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ABSTRACT PID controllers are widely used and adaptable to various types of systems. However, for the
response to be adequate under different conditions, the PID gains must be adjusted. The tuning is made
according to the difference between the reference value and the real value (error). This work presents a
self-adjusting PID controller based on a backpropagation artificial neural network. The network calculates
the appropriate gains according to the desired output, that is, the dynamic response desired which is
composed of the transient part and the stationary part of the step response of a system. The contribution
of the work is that in addition to using the error for network training, the maximum desired values of
overshoots, settling times, and stationary errors were used as input data for the network. An offline training
database was created using genetic algorithms to obtain the dynamic response data associated with PID gains.
The genetic algorithm allows getting data in different operating ranges and allows using only stable gains
combinations. The database was used for training. Subsequently, the neural network estimates an appropriate
gain combination, adapting to the error and the desired response. The method performance is evaluated by
controlling the speed of a direct current motor. The results indicate an average error of 4% for the database
between the requested and system response. On the other hand, the gains estimated by the network in the test
dataset (1544 combinations) did not cause instability and complying with the expected dynamic response
in 86% of the dataset.

INDEX TERMS Auto-tuning, speed control, genetic algorithm, neural network, PID, dynamic response.

NOMENCLATURE
PID Proportional integral derivate controller
ANN Artificial neural network
ts Settling time
Mp Maximum overshoot
ess Steady-stade error
GA Genetic algorithm
DC Direct current
tsd Settling time desired
Mpd Maximum overshoot desired
essd Steady-stade error desired
GM Genetic model
v(t) Voltage input of the motor

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wang.

ia(t) Current consumed by the motor
ω (t) The angular speed of the motor
Ra Armature resistance
La Armature self-inductance
TL Load torque
Km Mechanical constant
Ke Electrical constant
B Friction coefficient
Kp Proportional gain
Ki Proportional gain
Kd Proportional gain
K Vector with three K gains [Kp Ki Kd]
RMSE Root media square error
Logsig Log-sigmoid transfer function
Purelin Linear transfer function
Tansig Hyperbolic tangent sigmoid transfer function
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I. INTRODUCTION
PIDs are the most widely used controllers commercially due
to their efficiency/simplicity ratio [1]. Its flexibility allows
to find them in multiple areas. For example, at work [2],
a PID is used to control a mobile firefighter robot. The
authors of [3] use a PID controller to control the thermal
environment variables in a pig farm, obtaining better perfor-
mance than overhead electrical resistance with a thermostat.
At work [4], the authors develop a two-degree PID to con-
trol the motor speed in an automatic lawnmower that uses
solar energy as the primary source. Papers [5], [6] focus on
motor speed control, demonstrating the usefulness of adaptive
PIDs, in addition to comparing them with traditional PIDs;
works like [7], [8] perform the same task but with a fuzzy
PID presenting satisfactory results in regulating motor speed.
These studies demonstrate the wide range of uses and the
importance of using these types of controllers.

For the PID to generate the desired response in the system,
its gains must be adjusted appropriately. The Ziegler Nichols
standard method is the typical adjustment method. However,
several studies indicate better results in tuning. For example,
the work [9] uses fuzzy logic to auto-tune a PID, allow-
ing the controller to vary according to the current system
error.

Another alternative for tuning is the so-called metaheuris-
tic algorithms. For example, the authors of [10]–[12] use a
particle filter to perform the PID tuning. The works [13]–[15]
use a similar methodology, in which GAs are used for the
same objective, achieving effective results for the proposed
tasks. Another metaheuristic algorithm used as a tuner is the
cuckoo search algorithm, which has obtained good results
as a tuner in works such as [16]–[18]. The use of meta-
heuristic algorithms has spread. In several investigations,
such as [19]–[21], the authors analyze the advantages and
disadvantages of these algorithms applied to engineering.

Despite the high adaptability and efficiency of metaheuris-
tic algorithms, their process is inherently iterative [22]–[24].
This quality increases its execution time for online imple-
mentation. Another option highly used for PID auto-tuning
is ANNs. Many works address this approach, like [22]–[24].
The investigation [25] presented a similar methodology to
this work. Nevertheless, three fundamental characteristics of
the dynamic response (Mp, ts, ess) for the ANN training are
not considered.

