) partitioning by providing partition transparency
similar to reference [30]. It defines the cost-model for parti-
tioning and performs application-driven partitioning that fits
the lowest cost through learning.

III. THE PROPOSED DYNAMIC PARTITIONING SCHEME
A. SYSTEM STRUCTURE
In recent years, owing to the use of dynamic graphs, in which
vertices and edges composing the graph change constantly,
studies are required for the distributed storage of graphs that
change in real time. When a new vertex or edge is changed,
a node that should store the subgraph has to be determined.
In this paper, we propose a distributed storage management
scheme of dynamic graphs to improve the query-processing
performance of graphs when a large graph has been parti-
tioned based on the vertex-cut method. The proposed scheme
aims to improve the processing performance of the entire
system by solving the problem owing to deleted subgraphs
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FIGURE 1. Overall processing structure of the proposed scheme.

and the assignment policy of added subgraphs. An added
subgraph is assigned by considering the storage utilization
and throughput of each node composing a cluster. More sub-
graphs are assigned to a node that has a low storage utilization
and low throughput. Here, hot data, which are frequently
used in queries, are considered as an additional element for
considering the throughput. Depending on whether an added
subgraph is hot data, the partitioning policy is changed such
that the hot data can be assigned to a node that has a low
throughput.

Fig. 1 shows the processing procedure of the proposed
scheme. The proposed scheme assumes that an existing graph
is distributed through the vertex-cut partitioning scheme in
the cluster environment. The system configuration is com-
posed of one master node and four slave nodes. The master
node has an Intel(R) Core(TM) i5-6400 CPU @ 2.70 GHz
CPU with 32 GB of memory. The slave node has an Intel(R)
Core(TM) i7-6700 CPU @ 3.40 GHz CPU and 16 GB of
memory. Each server has a 1TB secondary memory. The sta-
tistical information management module uses the load table
to store the information of throughput and storage utiliza-
tion for each node according to query processing. Further-
more, subgraph information frequently requested by queries
is stored in the hot data table. When a dynamic graph is
produced, the stream partitioner accesses the hot data table
first and analyzes the existence/non-existence of hot data of
the dynamic graph. If a newly generated subgraph is linked
with a vertex frequently requested in queries, it is determined
to be hot data because there is a high possibility that it will be
used together when queries are performed in the future. Once
the existence of hot data is determined, the state of each node
is verified by referencing the load table. After calculating
the cost score for each node by considering the state of
each node, the node with the highest score is determined.
Finally, the new dynamic graph is sent to the determined
node.

B. LOAD MANAGEMENT
To increase the system performance by ensuring appropriate
load distribution, a dynamic graph should be partitioned by

considering the state of each node composing the cluster.
Hence, the load of each node in the cluster is monitored via
load management, and the collected information is used for
dynamic graph partitioning. In the proposed scheme, the sta-
tistical information management module of the master node
manages the storage utilization and throughput of each node.
If a newly added subgraph is stored at a node that already
has a large number of graphs stored or at a node that has
a larger throughput than the other nodes, the performance
of the overall system may decline since the load will be
concentrated in a particular node. In order to prevent such
a decline in performance, the load information is considered
when performing dynamic graph partitioning.

When a query is requested to seek a particular subgraph
pattern in the master node, the query-processing module
determines a node that will perform the search. Subsequently,
a slave node that becomes the search target transmits the
query-processing result to the query-processing module of
the master node and simultaneously sends the results to the
statistical information module: the number and ID of the
vertices, which are search targets contained in each node
among the requested patterns, and the memory utilization
rate of the corresponding node. The number of vertices that
become the search targets and the memory utilization rate are
maintained in the load table. Table 1 shows an example of
a load table. Throughput indicates how many query vertices
are included in the graph data managed by a particular node.
[12] defined the amount of graphs stored for a given period
of time. Therefore, the node that handles more query vertices
increases throughput, but the node also increases its load.
Memory utilization is a measure of how the node utilizes the
maximum amount of memory that can be managed so that
data can be allocated evenly across all nodes. Memory and
storage utilizations mean the same thing and are calculated on
a per-node basis as throughput. It means the size of the graph
data that each node stores divided by the maximum memory
that the node can store. Memory utilization, like throughput,
has a higher value for a node storing more graphs.

