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ABSTRACT In TDOA passive location tasks, the geometric configuration can greatly affect the positioning
precision due to the complicated characteristics of electromagnetic environment. How to find an appropriate
path to a good geometry to locate the transmitter accurately is vital in practical location tasks. This paper
proposes a novel geometry optimization method based on deep reinforcement learning. In the proposed
method, stations are regarded as mobile agents that can receive wireless signals decide where to go. All
agents are controlled by an actor-critic learner, which is trained on the experiences collected from executing
the TDOA location task repeatedly. To evaluate the trained agents, a TDOA location simulator environment
with complex electromagnetic characteristics is developed. The empirical results show that, the learner
mastered useful strategies and navigated to optimal geometric configurations efficiently. A visual depiction
of highlights of the learner’s behavior in TDOA passive location tasks can be viewed in the video provided
in the supplementary material.

INDEX TERMS Geometry optimaztion, passive location, TDOA, reinforcement learning, actor-critic.

I. INTRODUCTION
Passive location techniques are used for various scenarios,
such as telecommunication pseudo base station discovery,
aviation interference investigation, etc. Passive location sys-
tems based on time differences of arrivals (TDOA) is widely
used for its simplicity and crypticity. In a TODA location
system, a number of spatially separated sensors capture
the signals emitted by the transmitter and estimate time
differences of arrivals to locate the transmitter [1]–[4].

However, the geometric configurations of stations can sig-
nificantly affect the positioning precision [5], [6]. In the
literature, some existing studies tried to obtain general prin-
ciples of geometric configurations from massive experiments
[6], [7]. And only some rough conclusions have been drawn.
For instance, all stations should not line up, or stations should
form a triangle to surround the transmitter. There also exist
many studies that have employed heuristic methods, such
as genetic algorithm (GA) [8]–[11] or particle swarm opti-
mization (PSO) [12]–[14], to search the optimal geometry.
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These methods are based on empirical models in which
signals are assumed to propagate ideally. However, in the
real world, an electromagnetic environment changes abruptly
with the positions of stations due to various factors, such as
signal frequency, interference, attenuation, multipath, obsta-
cles, and noises. These factors can hardly be described fully
in empirical models, leading to suboptimal geometric con-
figurations and low positioning precision. What more impor-
tant is that, GA and PSO are hard to realize in the real
physical world. Take PSO as an example, one can hard to
use thousands of particles (in the real world, they may be
UAVs or unmanned cars) to navigate. Even if the physical
limitation was satisfied, these heuristic methods suffer from
amnesia, which means repeated search for the same problem
when faced again. This paper provides a new perspective
for geometric optimization, i.e., a sequential decision-making
problem which needs to specify a path that navigates
to an optimal geometry in a complex electromagnetic
environment.

This paper make effort to achieve these goals:

• Find an optimal geometric configuration in less time and
with shorter total length of paths;
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• As long as the positioning precision is guaranteed, keep
away from the transmitter;

• Behaviors are comprehensible.
Reinforcement learning (RL) is a viable and elegant

approach to yield an optimal policy for sequential
decision-making problems [15]–[17]. In TODA location
tasks, the tricky electromagnetic spatial distribution can be
tracked by RL in a trial-and-error paradigm with the non-
linear and parameterized deep neural network (DNN), which
provides the compact and powerful representation of experi-
ences. Therefore, this paper address the problem of finding
optimal geometric configuration in the TDOA location sys-
tems through deep reinforcement learning (DRL) [18]–[22].

Under the framework of DRL, all stations are regarded
as mobile agents.1 These agents capture the radio signal in
the air and send it along with other observations to a central
learner. The learner makes the decision on where to go based
on the information gathered from all the agents, then, learn
from the reward given by the environment. The learner is
actor-critic style, in which the actor is a multi-dimension
Gaussian actor with parameters generated by a neural net-
work. Actions are sampled from these Gaussian distributions
in each time step. The critic neural network is updated by
minimizing the square of time difference error. Then the critic
is used to update the actor neural network according to policy
gradient theory. To evaluate the proposed method, a TDOA
location task environment with complicated electromagnetic
characteristics is developed, in which the multipath effect
and interference as well as forbidden regions are considered.
The results show that agents can learn stably and exhibit
useful strategies to find optimal geometric configurations
efficiently.

II. BACKGROUND
This section introduces the relevant background on TDOA
passive location and DRL.

FIGURE 1. The topology of a TDOA location system: In a 2-D plane, L
stations receive the emitted signals to estimate the position of the
transmitter based on time differences of arrivals.