The studies above indicate that PID adjustment is not a
trivial issue. The present work proposes a PID self-tuning
system based on ANNs to control DC motor speed. Unlike
current tuning studies, the desired dynamic response is cho-
sen through 3 parameters that reflect both the transitory stage
and the steady-state. The backpropagation ANN trained with
the database obtained by the GA is used to achieve this. The
GA ensures data distribution in possible operating conditions
and rejecting combinations of gains that make the system
oscillate or make it unstable. The GA performs this work
looking for the appropriate K values that would deliver the
desired dynamic response.

The ANN uses as input the output of the motor and the
step reference. The input vector representing the dynamic
response is [Mp; ts; ess; reference]. On the other hand, the out-
put vector is considered as [Kp Ki Kd]. These vectors allow
the ANN to self-adjust the gains to control a DC motor under
various operating conditions and references.

The methodology proposed in this work differs from other
works on auto-tuning by ANNs like [22], [24], [26] in data
distribution is not generally considered, nor the instability
that various combinations of gains produce, nor the operating
range of the system.

The dynamic response of the system can be different
depending on the system under analysis and the control signal
used. Figure 1 (a) shows the key components that determine
the dynamic response of a system. The purpose of this work
is to obtain a self-tuning procedure that allows choosing the
desired response since, depending on the application, a differ-
ent dynamic responsemay be required. Figure 1 (b) shows the
possible outputs that the PID controller can have according to
the combination of K chosen.

Some combinations generate an unstable response, and it
is always desired to avoid this type of response. Other com-
binations generate a stable output but with high oscillations.
Although it may be an acceptable response in a general way,
it is desired to avoid oscillations. One useful combination
generates a response without oscillations but with overshoot.
This type of response is helpful when speed is required, and
precision is not a critical factor. An example is surveillance
with drones, where the vehicle is needed to move fast and
overshoot it does not have significant effects on the mission.
On the other hand, it is possible to obtain a slow but precise
response as an output the system takes longer to reach the
reference but does not have overshoot. For example, welding
or a cutter robot cannot afford to go beyond the reference
since an overshoot in these applications implies task collapses
or severe failure. Considering the above, the system proposed
in this article is presented as a self-tuning option that adapts
to the response that the application requires and can make
it faster or slower depending on the needs of the user or
application.

The characteristics and contributions of this work can be
summarized as:
• Construction of a database with GA for offline training
of a backpropagation ANN.

• Profit combinations that make the system unstable
thanks to GA are avoided in the database.

• The gains that make the system oscillate are also
avoided.

• Whit the GA, data distribution in the database for net-
work training is guaranteed, having data in all operable
ranges of the physical system.

Selection of the desired dynamic response to find the appro-
priate gains with the auto-tuning system.

This work is divided into five sections. Section I presents
the state-of-the-art, related investigations and a brief descrip-
tion of the proposed method. The database construction from
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FIGURE 1. Dynamic response. (a) Parts of dynamic response (b) Types of dynamic response with different K.

a GA for controlling the speed of a DC motor was exhibiting
in Section II. Section III describes the building and training
of the ANN for the self-tuning of the PID. Section IV gives
the results of the self-tuning PID. Finally, a conclusion is
manifested in Section V.

II. DATABASE WITH GENETIC ALGORITHMS
GAs are inspired by the way genetics selects the best genes.
They tested in multiple areas and have great flexibility in
solving optimization problems [27]. GA was used because
it is the most widespread and tested metaheuristic algo-
rithm [27]. The objective of the GA is to build offline a
database that relates the PID gains to their dynamic response.
In that way, the algorithm looks for the gains that obtain a spe-
cific desired dynamic response. This work uses a fixed-state
GA, in which the algorithm starts from a random population,
where each individual is a vector with the three PID gains
(Kp, Ki, and Kd). Taking into account the law of control of a
PID described by (1).

U (t) = Kpe (t)+ Ki

∫
e (t) dt+ Kd

de (t)
dt

(1)

The first step of the algorithm is the random creation of
individuals. A large number of individuals provides large
diversity. However, the computation time also increases with
this number. For this work, the number of individuals (m) is
100. Later the fitness of each individual is evaluated to select
the individuals with better fitness for this work. Fitness is
assessed with the Euclidean distance between the ts, the Mp,
and the ess, as shown in (2):

f =
√

(tsd−ts)2 +
(
Mpd −Mp

)2
+ (essd−ess)2 (2)

The f is the value of the fitness, and subscripts d means
that it is the desired value. In this way, the individuals with
a lower value of f will reproduce. It was also considered
that the desired values are the maximum values expected in
the response of the system. Thus, if the real value is less
than the desired one, the contribution of that variable to the

value of f will be zero. Later, it goes through the other GA
stages, reproduction, mutation, andmixing of the descendants
with the original surviving population. Figure 2 describes the
whole process.