TABLE 1. An example of load table.

Fig. 2 shows the process of generating values of throughput
and memory utilization rate. Fig. 2 (b) shows a subgraph
search query and Fig. 2 (a) shows the subgraph contained in
a query among the graphs stored in each node. The number
of subgraphs contained in the query among the graphs stored
in each node is regarded as the throughput. The nodes exhibit
the values of 5, 2, 5, and 2, and to calculate the throughput
based on the partitioning policy, they are calculated as values
of 5/9, 2/9, 5/12, and 2/12.
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FIGURE 2. Process of generating throughput value.

C. HOT DATA MANAGEMENT
The hot data show the subgraphs that are frequently used
in the query processing. Suppose two nodes store the same
number of subgraphs. Subsequently, the node that contains
the hot data will exhibit a relatively higher throughput, and
this will induce a performance decline of the entire system.
Fig. 3 illustrates the performance decline of the entire system
caused by the generation of hot data. As shown in Fig. 3 (a),
the entire graph is partitioned and stored as three subgraphs,
and subgraph #1 contains s, t, and u vertices, which are hot
data. By assuming each subgraph is processed at one slave
node, Fig. 3 (b) shows the runtime for each partition. The
three nodes process the same amount of data; however, in the
case of slave node #1 containing subgraph #1, the processing
time is increased, and the other nodes wait for node #1 after
processing has completed.

In the proposed scheme, when a newly generated subgraph
is connected with the existing hot data, it is regarded as hot
data and a higher weight is assigned to the throughput when
partitioned. When a subgraph frequently used in the query
process is managed using the hot data table and partitioning
is performed, whether the corresponding graph is hot data
is determined based on the hot data information. The query-
processing module of the master node manages the hot data

FIGURE 3. System performance decline due to hot data.

TABLE 2. Example of hot data table.

table by sequencing the number of vertices appearing in
the subgraph search queries generated randomly, as shown
in Table 2. Fig. 4 shows an example of the subgraph query.
As shown in Table 2, the request frequency is recorded for
each vertex with respect to the subgraphs used in the queries,
as shown in the figure.

D. DYNAMIC GRAPH PARTITIONING
The proposed scheme considers the storage utilization,
throughput, and vertex replication ratio to determine the
node to be used to store the changing subgraph. When
many subgraphs are stored at a node, the number of com-
putation operations to be processed increases; consequently,
the overall processing performance declines. Therefore, via
the throughput, the sizes of the distributed and stored sub-
graphs are made similar. When the number of processing
requests increase for the subgraphs in a particular node,
a problem may occur in that the loads of the nodes become
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FIGURE 4. Examples of a subgraph query.

concentrated in one node. Therefore, the loads are distributed
evenly using the throughput. In a distributed environment,
since the communication for join operations is performed
through the partitioned vertices, the communication cost may
increase if computations occur at the vertices. Therefore,
since the communication is performed based on the vertex
replication ratio through the partitioned vertices, as the vertex
replication ratio increases, the communication cost increases.
Therefore, it is necessary to minimize the vertex replication
ratio.
RS i (Replication score) is used to minimize vertex replica-

tion by using the vertex replication ratio of node i. The vertex
replication ratio, which is an important factor in the vertex-
partitioning scheme, shows the number of nodes in which one
vertex is partitioned and stored. When the vertex replication
ratio is high, it implies that one vertex is stored in multiple
nodes; further, when an algorithm such as PageRank is exe-
cuted to calculate a particular value by regarding a vertex as
a unit, this incurs a communication cost between nodes to
synchronize the values possessed by vertices. Therefore, the
proposed scheme calculates RS i by (1) to minimize the vertex
replication ratio when an edge e is added. To reduce the vertex
replication ratio by assigning a large score to a node that has
many neighboring edges at the corresponding node. Pi refers
to the node i that stores the partitioned subgraphs, and N (e)
refers to the group of neighbors of an edge e. The value of
max j|Pj∩N (e)| is divided by the largest value of the node to
normalize the corresponding element with a value between
0 and 1. Fig. 5 shows the concept of N (e). ekl implies the
edge that connects vertex k and vertex l, and the neighboring
edges of ekl become eik , elm, and eln, as shown in the Fig. 5.

