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ABSTRACT Underwater acoustic target recognition is one of the main functions of the SONAR systems.
In this paper, a target recognition method based on combined features with automatic coding and reconstruc-
tion is proposed to classify ship radiated noise signals. In the existing underwater acoustic target recognition
systems, the target category features are mostly constructed based on the power spectrum according to a
certain presupposed model, and some useful information in the data is discarded artificially. In the proposed
recognition method, a feature extractor based on auto-encoding is designed. The feature extractor uses the
restricted Boltzmann machine (RBM) to automatically encode the combined data of the power spectrum
and demodulation spectrum of ship radiated noise without supervision and extracts the deep data structure
layer by layer to obtain the signal feature vector. The extracted feature vector is sent to a Back Propagation
(BP) neural network to realize target recognition. Due to the high cost of ship radiated noise acquisition,
the sample size of ship radiated noise signals is often hard to meet the needs of neural network training.
A method of data augmentation is designed by RBM auto-encoder to construct the expanded sample set,
which improves the performance of the recognition system. The experimental results based on the actual
ship’s radiated noise show that the proposed method has better performance than the traditional methods.

INDEX TERMS Underwater acoustic, target recognition, ATR, restricted Boltzmann machine, auto-
encoding; data augmentation.

I. INTRODUCTION
Sound is the only known form of energy that can travel
long distance underwater. The classification and recognition
of underwater acoustic targets are of great significance in
the monitoring of ships at sea, the search for underwater
targets, and maritime law enforcement, etc. Using the under-
water acoustic signals received by hydrophones (hydrophone
array), the underwater acoustic target recognition system
analyzes the characteristics of underwater targets and dis-
tinguishes the types of targets by signal processing meth-
ods [1]–[3]. Underwater acoustic target recognition based
on ship radiated noise is a research hotspot in the field of
underwater acoustic signal processing. Scholars have carried
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out long-term and in-depth research on target recognition
methods based on ship radiated noise, and the researchmainly
focuses on two directions: feature extraction and pattern
recognition.

Feature extraction is a process of removing redundant
information from original data to achieve dimensionality
reduction. The mechanism of ship radiated noise is quite
complicated. The engine, propeller, water pump, oil pump,
and other sound sources excite the hull in water to radiate
noise. Although the composition of ship radiated noise is
complex and varied, it still contains a lot of useful infor-
mation. The ship radiated noise signals sampled by sensors
are complex and random, so some transformation meth-
ods are needed to describe these data. The power spectrum
is an effective method to represent underwater acous-
tic signals due to its short-term stationary characteristics.
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At present, most of the target recognition features of under-
water acoustic signals are based on a power spectrum or
spectrogram. Reference [4] incorporated spectral andwavelet
domain information with different resolutions and introduced
an underwater target classification framework based on these
features. Reference [5] designed a deep learning recognition
method based on time-domain data and spectrogram to clas-
sify civil ships, large ships, and ferries. According to [6],
the Mel-frequency cepstrum coefficient (MFCC) spectrum
is obtained by Mel frequency transformation of target noise,
which is used as the feature of underwater acoustic targets.
In these recognition methods, the target of feature extraction
mainly focuses on the power spectrum or the spectrogram,
but there are few types of research on feature extraction and
recognition based on the demodulation spectrum.

FIGURE 1. Cavitation produced by rotating propellers in the water.

FIGURE 2. Structure near the ship propeller.

In fact, the radiated noise from ship propellers often has
amplitude modulation-like characteristics that are a function
of the shaft rotational rate and the number of blades. This phe-
nomenon is caused by the periodic generation and collapse of
cavitation in propeller blades under the condition of uneven
pressure and wake inflow [7]. Figure 1 shows the cavitation
produced by rotating propellers in the water and Figure 2
shows the structure near the ship propeller. The rhythm char-
acteristic of ship radiated noise is an important feature of
ship identification, and the rhythm feature is also the main
basis for sonar operators to classify and recognize targets.
This rhythmic feature is caused by propeller noise. There are
abundant periodic modulation components in propeller radi-
ated noise, which reflect the information of propeller type,

propeller number, blade number, rotating speed, cavitation
degree, and uneven flow field distribution. Demodulation
analysis is an effective method to analyze the characteristics
of propeller radiated noise. The rhythmic features contained
in the demodulation spectrum are of great help to ship clas-
sification. Compared with the target recognition based on
power spectrum only, the joint use of demodulation spectrum
for target recognition can fully retain the information in the
signal.