FIGURE 2. Block diagram for genetic algorithm proposed.

The parameters of the algorithm determine its efficiency in
the search. The initial parameter values were chosen accord-
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ing to the bibliography [27] and were adjusted according to
the performance shown. Any solution found by the algorithm
is valid, even if it is not the optimal solution. This allows
choosing parameters with a certain tolerance. The complete
list of the parameters used and their description are displayed
in Table 1.

TABLE 1. Genetic algorithm parameters.

The parameter values: population size, generations, muta-
tion probability, biological pressure; were selected experi-
mentally, starting from values used in previous works [26]
and adjusting the value according to the algorithm perfor-
mance. The range parameter (limit values of K gains) by def-
inition must be greater than zero. Hence it is only necessary
to set an upper limit. The upper limit for each K was made
considering the saturation of the plant effect and dynamic
response. Using the values described in Table 1 is possible
to find gains that generate the desired response in different
ranges. The plant used in this work is a DC motor model
CML-050 from the Mavilor brand. DC motors are widely
studied plants. The system of differential equations described
in (3) represents the dynamic model of a plant.

v (t) = Raia (t)+ La
dia (t)
dt
+ Kaaω (t)

Kmia (t) = J
dω (t)
dt
+ Bω (t)+ TL

 (3)

where:
v(t) is the voltage.
ia(t) is the current.
ω (t) is the angular velocity.
Additionally, Table 2 indicates the model parameters of

the chosen motor. These parameters were obtained follow-
ing the work exhibited in [28], where the authors use the
Steiglitz-McBride algorithm for the parametric estimation.
The data acquisition system consists of two self-developed
cards. The first card is used to condition the signal. Later,
the data acquisition card based on the PIC18F455 micro-

TABLE 2. Mavilor CML-050 parameters.

controller is used. This card processes the signals (current
and speed) and sends them via USB to the computer, where
Matlab uses the Steiglitz-McBride algorithm and obtains the
motor parameters. The general schematic process for param-
eter estimation is illustrated in Fig. 3.

It is required to clear the variables of interest to simulate the
dynamic motor model. Since it is speed control, the system of
equations (3) is rewritten, such as:

dia (t)
dt
=
v (t)− Raia (t)+ Kaaω (t)

La
dω (t)
dt
=
Kmia (t)− Bω (t)− TL

J

 (4)

Once the plant and the necessary parameters for the algorithm
have been defined, the GA runs iteratively. The process is
displayed in Fig. 4, where the plant (the Mavilor motor) is
simulated by (4). This process is repeated with random values
for the genetic model (GM) to evaluate cases with different
combinations of tsd, Mpd, essd, and the reference.

Subsequently, Gains that meet the GM requirements are
save in the database or, failing that, the closest solution. These
values are stored in the database that will be used for neural
training in the next stage. Table 3 shows the ranges used to
generate the other GM combinations. A total of 10296 combi-
nations of different GMs were simulated for the construction
of the database. The values were selected to keep the response
within the operating limits of the motor.

TABLE 3. Values used for database generation.

The database used has vectors in which ts, Mp, ess, ref-
erence, Kp, Ki, and Kd are stored. The final database is
10,296 vectors with simulation outputs of the proposed GM
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FIGURE 3. Block diagram for parameter estimation.

FIGURE 4. Block diagram of the procedure for obtaining the database with the genetic algorithm.

FIGURE 5. Genetic algorithm results: Motor velocity versus reference.

were stored. Several results of this algorithm can be seen
graphically in Fig. 5 and numerically in Table 4.

The complete database has a root media square
error (RMSE) of 5%. It meets the requirements of the GM

TABLE 4. Genetic algorithm numeric results.

requested, keeping the values below the maximum desired
values for most of the cases. In the cases where the conditions
were not met, the GA obtained values close to the model.
Therefore, these solutions are kept in the database.