A. PASSIVE LOCATION WITH TDOA
Consider one transmitter and L stations intercepting the trans-
mitted signal in a 2-D plane, as shown in FIGURE 1. The i-th

1The terms station and agent are hereafter used interchangeably.

station’s position is denoted by pi = (xi, yi)>, and the position
of the transmitter is denoted by p? = (x?, y?)>. The sampled
observations at station i is denoted by

zi(k) = biu(k−τi)+εi(k), i = 1, · · · ,L, k = 1, · · · ,K ,

(1)

where u(k) is the signal radiating from the transmitter, K
is the length of signal, bi is the attenuation, τi is the time
delay with respect to station i, and εi(k) is spatially additive
white Gaussian noise. From the signals received by station i,
j (i 6= j), i.e., zi and zj, the time difference of arrival 1ij can
be obtained through correlation function

1i,j = Corr(zi, zj), (2)

where Corr(zi, zj) refers to the function that calculates the
time lag of zi to zj. Note that, the resolution of lag time estima-
tion is the sample interval, which determines the resolution
of positioning. With positions pi, pj, p? and time lag 1i,j,
the distance equation is established as follows:

1i,j · c = ‖pi − p?‖2 − ‖pj − p?‖2 (3)

where ‖ · ‖2 is the square norm, and c = 3 × 108 m/s is the
speed of light. With L spatially separated stations, there are(
2
L

)
distance equations can be established:


11,2 · c = ‖p1 − p?‖2 − ‖p2 − p?‖2
· · ·

1L−1,L · c = ‖pL−1 − p?‖2 − ‖pL − p?‖2.

(4)

In 2-D plane, the position of the transmitter is estimated
with at least 3 stations. More stations can contribute to more
distance equations which can enhance the robustness of esti-
mation with Least Square (LS) algorithms.

B. DEEP REINFORCEMENT LEARNING
In reinforcement learning, an agent interacts with the environ-
ment for a given goal, which is modeled as aMarkov Decision
Process (MDP): 〈S,A,P, r, γ 〉. At time t , it observes state
st ∈ S with S denoting the state space, takes action at ∈ A
with A representing the action space, receives a reward rt ∈
R, and moves to the new state st+1 ∈ S with probability
p(st+1|st , at ) ∈ P . The agent aims to learn a policy that
maximizes the cumulative sum of rewards [17]

J (π ) = E

[
∞∑
t=0

γ trt

∣∣∣∣π
]
, (5)

where γ ∈ [0, 1] is the discount factor that determines the
importance of future rewards. The state-value function, which
starts from state s and follows policy π , is denoted by

V (s) = E

[
∞∑
t=0

γ trt

∣∣∣∣st = s;π

]
. (6)
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The action-value function, that starts from state s, takes action
a and follows policy π , is denoted by

Q(s, a) = E

[
∞∑
t=0

γ trt

∣∣∣∣st = s, at = a;π

]
. (7)

And it is obvious that V (s) =
∫
a Q(s, a)da. Denote the

probability density, from state s to state s′ after t steps fol-
lowing policy π , as p(s|s′, t, π), then, the discounted state
distribution is ρ(s′) ,

∫
S
∑
∞

t=1 γ
t−1p1(s)p(s|s′, t, π)ds. The

objective function in reinforcement learning is to find the
optimal policy π that maximizes the expected expectation
long-term return,

J (π ) =
∫
S
ρ(s)

∫
A
π (s, a)r(s, a)dads

= Es∼ρ,a∼π [r(s, a)] (8)

where Es∼ρ[·] denotes the expected value with respect to
discounted state distribution ρ(·), following the policy π .

Tabular RL fails to handle huge or continuous state and
action spaces. To this end, deep learning is leveraged to
approximate the states and actions, which contributes to
a new powerful technique, namely, DRL. DRL has made
remarkable achievements in the fields of Chess [23], video
games [24], and physical control tasks [20]. In DRL, the value
function and policy are parameterized as Qω(s, a) and
πθ (s, a), respectively. According to Policy Gradient (PG)
theory [18], the objective function can be expressed by

J (πθ ) =
∫
S

∫
A
ρ(s) · πθ (a, s) · Aω(s, a)dads, (9)

where Aω(s, a) = Qω(s, a)− Vω(s, a) is the advantage func-
tion. We can obtain the on-policy gradient by differentiating
the performance function and applying an approximation

∇θJ (πθ ) ≈
∫
S

∫
A
ρ(s)∇θπθ (a, s)Aω(s, a)dads (10)

=

∫
S
ρ(s)

∫
A
∇θπθ (a, s)Aω(s, a)dads (11)

= Es∼ρ,a∼π
[
∇θ logπθ (s, a)Aω(s, a)

]
, (12)

where∇θ logπθ (s, a) is the score function. In (10), the approx-
imation drops a term that depends on the action-value gradi-
ent ∇θAω(s, a) and [25] argues that this is a good approxi-
mation since it can preserve the set of local optima to which
gradient ascent converges.