In theory, the original power spectrum and demodulation
spectrum data can be directly used as the input of the recog-
nition system for pattern recognition. However, the amount
of original spectrum data is still large, which brings great
pressure to the recognition system. To reduce the complex-
ity of classification, spectral data need to be further com-
pressed to reduce the data dimension. The commonly used
data compression methods include Karhuner-Loeve Trans-
form (KLT), principal component analysis, and autoregres-
sive model, etc [8], [9]. Because of the good recognition
ability of the human auditory system for ship radiated noise,
the recognition method based on hearing models has also
been deeply studied. To simulate the recognition process
of the human auditory system, the Mel band-pass filter
bank is used to simulate the decomposition of the cochlear
acoustic signal, Discrete Cosine Transform (DCT) is used
to simulate the energy conversion caused by hair cell vibra-
tion, and pattern recognition method is used to analyze the
acoustic spectrum characteristics. Signal recognition based
on human auditory acoustics has been successfully applied
in the field of speech recognition, which includes preprocess-
ing, framing, Mel-frequency cepstrum coefficients (MFCC)/
Gammatone frequency cepstral coefficients (GFCC) feature
extraction, hidden Markov model (HMM) pattern matching,
and so on. Compared with the autoregressive model, acoustic
target recognition using auditory features has better perfor-
mance [10]. The above feature extraction is a process of
filtering the original information based on a subjective set
model to reduce the amount of information [11]. When the
data features are inconsistent with the subjective assump-
tions, the performance of the obtained features will be greatly
reduced.

The adaptive feature extraction based on deep neural
network (DNN) has better generalization performance than
traditional feature extraction and has fewer requirements on
SNR and distribution of samples. Therefore, adaptive fea-
ture extraction is quite suitable for underwater acoustic tar-
get recognition [12]. Adaptive feature extraction algorithms
based on DNN include convolution neural network [13], gen-
erative countermeasure network [14], and deep Boltzmann
machine (DBM) [15]. DBM has the following characteristics
suitable for adaptive feature extraction. The DBM is a stack
of restricted Boltzmann machines (RBM), so it can com-
plete feature extraction self-supervised. DBM is a multi-layer
structure, the number of cells in each layer can be adjusted
freely, so it can adapt to different types of input. DBM com-
pletes the data auto-encoding based on the data distribution
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characteristics of the whole training set. This multi-layer
structure can extract the high-level probability features of the
data and has strong generalization ability. Research shows
that the performance of adaptive feature extraction is better
than that of feature extraction.

Using DBM, the optimal reconstruction of input data based
on probability distribution is obtained by self-supervised opti-
mization of parameters. RBM auto-encoder model is widely
used in speech, image, and other signal processing fields.
In underwater acoustic target recognition, RBM auto-encoder
can effectively reduce the dimension of the original spectrum
data and extract the high-level data distribution characteristics
of the original data [16], which is helpful for subsequent
pattern recognition.

The pattern recognition algorithm divides samples into
several categories according to their characteristics. Tradi-
tional pattern recognition algorithms include linear discrim-
inant analysis (LDA), support vector machine (SVM) [17],
Gaussian mixture model (GMM) [18], etc. In recent years,
the neural network method has also been widely used in
pattern recognition of underwater acoustic signals [16], [19].