RS i =
|Pi ∩ N (e)|

max j|Pj ∩ N (e)|
(1)

US i (Storage utilization score) is a factor for considering
the storage utilization by node i. If a large amount of data
is stored in a particular node, considerable computations

FIGURE 5. Example of N(e).

must be performed to process the queries. To allocate added
subgraphs to nodes of relatively low storage utilization to
prevent this scenario, the storage utilization US i is calculated
using (2). |Pi| is the size of the graph stored at node i.
Ci implies the total memory size of the node i; consequently,
US i shows thememory utilization of the node i. Regarding the
US i value, a node with smaller storage utilization exhibits a
higher score.

US i = 1−
|Pi|
Ci

(2)

CS i (Computation size score) is a factor for considering the
throughput. When subgraphs are constantly added to a node
that has a large throughput, the throughput will increase at
a particular node only, thereby occurring a workload imbal-
ance. In order to prevent system performance decline owing
to load imbalance, the computation size score CS i is calcu-
lated using (3). A high score is given to the CS i of the node
a low throughput during query processing. Si refers to the
number of vertices contained in the node i.

CS i = 1−
Si∑

j∈{1...k},j6=i Sj
(3)

Suppose k nodes compose a cluster. Subsequently, the cost
score is calculated for each node to determine the nodes
that will store the new subgraphs. The cost score of node
i is calculated using (4). RS i is the vertex replication ratio,
US i is the storage utilization, CS i is the throughput, and
α + β + γ = 1. The values are calculated for every node that
composes the cluster, and a subgraph is assigned to a node
that has the highest TS i value. If deletion occurs constantly
at a particular node, load imbalance will occur from the per-
spective of storage utilization. Accordingly, the deviation in
storage utilizationmay increase, and even if a small amount of
hot data is deleted, imbalance may occur from the perspective
of throughput. For the imbalance problem occurring from
the perspective of storage utilization, a threshold value is
assigned to each node, and when the storage utilization of a
particular node falls below a threshold value, β is set to a high
value such that the input data will be assigned first to a node
of low storage utilization. γ is a weight assigned depending
on whether an added subgraph is hot data. If a newly added
subgraph is determined as hot data, a relatively large value is
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FIGURE 6. Examples of data storage states for each node.

FIGURE 7. Examples of dynamic graph partitioning.

assigned to γ such that the hot data will be assigned to a node
of low throughput.

TS i = αRS i + βUS i + γCS i (4)

If a subgraph is generated, the hot data table is veri-
fied to determine whether the corresponding dynamic graph
corresponds to the hot data. Depending on the existence/
non-existence of hot data, the weight used for calculating the
partitioning criterion is adjusted. To calculate the partitioning

TABLE 3. Performance evaluation environment.

TABLE 4. Dataset size.

criterion, the information from the load table is used, and a
subgraph is stored at a node that has the highest score with
respect to the cost score calculated for each node. Fig. 6 and 7
show the dynamic graph partitioning processes with respect
to the hot data. Assume that the graph nodes are stored at the
nodes of four slaves (Fig. 6 (a), (b), (c), and (d)), to which the
numbers 1 through 4 are assigned. When an edge connecting
vertex #3 and vertex #7 is inserted, whether a vertex that
belongs to the hot data exists among the two vertices is
determined. Since vertex #7 is a vertex that corresponds to
ranking #1 in the hot data table, it is determined to be hot data.
Since the added data are determined as hot data, the weight γ
is adjusted. As shown in Fig. 7 (c), as the storage utilization
decreases and the throughput decreases, the score increases.
In Fig. 7 (c), the value of the last column shows the final
calculated score for each node. Because of the generation of
hot data, the weight of the throughput was increased, and
accordingly, node #1 exhibits the highest value; therefore,
the new subgraph is stored at node #1. However, this is merely
since no large difference is indicated in the score for storage
utilization or replication ratio. Further, it is noteworthy that
even when hot data are produced, the throughput is not con-
sidered.