III. RL-BASED GEOMETRY OPTIMIZATION
This section presents a RL-based geometric configuration
optimization method for passive location systems.

A. MODEL FRAMEWORK
In this paper, a TDOA location system is considered with
L mobile stations (e.g., UAVs equipped with positioning
devices), i.e., L TDOA agents. Each agent transfers the
intercepted signals to a central processing agent where the
emitter’s position is estimated. Agents have no knowledge

of the emitter and the electromagnetic environment. Due to
the influence of multipath and noises, the signals received
by different agents may vary. To adapt to the complicated
electromagnetic spatial distribution accurately, a DRL based
method, with positioning error being the reward function,
is considered. The key elements in the MARL scheme are
defined as follows.

States. States consists of geometric information of sta-
tions, features of received signals, and positioning informa-
tion. At time step t , the signal emitted by the transmitter
is intercepted by agent 1, · · · ,L, denoted by zt1, · · · , z

t
L .

The features of the raw signal with high dimension are
extracted by function f (·). The state is defined by st =
(pt1, · · · , p

t
L , f (z

t
1), · · · , f (z

t
L), p̂0, σ̂est), p̂0 and σ̂est are the

center and variance of estimations of the transmitter in the
same time step.

Actions. Actions represent the decisions regarding where
to receive signals at next step. Let ati = (1x ti ,1y

t
i )

denote the action of agent i at time step t , where 1x ti and
1yti are movements on the x-axis and y-axis, respectively.
Then the joint action of all agents is denoted as at =
(1x t1,1y

t
1, · · · ,1x

t
L ,1y

t
L).

Rewards. This paper aims to develop agents that can
properly adjust the geometry automatically to improve the
positioning precision. To this end, we assess agents’ behavior
by positioning errors. Two types of positioning errors are
widely used:

• CRLB is an effective index of the precision of a passive
location system. Let the background position of the
transmitter be p? = (x?, y?)>. Then, the CRLB is a
function of state s and the background position p?.

• The statistic errors such as the mean error (ME) and
the root mean square error (RMSE) are popular errors.
These errors need more estimation at each time step to
calculate the statistic performance of positioning under
the current geometry configuration.

The CRLB is popular for it can evaluate the positioning error
without estimating the transmitter’s position from received
signals. But it depends on noise power spectral, which varies
when stations are placed in different positions. More impor-
tantly, the CRLB is a lower bound of positioning error instead
of error itself, and we can not always ignore the gap. The
RMSE reflects the positioning performance more directly,
independent of passive location algorithms. Hence, we utilize
RMSE instead of CRLB to shape the reward relating to
positioning error:

RRMSE(p, p?) = −10 log10

1+

√√√√ 1
Nest

Nest∑
k=1

‖p̂k? − p?‖2

 ,
(13)

where p̂k? is the k-th estimation of p?, and Nest denotes the
estimation times for each geometric configuration.

Another important aspect we need consider is the total
path length agents cover till reaching the optimal geometric
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configuration. The path reward at time step t ′ is represented
as follows:

Rpath =
t ′∑
t=1

L∑
i=1

√
|1x ti |

2 + |1yti |
2. (14)

The global reward consists of positioning error and total
path length:

R = RRMSE + ζRpath, (15)

where ζ > 0 is the coefficient that determines the relative
importance of these two rewards.

B. LEARN TO OPTIMIZE THE GEOMETRY
This section presents an actor-critic algorithm for geomet-
ric configuration optimization in TDOA location tasks. The
overall architecture of the proposed method is illustrated in
FIGURE 2. The actor takes in the state s made up of infor-
mation from all the agents and yields the actions to tell them
where to go in the next time step. The critic use both state s
and the action a given by the actor to evaluate the decision of
the actor, i.e., calculate Q(s, a). Both the actor and critic are
approximated with neural networks and parameterized by θ
and ω, respectively.