Traditional unsupervised clustering methods such as
K-means and Gaussian mixture model (GMM) have many
limitations in practical application. First of all, the number
of clusters must be given when clustering, which is difficult
to achieve in practical applications. Secondly, it is assumed
that sample characteristics obey specific distribution, and
GMM requires samples to obey Gaussian mixed distribution.
However, actual samples are often difficult to fit Gaussian
distribution, which will lead to distribution mismatch and
reduce clustering effect [16]. In the case of Marine environ-
mental noise, the signal-to-noise ratio of underwater acoustic
signals is relatively low, so the clustering model needs to
be modified according to the actual environment to achieve
a better classification effect. DNN can improve the short-
comings of traditional pattern recognition methods. DNN is
a model with a complex structure, which can fit arbitrary
distribution samples. DNN has more adjustable parameters,
which can effectively use large-scale samples to improve the
generalization ability and recognition accuracy of the recog-
nition system. Referring to the network structure of DNN,
Reference [20] extracts the features of underwater acoustic
signals based on RBM auto-encoder and uses BP classifier to
obtain better recognition results than traditional recognition
methods. However, the method in [20] only takes a short-time
power spectrum as the feature input and ignores the unique
rhythmical characteristics of ship radiated noise. Besides,
when the number of samples is small, the recognition effect
of this method will decrease obviously.

DNN often uses a large amount of data to carry out net-
work training, but massive training samples can not always
be obtained in actual measurement. Especially for demod-
ulation spectrum features, it is a process of slow change
over time, which requires the sample data to reach a certain
length of time (second level) so that the features can be
extracted effectively. However, the training sample resources

of ship-radiated noise are not abundant, which leads to the
problem of insufficient training samples. In order to solve this
problem, the method adopted in this paper is data augmenta-
tion, which is one of the most commonly used techniques in
deep learning. Data augmentation is mainly used to expand
the training data set, make the data set as diverse as possible,
and make the training model have stronger generalization
ability. Therefore, in practical application, data augmentation
becomes an important part of the preprocessing of model
training.

In this paper, an auto-encoder based on the Boltzmann
machine is constructed to extract the adaptive features of the
power spectrum and demodulation spectrum data of under-
water acoustic signals. After the greedy pre-training layer by
layer, the Markov chain Monte Carlo method is adopted for
overall optimization. Based on the BP neural network, a clas-
sification system of underwater acoustic targets is designed.
To solve the problem of an insufficient sample size of under-
water acoustic targets during network training, a data aug-
mentation method is designed.

In Section 2, the power spectrum and demodulation spec-
trum calculation methods of ship radiated noise are analyzed,
and the method of acquiring signal characteristics based on
RBM is extracted. In Section 3, a classifier combining RBM
auto-encoder and BP is proposed, and a method of data
augmentation is designed to improve the performance of the
classifier. In Section 4, the performance of the proposed
underwater acoustic target recognition method is analyzed
with the ShipsEar database. Section 5 summarizes the article.

II. FEATURE EXTRACTION BASED ON UNDERWATER
ACOUSTIC SIGNAL SPECTRUM
Ship radiated noise signal is a random signal. During the
navigation, the propeller, rotary or reciprocating machinery,
various pumps, and other sound sources stimulate the hull to
radiate sound into the water. According to different excitation
sources, ship radiated noise can be regarded as a combina-
tion of mechanical noise, propeller noise, and hydrodynamic
noise [21].

The ship radiated noise has the characteristics of approx-
imately stationary in a short time. Through time-frequency
transformation, a complex ship radiated noise signal can be
converted into a more regular power spectrum, which can
more effectively describe the nature of the noise. The power
spectrum of the signal contains the characteristics of ship
vibration and navigation state. The power spectrum has been
widely used in feature construction of underwater acous-
tic target recognition, including Low-Frequency Analysis
Recording (LOFAR), MFCC, GFCC, and so on. However,
the envelope fluctuation information of ship radiated noise
caused by propeller modulation is not included in the power
spectrum. It is necessary to consider the modulation spectrum
in feature construction.

In the construction of target category features, the com-
mon features are the line spectrum of the power spec-
trum, the shape of the power spectrum, line spectrum of
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demodulation spectrum, MFCC, GFCC, etc. However, these
features are extracted based on the pre-set model and need
prior information in practical application. When the environ-
ment changes, the classification performance of these fea-
tures will be significantly reduced.