IV. PERFORMANCE EVALUATION
To demonstrate the excellence of the proposed scheme,
a performance evaluation was conducted. Table 3 shows the
performance evaluation environment. The system configura-
tion consists of one master node and four slave nodes for
performance evaluations. The master node has an Intel(R)
Core(TM) i5-6400 CPU @ 2.70 GHz CPU with 32 GB of
memory. The slave node has an Intel(R) Core(TM) i7-6700
CPU @ 3.40 GHz CPU and 16 GB of memory. Performance
evaluation was conducted using Java on Linux. The existing
schemes such as [22], [23] were chosen for comparison.
[22] was chosen to demonstrate the performance difference
between the partitioning schemes of the edge-cut method and
vertex cut method, and [23] was chosen to demonstrate the
excellence of the proposed scheme using a vertex-cut-based
existing scheme that is identical to the proposed scheme.
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FIGURE 8. Changes in IBF value according to generation of dynamic
graphs.

Two datasets were used, as shown in Table 4. The two datasets
were provided by SNAP [32]. To generate streaming data for
insertion and deletion, the graph data of AS-CAIDA [33] and
US-patent citation graph [34] were used. The performance
evaluation compares the proposed scheme with the existing
schemes in terms of vertex replication ratio, communication
cost, and query processing time. The vertex replication ratio
is ametric that determines howmany vertices are replicated to
other partitions based on vertex-cut based graph partitioning.
The lower the value of the metric is, the better it is to be
partitionedwithout being replicated. The communication cost
means the number of communications between partitions.
The number of communications refers to the number of times
the data was exchanged between the partitioned vertices to
calculate the exact value while the graph algorithm was oper-
ating. In general, the higher the vertex replication ratio value
is, the greater the probability that the communication cost will
increase is. Query processing time means the time to process
graph algorithms such as PageRank or fining subgraphs.

The hot data are frequently used data, and the proposed
scheme ranks and manages the frequency of the vertices’
ID appearing in the queries. However, a criterion is required
to determine which vertices are to be regarded as hot data
based on the rankings of vertices arranged in the descending
order. To establish the criterion, an index was defined first
to verify the level of load imbalance. Equation (5) is the
equation for calculating the level of load imbalance. IBF is the
abbreviation for imbalance factor and shows the imbalance
level. MU is the abbreviation for memory utilization and
shows the memory utilization rate. CS is the abbreviation for
computation size and shows the throughput while having the
same value as CS i. Consequently, the IBF value shows the
deviations in memory utilization rate and throughput.

IBF =
√
MU ∗ CS (5)

In the experimental evaluation, dynamic graphs are added
by changing the criterion of the hot data to the top 5%,
10%, 15%, and 20%. Simultaneously, while performing the
subgraph search queries, the change in IBF value is mea-
sured. Figure 8 shows the changes in IBF value according

FIGURE 9. Vertex replication ratio according to the weights.

to the generation of dynamic graphs. When the top 10%
of the data are classified as hot data, the IBF value is the
lowest. By examining the dataset, it was confirmed that only
∼10,000 vertices among ∼1,000,000 vertices were the ver-
tices of high degree that had more than 150 edges. Based
on the experimental result, the top 10% will be used as the
criterion hot data in future experimental evaluations.

To determine the weights α, β, γ of the equation used
for dynamic graph partitioning, three experiments were con-
ducted. In the first experiment, the vertex replication ratio
is investigated, which is an important factor in the vertex-
cut-based partitioning scheme. This is because depending
on the number of partitioned vertices, the communication
cost for synchronization between the vertices is incurred,
which will affect the processing performance. In order inves-
tigate the performance from the replication ratio of vertices,
the replication ratio of the vertices was verified for the graphs
produced after all the dynamic graphs have been generated.
Fig. 9 shows the replication ratio according to the weight.
When the weight for the replication ratio of the vertex was
set to the highest, the lowest replication ratio was indicated.