FIGURE 2. Schematics of the proposed method: An actor-critic learner
that learns positioning strategies from executing passive location tasks
repeatedly.

At the critic step, the agent takes in the state s and action
a to estimate the reward-to-go, i.e., Q(s, a;ω). A well trained
agent can estimateQ(s, a;ω) accurately, but at the beginning,
the agent has only rough estimation and the gap is defined as
time difference (TD) error:

δt = Rt + γQ(st+1, at+1;ω)− Q(st , at ;ω). (16)

The critic neural network is trained via minimizing the square
of the TD error through Stochastic Gradient Descent (SGD):

Jω = (Rt + γQ(st+1, at+1;ω)−Q(st , at ;ω))2 , (17)

∇ωJω = −δt∇ωQ(st , at ;ω), (18)

ω ← ω + αδt∇ωQ(st , at ;ω), (19)

where α is the stepsize for parameters update. Then the actor
network is trained through Policy Gradient Ascent (PGA):

θ ← θ + η∇θπθ (s, a)A(s, a;ω), (20)

where η is the stepsize for actor update and A(s, a;ω) = Rt+
γQ(st+1, at+1;ω)− Q(st , at ;ω) is the advantage function.

Algorithm 1 Geometric Configuration Optimization for
TDOA Location Systems With Actor-Critic
1: Initialize the TDOA passive location system with target

transmitter emitting signals;
2: Initialize the critic and actor with parameters ω, θ ,

respectively;
3: Initialize the iteration counter t ← 0.
4: repeat
5: for i = 1 : L do
6: Intercept the signals zti and sent it to the central

station;
7: end for
8: The central station update the state

st = (pt1, · · · , p
t
L , f (z

t
1), · · · , f (z

t
L), p̂0, σ̂est);

9: Sample an action from the policy at ∼ πθ (·|st );
10: Execute at for the passive location task and calculate

receive the reward Rt ;
11: Update the parameters of value networks:

δt = Rt + γQ(st+1, at+1;ω)− Q(st , at ;ω)
ω← ω + αδt∇ωQ(st , at ;ω)

12: Update the parameters of policy network:
θ ← θ + η∇θπθ (s, a)A(s, a;ω)

13: Update the counter t ← t + 1;
14: until The task is completed or reaching the maximum of

counter.

The details of the method is summarized in Algorithm 1.

IV. EXPERIMENTS
In this section, a TDOA location task environment with com-
plicated electromagnetic characteristics is developed, based
on which the proposed method is evaluated.

A. THE TDOA LOCATION TASK ENVIRONMENT
In the experiment, the simulator’s geographical coverage
is a circular region with radius being 4km, as shown
in FIGURE 3. The transmitter is at the center of the map
and equipped with an isotropically radiating antenna. The
channel attenuation is a function of the receiver’s position p:
b(p) ∝ λs/(4πd), i.e., the free space path loss, where λs is the
wave length of signal and d is the distance to the transmitter.
It is obvious that when the agents get close to the transmitter,
the SNR increases and the positioning error declines. The
RMSE is expected to be invariant under the same geometric
configuration but to change mildly as agents move slowly,
which is conducive to training the agents. According to the
reward RRMSE defined in (13), we designed an experiment
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FIGURE 3. The TDOA location tasks environment. The transmitter is
plotted as a black square in the center, surrounded by an 1-km forbidden
region. There are several low SNR regions plotted in light green, where
noises become stronger when agents enter it. Three agents are plotted as
red, green and blue dots, respectively.

to explore the influence of estimation times (Nest = 10, 30,
50, 80, 100) on the RMSE of positioning. FIGURE 4 shows
the RMSE curves with different Nest as agents get close to
the transmitter. It can be seen that, Nest = 100 is a good
choice when trade off between the asymptotic property and
computation complexity of reward function.