This section introduces the method of spectrum analysis
of ship radiated noise signal, and proposes an improved deep
Boltzmann machine for automatic coding feature extraction
of the spectrum of ship radiated noise signal.

A. SPECTRAL ANALYSIS OF UNDERWATER
ACOUSTIC SIGNAL
There are two kinds of typical spectrum analysis for ship
radiated noise signals. One is power spectrum analysis, which
is used to analyze the energy distribution of noise signals in
the frequency domain. The other is demodulation spectrum
analysis, which is used to analyze the periodic characteristics
of the envelope in the noise signal.

To reduce the random fluctuation of the power spectrum
estimation and reduce the energy leakage of each frequency
component, windowing and averaging are carried out based
on the periodogram. At this time, x(n) is divided into over-
lapping K -sections, each signal length is M , and the power
spectrum S(k) of the signal can be expressed as

S(k) =
1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2π
n
N k

∣∣∣∣∣
2

(1)

where k is the frequency index.
To reduce the random fluctuation of the power spectrum

estimation and reduce the energy leakage of each frequency
component, windowing and averaging are carried out based
on the periodogram. At this time, x(n) is divided into over-
lapping k-sections, each signal length is m, and the power
spectrum S(k) of the signal can be expressed as

S(k) =
1

KMU

K−1∑
i=0

∣∣∣∣∣
iL+M−1∑
n=iL

x(n)w(n− iL)e−j2π
(n−iL)
M k

∣∣∣∣∣
2

(2)

where K is the number of data sections, M is the length
of each data section, L is the step length of adjacent data
sections, w(n) is a window function, and U is the coeffi-
cient participating in amplitude normalization. Here U =
1
M

∑M−1
n=0 w2(n).

Detection of envelope modulation on noise (DEMON) is a
method for demodulation and analysis of ship radiated noise
signals. In the DEMON method, the envelope component of
the signal is obtained firstly, and then the envelope is analyzed
by spectrum to extract the line spectrum features of shaft
frequency, blade frequency, and harmonic frequencies, which
are important information for target detection and classifica-
tion. The block diagram of the DEMON process is shown
in Figure 3.

The main process of DEMON processing is divided into
three steps. Firstly, the frequency band of cavitation noise
is estimated, and then the signal is filtered by using this

FIGURE 3. Block diagram of DEMON process.

frequency band. Then the envelope of the signal is extracted.
Finally, the envelope signal is Fourier transformed to obtain
the DEMON spectrum. When square law detection is used,
the calculation formula of the demodulation spectrum D(k)
is as follows.

D(k) =

∣∣∣∣∣
N−1∑
n=0

[x(n)∗hL(n)∗h(n)]2w(n)e−j2π
n
N k

∣∣∣∣∣
2

(3)

where ∗ is the linear convolution operator, hL(n) is a low-pass
filter function, h(n) is a band-pass filter function, and w(n) is
a window function.

FIGURE 4. Block diagram of multi-band DEMON process.

According to [22], [23], the spectrum of cavitation noise of
a propeller is uneven, and the theoretical maximum frequency
is inversely proportional to the diameter of the cavitation bub-
ble in water. The energy distribution and modulation degree
of the wideband modulated signal of the actual ship noise are
uneven. Non-uniformmodulation will lead to the degradation
of the quality of the demodulation spectrum obtained by the
direct DEMON process, so single-band DEMON is difficult
to adapt to the feature extraction of non-uniform modula-
tion signal in the actual target signal. Therefore, the actual
DEMON processing uses multi sub-band demodulation to
obtain the modulation spectrum of each sub-band, and then
comprehensively process to obtain the modulation character-
istics. The block diagram of a multi sub-band DEMON is
shown in Figure 4.
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At this time, the calculation formula of demodulation spec-
trum D(k) is as follows.