When the vertex replication ratio is high, it implies that
many nodes exist whereby the vertices must be synchronized.
Accordingly, a relatively high communication cost will be
incurred. To confirm this, the PageRank algorithm was per-
formed, and based on the partitioned vertices, the numbers of
sending/receiving data were recorded; subsequently, by mul-
tiplying the size of the real-number-type data, which was
a delivered factor, the communication cost was calculated.
Fig. 10 shows the communication cost result between parti-
tions according to the vertex replication ratio. When α = 0.7,
β = 0.1, γ = 0.2 whereby the vertex replication ratio
was the lowest, the lowest communication cost was incurred.
When the two data sets were compared, it was found that the
US-patent graph data incurred a relatively higher communi-
cation cost. Since the data were sent and received between
the vertices owing to the characteristics of the PageRank
algorithm, more communication cost was incurred in the
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FIGURE 10. Communication cost between partitions according to the
weights.

FIGURE 11. Subgraph query processing time according to the weights.

US-patent data, in which the number of vertices was approx-
imately twice higher.

Not all queries for the graphs require computation target-
ing the entire vertices or communication between vertices.
Therefore, it is not appropriate to set the weight based on the
communication cost and vertex replication ratio only. In order
to investigate the performance in computation for subgraph
queries that access partial data, the average processing time
of subgraph search queries was measured. Fig. 11 shows
the subgraph query processing time according to the weight.
A faster processing speed was shown when the weights were
assigned evenly rather than setting a high weight for a par-
ticular factor. When compared with the two earlier experi-
mental results, the case of α = 0.5, β = 0.25, γ = 0.25
demonstrated a higher performance than the case of α = 0.4,
β = 0.3, γ = 0.3 in the aspects of communication cost
and vertex replication ratio, and a similar performance was
shown in the subgraph query processing. Based on this result,
the weights of α = 0.5, β = 0.25, γ = 0.25 were used in the
comparative evaluation with the existing schemes.

FIGURE 12. Evaluation for vertex replication ratio.

Based on the criterion selected in the in-house evalua-
tion, a comparative evaluation with the existing schemes was
conducted. The evaluation was performed for the vertex-cut-
based existing scheme and the vertex replication ratio; based
on this, the runtime of the PageRank algorithmwas evaluated.
Although the runtime was comparatively evaluated with the
edge-cut-based existing scheme, it was excluded from the
results since the vertex replication ratio and the number of cut
edges could not be compared. Fig. 12 shows the evaluation
results for the vertex-cut-based existing scheme and vertex
replication ratio. The y-axis is the vertex replication ratio, and
shows the average value calculated by recording the number
of nodes where each vertex has been partitioned. The stor-
age utilization and processing performances exhibit values
between 0 and 1, whereas the vertex replication ratio exhibits
a large number depending on case. As shown in Fig. 12, how-
ever, when compared with the proposed scheme, the vertex
replication ratio demonstrated a similar performance. This
was since in the proposed scheme, the weight α of the ver-
tex replication ratio was set higher compared to the storage
utilization and throughput.

FIGURE 13. Evaluation of PageRank algorithm.

According to the comparative evaluation result of the
vertex replication ratio, the evaluation for the runtime of
the PageRank algorithm was conducted. Fig. 13 shows
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the comparative evaluation result for the PageRank algo-
rithm runtime. As shown in the figure, when compared
with the vertex-cut-based scheme, a similar or slightly
improved performance was shown. When compared with
the edge-cut-based scheme, the performance improvement
was approximately twice higher, and this was consistent
with that proven by PowerGraph. The real-life graphs of the
AS-CAIDA and US-patent datasets demonstrated the power-
law degree distribution; further, the vertex-cut-based parti-
tioning scheme demonstrated a more improved performance.
Furthermore, the runtime of the US-patent graph was rela-
tively long since it contained approximately two times more
vertices compared with the AS-CAIDA graph.

FIGURE 14. Subgraph query evaluation.