The noise and interference, as well as the multipath
effect, are all considered in this environment. The back-
ground noise is modeled by the spatially white noise defined
in (1). To include the interference, as well as the multipath
effect, some low regions, highlighted in green in FIGURE 3,
is placed in the simulator, where the noises are stronger
than other areas. The centers of these low SNR regions are
(2000, 0), (−2000, −2000), (−1500, 1700), and the corre-
sponding radii are 1500, 600, 400. When agents are in these

regions, the amplitude of noises becomes greater than that
in free space loss region. The radius of a low SNR region is
denoted by uSNR, and the distance of an agent to the center
of the low SNR region is d . Then, the amplitude of noise is
amplified KSNR times: KSNR = (uSNR − d)/uSNR × 9 + 1,
d ≤ uSNR.
Furthermore, in the real world, we can not get too close to

the transmitter, therefore, there is a forbidden area (the radius
is uTR = 1000) around the transmitter, shown as the gray
shadow region in FIGURE 3. Also, agents should not go too
further. The boarder of the simulator is drawn as black dashed
circle. The distance from the boarder to the center of the
simulator is denoted by uBO, and uBO = 4000. Stations being
in the forbidden region or on the outside of the simulator leads
to punishment with additional reward:

RP =


d − uTR + R0, d ≤ uTR.
uBO − d + R0, d ≥ uBO.
0, otherwise.

(21)

where R0 is the basic punitive reward in the experiment, and
R0 = −1000.

B. SETUP
In the experiment, one central station and two vice stations
are used to perform the task of cooperatively optimizing the
geometric configuration in an area consisting of free prop-
agation regions, low SNR regions, and forbidden regions.
At the beginning of a task, all the stations are initialized
with random positions between the forbidden circle and the
boarder of the simulator. At each time step, stations receive
and transfer the signals to the central station, which makes
decisions about movement on the x-axis and y-axis. The
central station is an actor-critic style RL learner. The actor
neural network takes in a 12-dimension state st and gives
a 6-dimension action at . It has three hidden layers and
each hidden layer has 256 neural units, which is activated

FIGURE 4. Positioning RMSE curves when get close to the transmitter. (a): The trajectory of agents. (b) Positioning RMSE
curves with different estimation times Nest =[10, 30, 50, 80, 100, 150, 300].
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with ReLU function. The actor is designed as a stochastic
Gaussian actor which gives a set of parameters (µ, σ ) =
[(µx1, σ

x
1 ), (µ

y
1, σ

y
1 ), · · · , (µ

x
3, σ

x
3 ), (µ

y
3, σ

y
3 )]. (µ, σ ) deter-

mines 6 Gaussian distributions that generate the action for
the stations. The critic neural network is similar to the actor
but its input and output are (st , at ) and Q(st , at ). In each
time steps, all the stations carry the location task together for
Nest = 100 times, and calculate the rewardRRMSE(p, p?). The
task is completed when RMSE(p, p?) ≤ 10, and agents obtain
an immediate reward of 1000. The maximum of time steps
taken in one location task is 100. The details of parameters
for setting up the experiment is summarized in Table 1.

C. RESULTS AND ANALYSIS
1) TRAINING CURVES
We trained the agents for 2000 epochs, 1.6 million inter-
actions with the TDOA location environment proposed
in Section IV-A, over 5 random seeds that initialize the actor
and critic. The training curves are presented in FIGURE 5.
In the training process, there are some indicators that reflect
how well agents master the skills that we expect them to

TABLE 1. The details for setting up the TDOA location task with
reinforcement learning.

grasp. In a TDOA location task, agents need to find an optimal
geometric to reduce the positioning error. We can compre-
hend the learning process intuitively with: episode return,
loss of value function, episode length, and policy entropy.
Episode return, mainly associated with the positioning error,
is a key indicator. From FIGURE 5-(a), we can see that,

FIGURE 5. Training curves of the after 2000 epochs of training: (a) Averaged episode reward. (b) Loss of value function. (c) Episode length.
(d) Policy entropy.
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FIGURE 6. The learned agents executing TDOA location task: The left
shows the trajectories of all the agents from start positions to the final
geometry, the top right is the immediate reward in each step, and the
bottom left plots the close-up of estimation near the transmitter.

the episode return increases gradually with training going
on, which means that the cumulative positioning error of
an episode declines. FIGURE 5-(b) shows the decrease of
value function loss, which indicates the critic can estimate the
return more accurately. FIGURE 5-(c) illustrates that the total
steps of an episode drops with the training process, which
suggests actions become more effective. In FIGURE 5-(d),
the action entropy declines, which reveals that agents are
more confident and have less exploration.