III. ARTIFICIAL NEURAL NETWORK AS AUTOTUNER
A backpropagation ANN is developed in this segment. This
type of ANN was selected because it is the most widely used
neural network model [29]. The ANN was trained with the
database obtained in the previous section. The database was
divided into inputs (ts, Mp, ess, Ref) and outputs (Kp, Ki, Kd)
to work with ANN. In turn, each submatrix was randomly
divided as follows: 70% of the data for the training stage,
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15% for a network validation stage, and 15% for evaluating
the network performance.

The first stage in ANNs consists of selecting the appropri-
ate parameters for the architecture. In this work, the initial
architecture is based on the geometric pyramid rule. Sub-
sequently, it adapted following the methodology exhibited
in [30], where the authors adjust the architecture according
to the network performance. Multiple simulations were run
to test performance with various architectures, taking RMSE
as a performance measure. The most relevant results of these
tests can be seen in Table 5.

TABLE 5. Performance of neural networks with different architectures.

In Table 5, it is observed that architecture 9 is the network
that offers the best output, presenting a lower RMSE. This
error is the average RMSE of each gain (Kp, Ki, Kd). Thus,
this architecture was used. As an alternative, a network for
each K (without dependence between outputs) was devel-
oped. However, the error is similar. Therefore, it was decided
to work with a single network for the vector K.

It is necessary to analyze each variable influence on the
network. Some typical dynamic response variables were not
considered, such as rise time, delay-time, and peak-time,
because these variables have a high correlation with the
overshoot. Having a multivariable system is challenging to
evaluate the impact of one of these variables in the network.
Nevertheless, to verify that the inputs are significant for the
ANN, the same architecture was executed but eliminating the
input variable from the network inputs. The results can be
seen in Table 6.

Contemplating Table 6, it is noticed that each variable
contributes a significant reduction of the RMSE. Therefore,
the entries selected for the network can be considered valid.
In Fig. 6 can be observed the general process of the pro-
posed autotuner with this network. It can be seen that the
network requires all four parameters of the GM. With this
data, the trained network will calculate the three appropriate

TABLE 6. Influence of each input variable in the neural network.

FIGURE 6. Block diagram of the proposed automatic adjustment system
in simulation.

gains. Subsequently, the PID can obtain the desired dynamic
response.

TheMatlab-Simulink environment was used to execute the
simulations. Matlab runs the GM while Simulink is in charge
of simulating the PID, the ANN, and the motor dynamics.
For Simulink simulations, a variable step numeric method
(ODE45) was used for 5 s.

IV. RESULTS
This section shows the ANN results as a tuner agent, which
is considered desired establishment times, desired maximum
impulses, desired maximum steady-state errors, and desired
speeds that the network has not used in its training. The result
of the test data set is 14.83% in RMSE. This number allows
us to estimate the output globally. Nevertheless, this RMSE is
in gains estimation. Ten random GM combinations were pro-
posed to evaluate the performance of the ANN in the dynamic
response. These values combination was not previously used
in any data set. The selected values are displayed in Table 7.

TABLE 7. New genetic models are used to test the network.

The values shown in Table 7 were tested under the same
conditions, that is, a Simulink simulation with ODE45 for 5 s.
In the same way, initial conditions were considered as zero
for both velocity and current. The non-linearity of saturation
was also used in work with the expected operating ranges in
the motor (0 to 24 v). In this way, the current is also limited.
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FIGURE 7. ANN simulation response with Kp, Ki, Kd, estimated. (a) Velocity response from GM1 to GM4. (b) Velocity response from GM5 to GM7.
(c) Velocity response from GM8 to GM10.

TABLE 8. Numerical network results for each genetic model.

The results are presented in Table 8 are those obtained using
the GMs from Table 7. The GMs represent different operating
conditions that a user may need according to the application
required.

Additionally, Fig. 7 illustrates the step response of the
GAs proposed. The dynamic response with Kp, Ki, and Kd
estimated by the ANN can be observed. The previous images

allow us to monitor the performance for specific cases. The
overall network performance is evaluated from the dynamic
response point of view with a new data set. The size of the
new data is the same as the original. The errors for each input
variable are shown in Table 9.

TABLE 9. Error in step response for each variable.

Also, tests were performed to observe an input parameter
variation while the other parameters remain fixed. The varied
parameter will cover the complete ranges of motor operation.
In this way, it is possible to observe the network performance
in different magnitudes of a parameter. With parameter varia-
tion, further gains were calculated with the ANN, and the step
response given by the system was analyzed. For these tests,
the GM9 in Table 8 was used, which had the worst results in
the study for specific models. The first input to vary is tsd.