D(k) =
K∑
i=1

αi

∣∣∣∣∣
N−1∑
n=0

[x(n)∗hL(n)∗hi(n)]2w(n)e−j2π
n
N k

∣∣∣∣∣
2

(4)

where ∗ is the convolution operator, hL(n) is a low-pass filter
function, hi(n) is i-th band-pass filter of K pre-set frequency
band filters. w(n) is a window function. αi is the weight-
ing coefficient of the demodulation spectrum in each fre-
quency band. In engineering applications, we usually set αi as
follows [24].

αi =
σ 2
i

K∑
j=1
σ 2
j

(5)

where σ 2
j is the variance of the demodulation spectrum of j-th

frequency band.
Reference [25] points out that ship radiated noise sig-

nal has the property of cyclostationarity, so the method of
cyclic modulation spectrum (CMS) analysis is suitable for
the modulation analysis of ship radiated noise. CMS is an
alternativemethod ofmultiband summation, which can detect
modulation frequency and carrier frequency simultaneously.
When using CMS for DEMON analysis, it can achieve higher
resolution inmodulation frequency and carrier frequency, and
significantly reduce the calculation time. The block diagram
of DEMON based on CMS is shown in Figure 5.

FIGURE 5. Block diagram of multi-band DEMON process based on
T-F Analysis.

In DEMON based on CMS, the calculation formula of
demodulation spectrum D(k) is as formula (6) and (7).

X (p, q) =
1
M

∣∣∣∣∣∣
pL+M−1∑
n=pL

[x(n)∗hL(n)]w1(n− pL)e−j2π
n−pL
M q

∣∣∣∣∣∣
2

(6)

D(k) =
Q−1∑
q=0

αq

∣∣∣∣∣∣
P−1∑
p=0

X (p, q)w2(n)e−j2π
p
P k

∣∣∣∣∣∣
2

(7)

where X (p, q) is the spectrogram of x(n). p is the time index
and p = 0, 1, . . . ,P − 1. P is the number of data sections.

q is the frequency index and q = 0, 1, . . . ,Q − 1. Q is the
number of frequency points to be analyzed. M is the length
of each data section, L is the step length of adjacent data
sections, w1(n) and w2(n) are window functions. αq is the
weighting factor of frequency band q. Similar to multi-band
DEMON process, αq can be set according to the variances of
DEMON spectrum of each frequency band.

Due to the characteristics of high operation efficiency
and high resolution of carrier and modulation frequency,
the demodulated spectrum of the target signal is obtained
by using the method of DEMON based on CMS in this
paper. Figure 6 and Figure 7 show the photos of two ships
(a passenger and a ro-ro) and their radiated noise signal wave-
form, power spectrum, and DEMON spectrum respectively.

FIGURE 6. Photo of a passenger and the signal waveform, power
spectrum and the DEMON spectrum of the passenger’s radiated noise.

B. FEATURE EXTRACTION BASED ON
RBM AUTO-ENCODER
The hand-craft feature extractionmethod selects the key com-
ponents of the signal as features based on the Presupposed
model, thus reducing the dimension of the original signal. The
traditional feature extraction method obtains the power spec-
trum andDEMON spectrum by time-frequency conversion of
the original signal, and obtains the key features of the signal
manually, including line spectrum strength, power spectrum
shape, modulation frequency, and modulation line structure.
Figure 8 depicts this process. The traditional feature extrac-
tion method based on the analysis of ship noise effectively
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FIGURE 7. Photo of a ro-ro and the signal waveform, power spectrum and
the DEMON spectrum of the ro-ro’s radiated noise.

FIGURE 8. Traditional feature extraction process of underwater acoustic
signal.

picks up the key information of underwater acoustic signal
but ignores the role of sonar’s hearing in underwater acoustic
target recognition. GFCC uses several band-pass filters to
simulate the frequency band effect of the human ear and

simulates the process of the human ear transforming vibration
into a neural signal through DCT transformation, and finally
obtains the energy of the original signal in different frequency
bands as characteristics. GFCC method uses an auditory
simulation method to supplement some information aban-
doned by traditional feature extraction methods and achieves
a higher recognition rate. Hand-craft features inevitably dis-
card some useful information artificially. Adaptive feature
extraction based onDNNcan customize the feature extraction
model according to the data distribution of the training set
and has better generalization ability than hand-craft features.
In order to obtain a better recognition effect for underwater
acoustic targets, adaptive feature extraction based on RBM
auto-encoder is introduced into the underwater acoustic target
recognition system.