A comparative evaluation was performed for the process-
ing time of the subgraph search query that requires access
to partial vertices. The evaluation was performed for two
datasets, AS-CAIDA and US-patent, and the comparative
evaluation was conducted with the vertex-cut-based exist-
ing scheme. The AS-CAIDA graphs were based on real
graph data stored by time; based on those, changes were
extracted and used for the dynamic graphs. However, the
US-patent graphs were based on large-scale static graph data,
and by deleting a particular portion from the file, the size
was reduced by 50%; subsequently, by adding the deleted
portion to the dynamic graphs, the experimental evaluation
was performed. 1%, 2%, 5%, and 10% were used as the size
of graph data deleted for the comparative evaluation using the
ratio of added dynamic graphs. Fig. 14 shows the result for the
average processing time of the subgraph search queries using
the AS-CAIDA graph data. As shown in the result, the perfor-
mance was improved approximately twice compared with the
existing scheme. In contrast to the case of PageRank, a shorter
processing time was shown with the US-patent dataset. The
reason can be determined by merely observing the size of
the datasets. Compared with the AS-CAIDA, because the
number of edges is smaller whereas the number of vertices
is approximately larger, a shorter runtime is shown in the
subgraph queries that performed search based on edges.

FIGURE 15. Subgraph query processing time according to the size of a
dynamic graph.

Fig. 15 shows the query processing time when 1%, 2%,
5%, and 10% of the entire data were used for the size of the
dynamic graphs in the experiment using the US-patent graphs
only. In the figure, the shortest processing time was shown
when the 10% size was used. No significant difference is
indicated between the sizes of 1% and 2%; however, when the
size was changed to 5% and 10%, some differences occurred.
The reason was since whenever a query was processed, time
was incurred to generate statistical information, and when
dynamic graphs were added in small units, the number of
computations increased.

A summary of the performance evaluation results is as
follows. We performed our own performance evaluation for
hot data selection. This resulted in the lowest performance
imbalance (IBF) between nodes. In addition, various weight
performance evaluations have resulted in vertex replication
ratios and low communication costs, which show the best
PageRank performance when α = 0.7, β = 0.1, and
γ = 0.2 The vertex replication ratio refers to the number
of vertices replicated between nodes. It is closely related
to communication cost testing because the lower the vertex
replication ratio is, the lower the communication volume is.
The weights obtained by self-performance evaluation worked
independently of the dataset. However, because theUS-patent
dataset has a relatively large number of vertices, it can be
seen that overall communication costs tend to be high. Since
PageRank performs operations at all vertices, the replication
ratio has a high weight. However, we could see that Sub-
graph queries tend to approach only some data and there-
fore need to be weighted differently according to the query.
Even in the processing of subgraph queries, even though the
replication ratio has a high weight, giving the three weights
(α, β, and γ ) equally shows better performance.

After obtaining optimal weights through self-performance
evaluation results, we perform comparisons with existing
schemes and demonstrate the superiority of the proposed
scheme by showing high performance in both graph queries
(PageRank, Subgraph). In addition, we have shown the

VOLUME 9, 2021 65263



D. Choi et al.: Dynamic Graph Partitioning Scheme for Supporting Load Balancing

validity of the proposed scheme by comparing it with both
vertex-cut and edge-cut based partitioning schemes. In this
paper, real-world graph data show a Power-law degree dis-
tribution, further enhancing the reliability of the proposed
scheme by presenting performance evaluation results consis-
tent with the conclusion [6], where vertex-cut based graph
partitioning schemes show better performance.

V. CONCLUSION
In this paper, we proposed a novel dynamic graph partitioning
scheme considering the load of a node and hot data to handle
a large dynamic graph. The proposed scheme defined the
load of a node as throughput and memory usage. We also
managed hot data that means a particular vertex frequently
searched among partitioned graphs to prevent the concentra-
tion of hot data on a particular node. Finally, we perform
incremental graph partitioning on a dynamic graph by consid-
ering the node load, hot data, and the vertex replication ratio.
We showed the superiority of the proposed scheme by con-
ducting various performance evaluation in two graph queries
such as PageRank and Subgraph. In addition, we have shown
the validity of the proposed scheme by comparing it with both
vertex-cut and edge-cut based partitioning schemes on real-
world graph data. In this paper, performance evaluations were
conducted only for PageRank and subgraph queries. In order
to show the superiority of the proposed scheme in various
graph applications, we will perform additional performance
evaluations on various graph query and analysis algorithms
such as DFS, BFS, SSSP, Strongly Connected Component,
Cycle Detection, and Graph Coloring. In addition, we will
further study graph merging and repartitioning policies con-
sidering the failure situation of nodes and load balancing.
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