65212 VOLUME 9, 2021



O. Rodríguez-Abreo et al.: Self-Tuning Neural Network PID With Dynamic Response Control

FIGURE 8. Error change with variation of a parameter. (a) Variation of tsd. (b) Variation of Mpd. (c) Variation of ess.

Figure 8a exposes the error variation (desired value- real
value) in the other inputs as the value of ts changes. Figure 8b
illustrates the error variation when the value of Mpd changes.
Finally, Fig. 8c displayed the error variation when the per-
centage of essd changes. Although there are variations, the
above images indicate that the network performance varies
according to the range in which the input parameters work.

Finally, Table 10 shows a comparison of the ANN-based
autotuners. This work considers two fundamental aspects, the
dynamic response and, due to the GA, it avoids combinations
that produce instability.

It can be observed in Table 10 that the difference of this
work concerning similar titles lies in managing the dynamic
response. Typically, only the error is supervised; however,
controlling how the error is reduced is critical for many
processes.

The results obtained with the test data set used to test the
performance of the proposed autotuner show that 86% of the
data (1327 combinations) meet the desired requirements or

TABLE 10. Comparison of ANN-based autotuner in similar works.

a lower value, that is: ts <tsd, ess <essd and Mp <Mpd.
The 14% that do not meet a lower value have an approximate
value, as GM9 in Table 8. Also, 100% of the test data are
shown to provide a stable response. Although it does not guar-
antee the stability for an infinite set of possible combinations,
the results suggest stable responses in the operation ranges,
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acceptable error reduction performance, and, above all, con-
trol of the dynamic response, which is the main objective of
the work.

V. CONCLUSION
This article presents an auto-tuning system using ANNs that
allows controlling the speed of a DC motor and the type
of response expected. The results indicate that auto-tuning
can follow references in multiple plant operating ranges
and maintain the desired temporal response and avoid the
gains combinations that can make the system unstable. The
dynamic response of the system complies with the desired
GA even when operating conditions are required at the motor
running limits, for example, ts of 0.1 s or speeds close to the
limit of 314 rad / s with nominal operating voltage.

Unlike other auto-tuning investigations with ANNs, in this
work, a database built with GA was used. The GA guarantees
that the training data of the network do not include gains
combinations that cause oscillations. Since they comply with
the design requirements proposed, and this let us choose the
desired dynamic response.

Although the integral of the error is typically used as a
fitness function, this work focuses on the response of the
system. Therefore, characteristics of the dynamic response
are used. The first characteristic used is overshoot, which
occurs in the transient stage. The second characteristic used
is the steady-state error, which appears in the steady-state.
Finally, the settling time was used, representing the transi-
tion between the two dynamic response stages. In this way,
the fundamental parts were covered in the output system with
the chosen fitness function.

For the development of this work, some simplifications and
limitations were considered. For example, the architecture of
the neural network is limited to backpropagation networks.
Regarding the motor model, it is assumed that Ka and Ke
are equal in magnitude, although in reality, their values differ
slightly. The entire test dataset was tested with the ANN, and
no instability was found in those data. However, stability can-
not be guaranteed for the infinite set of input combinations.
Finally, it is known that there is a strong correlation between
the rise time, delay-time, and peak-time with the overshoot.
For this reason, these variables of the dynamic response were
not considered as network inputs.

A disadvantage of the proposed method is that the perfor-
mance of the network is linked to the operating range of the
systems, as shown in Fig. 8. this implies that although you
have control over the response of the system, the precision
will not be constant and in the system operating limits perfor-
mance declines. Another limitation is that some combinations
are physically impossible to achieve for the system. However,
the proposed method does not consider any way to identify
these combinations.

A study was done to determine the appropriate network
architecture, testing the performance of different networks.
The training and execution of the network did not represent
a significant computation time. However, the GA simulated

with the dynamic model of the motor if it has a high compu-
tational cost. It could be reduced with a simpler metaheuristic
algorithm from the computational point of view, like the algo-
rithm of Jaya or even algorithms that require fewer iterations
to converge, like the cuckoo search algorithm.As futurework,
this methodology will optimize the energy consumption of a
drone based on the task that the vehicle must perform.
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