FIGURE 9. RBM structure.

Boltzmann machine (BM) is an algorithm that transforms
the probability of data into energy and optimizes the model
with the idea of annealing. The restricted Boltzmannmachine
(RBM) can be used as a self-monitoring encoder to reduce
the dimension of the original spectrum. The structure of the
restricted Boltzmann machine is shown in Figure 9. RBM is a
two-layer model. The lower layer is visible layer units v, and
the upper layer is hidden units h. The interlayer neurons are
fully connected, the connection weight isW , and the neurons
in the layer are not connected. b and c are the offset of the
visible layer and the hidden layer respectively. The state of
neurons in RBM is binary, and the state probability of the
whole model is controlled by its energy. The energy and
probability models of RBM are as follows.

E(v, h) = −b′v− c′h− h′Wv (8)

P(x) =
∑
h

p(x, h) =
∑
h

e−E(x,h)

Z
(9)

where b′, c′, h′ are the transpose of b, c, h. v is the visible layer
unit of the system. x is the visible layer unit corresponding to
any hidden layer unit h. E(v, h) is the joint energy function
of the hidden layer and the visible layer. E(x, h) is the joint
energy function of any hidden layer and the corresponding
visible layer. P(x) is the likelihood function of visible layer
x, and p(x, h) is the joint probability distribution of x and
h. Z =

∑
x
e−F(x) is the partition function and F (x) =

−log
∑
h
e−E(x,h) is the free energy.
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The probability distribution of the hidden layer of RBM
can be determined by the network parameters and the states
of visible layer units. The network parameters are randomly
initialized and the input is used as the initial state of the visible
units. The hidden layer state is calculated by the forward
process, and the visible layer state is reconstructed by the
reverse process. So the RBM parameter solution is actually
the solution of Markov chain Monte Carlo (MCMC).

p(hi = 1|v) = sigm(ci +Wiv)

p(vj = 1|h) = sigm(bj +W ′j h) (10)

where sigm(x) is sigmoid function. hi is the i-th unit in hidden
layer. vj is the j-th unit in visible layer. W ’ represents the
transpose of the connection weight matrix W . ci is the offset
of hidden layer unit hi, bj is the offset of visible layer unit vj.

FIGURE 10. Contrast divergence algorithm.

The common RBM algorithm is the contrast divergence
algorithm (CD), and its algorithm flow is shown in Figure 10.
By encoding and reconstructing the subset of the original data
set, the updating gradient of model parameters is obtained.
The formula is as follows.

−
∂ log p(v)
∂Wij

= Ev[p(hi|v) · vj]− v
(i)
j · sigm(Wi · v(i) + ci)

−
∂ log p(v)
∂ci

= Ev[p(hi|v)]− sigm(Wi · v(i))

−
∂ log p(v)
∂bi

= Ev[p(vi|h)]− v
(i)
j (11)

where Wij is the i-row j-column element in matrix W . Wi is
the i-th row in thematrixW .Ev[] is expectation of variables in
brackets. v(i) is the i-th sample in data set. v(i)j is the j-th unit of
i-th sample. ci is a constant.
In RBM training, Equation 8, 9 describes how the network

fits the training sample probabilistic features through the
relationship between parameters and neuron states. Equa-
tion 10 provides a general method for calculating probability
in RBM. Equation 11 is used to update network parameters to
reduce the difference between the reconstructed sample and
the original sample, to improve the description of the overall
probability characteristics of the sample set by the network.

FIGURE 11. RBM reconstructor structure.