2) THE LEARNED AGENTS
To demonstrate the skills that agents obtained in TDOA
location tasks, we visualized the process by recording the
trajectories of agents from different initial positions to the
optimal geometries. We also plotted the immediate reward
in each step, which mainly consists of RMSE of position-
ing, to understand the decisions made by agents. The esti-
mations near the transmitter are scattered as a close-up to
demonstrate the positioning error more clearly. FIGURE 6
shows the trajectory, immediate reward, and the close-up of
estimations over a TDOA location task. With more steps are
taken, the immediate reward increase gradually, and the final
geometric configuration is a triangle with the transmitter at
the inner of it, which is consistent with the knowledge in
TDOA passive location fields [5], [11]. To test the learned
agents comprehensively, we specified four different initial
positions which are more difficult for humans to find a path to
the optimal geometries. As shown in FIGURE 7, agents can
find elegant paths to achieve the given positioning precision
in all difficult scenarios. FIGURE 8 shows 12 trajectories
with random initial positions, the learned agents can find the
optimal geometries efficiently across all the random scenar-
ios. Agents mastered effective strategies to accomplish the
location tasks as follows:
• Take a detour. Avoid the forbidden and low SNR
regions to gain a safer and more effective path.

FIGURE 7. Trajectories of learned agents in TDOA location tasks with specified initial geometric configurations.
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FIGURE 8. Trajectories of finding the optimal geometric configuration in TDOA location tasks when agents are initialized with random
positions.

• Sacrifice the immediate reward. For the sake of max-
imizing the long-term return, agents may sacrifice the
immediate reward, i.e., crossing low SNR regions to
shorter the path to optimal geometry.

• Geometry first, distance later. Agents mastered a use-
ful strategy that adjusts the geometry to encircle the
transmitter firstly, then shrink the encirclement.

3) COMPARISON STUDY
Though there are significant differences between the method
proposed in this paper and heuristic methods, such as PSO
[12], [13]. We tried to solve geometry optimization problem
with PSO and made more comprehensive comparison with
our RL based methods. According to [12], the standard PSO
can be described as:

vid (t + 1) = wvid (t)+ c1ξ1(pid (t)− xid (t))
+ c2ξ2(pgd (t)− xid (t))

xid (t + 1) = xid (t)+ vid (t + 1),

(22)

where vid and xid are velocity and position of particles, w is
the inertial weight, c1, c2 are acceleration coefficients, and

ξ1, ξ2 are random variables of uniform distribution U (0, 1).
The fitness function is vital to PSO algorithms for it provides
the heuristic information for particles’ evolution. The fitness
function in the experiment is defined by:

fpso = −10 log10

1+

√√√√ 1
Nest

Nest∑
k=1

‖p̂k? − p̄?‖2

 , (23)

where p̄? is the center of estimations. Note that, in (23),
the fitness function is obtained from the estimations instead
of RMSE that requires the background location of the trans-
mitter. In the experiment, c1 = c2 = 2, w = 0.4, the number
of particles is 100, and the start position of an agent is sam-
pled from normal distribution with standard deviation being
200, which is the same as the maximum moving distance
for RL agents in each time step. We tested the PSO agents
in difficulty scenarios, and FIGURE 9 shows the results.
in FIGURE 9, (a)-(d) are snapshots of particles and their
best ones at generation 1, 40, 70, 100 with a specified start
positions the same as FIGURE 7-(a). The final geometry
found by PSO after 100 iteration is not optimal because the
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FIGURE 9. The results of comparison experiment that applies PSO to optimize the geometry of TDOA passive location systems. Each row
consists of four snapshots in a TDOA location task with specified initial positions.

red agent is in the forbidden region. (e)-(l) are snapshots with
other start positions, from which we can see that, the best
geometry in the iteration changes abruptly in some cases.
In FIGURE 9-(k) most particles are out of the scope of the
simulator, which increases the difficulty of agents tracking
the path.

From the comparison study presented above, it can be seen
that, the RL based method proposed in this paper has obvious
advantages in finding a path to optimal geometries in TDOA
passive location tasks.

V. CONCLUSION
This paper analyzed the geometry optimization problem of
TDOA passive location systems in a complex electromag-
netic environment and proposed a reinforcement learning
based method to address it in a try-and-error fashion. In the
method, stations are regarded as mobile agents that can
learn to decide where to go. All agents are controlled by an
actor-critic reinforcement learner. A TDOA location simula-
tor with complicated electromagnetic is developed to evaluate
our method. The empirical results show that, the learned
agents exhibited effective strategies that enable them to find

good geometric configurations efficiently. Although TDOA
is used in the proposedmethod, it can be replaced by any other
passive location algorithm (e.g., DPD or AOA) to enhance
the algorithm flexibility in various location scenarios. In the
future, we will address the passive location problem from the
perspective of multi-agent reinforcement learning.
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