The single-layer RBM acts as an auto-encoder and takes
the original data set as the self-monitoring training set to
complete the probabilistic feature compression of the original
spectrum input. The output of a single-layer RBM auto-
encoder is the probability characteristic of the compression
dimension. The full connection structure allows any input
to affect any output, which is beneficial to the information
utilization of the fusion spectrum. RBM can encode the
input spectrum nonlinearly, which allows us to construct
a stacked RBM auto-encoder to auto-encoder the original
spectrum layer by layer. Its structure is shown in Figure 10.
The internal data model of the multi-layer RBM structure
is more complex. In multi-layer auto-encoding, the neural
network learns more complex abstract probability features
of the original spectrum, thus obtaining lower reconstruc-
tion error than single-layer RBM auto-encoder or principal
component analysis (PCA). Figure 11 shows the structure
of an RBM reconstructor. Numbers in the figure represent
the number of neurons in each layer. In Figure 11, the auto-
encoder part compresses the original spectrum layer by layer
and obtains the best parameters of the model in the training.
The parameters of the auto-decoder are symmetrical with
the auto-encoder. The RBM reverse process is carried out
on the RBM auto-encoding results layer by layer, and the
reconstruction results of the original spectrum are obtained.
The reconstructed spectrum is the result of the original spec-
trum under the effect of the overall probability characteris-
tics of the training set. This process is actually a denoising
process for a single sample, making a single sample more
‘‘gregarious’’.

The detailed implementation process of the RBM auto-
encoder is shown in Algorithm 1.
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Algorithm 1 RBM Auto-Encoder
Take input from original spectrum and normalization
Construct training set and initialize network parameters
The training set data is divided into multiple minipatches
for 1:layer
for 1:epoch[i]
for batch = 1:batch_num
Implement the forward process based on Equation (10),

and obtain the hidden unit state
Implement the reconstruction process based on Equation

(10), and obtain the visable unit state
Update network parameters based on Equation (11)
end
end

end
Implement the forward process from input to the last hidden
layer, and obtain the feature output
Implement the reconstruction process from feature output to
visbale layer, and obtain the input reconstruction

When RBM is used to extract actual spectral features,
the input structure of RBM should be consistent with the
spectral structure, which requires the input dimension of
RBM to be adjusted according to the fusion spectrum dimen-
sion. Besides, the energy of the underwater acoustic signal
is concentrated in the low-frequency band, and the high-
frequency components are often meaningless noise and clut-
ter for classification. Therefore, according to the observation
of the data, the signals with frequencies below 8 kHz are
used for underwater acoustic target recognition. At the same
time, compared with other acoustic signals (such as speech
signals), the underwater acoustic signal has longer stabil-
ity, and propeller noise has obvious periodicity. Therefore,
each sample needs a longer duration, and the number of
visible layer units of RBM varies with the spectral length
at 2 seconds.

On the other hand, the hyperparameters of the model
need to be adjusted manually to achieve good training and
reconstruction performance. In order to extract the features
of each hidden layer, the number of visible units is reduced.
The learning rate needs to be considered comprehensively
according to the convergence speed and reconstruction error
of data training. A large learning rate will accelerate the con-
vergence speed, but it will lead to the vibration of the recon-
struction error. A small learning rate may fall into the local
minimum value, but it has the opportunity to achieve a better
learning effect. The capacity of the minibatch should be set
flexibly according to the size of the data set. Reasonable
minibatch can accelerate training and effectively use a larger
training set.

By learning the structure of different tag data, DNN can
identify its characteristics. DNN needs a large number of
labeled samples to get a good training effect. In General,
the smaller the sample of the training data set, the worse

the performance of DNN. In underwater acoustic target
recognition, it is generally considered that samples are dif-
ficult to obtain and there are few marked samples. In the
construction of an underwater acoustic target recognition
system, the number of labeled samples is often difficult to
meet the requirements of DNN. In the classification process,
a small number of samples will lead to overfitting.

Common methods to augment audio data include noise
injection, time shift, dynamic range gain, and equalization.
However, these methods have some limitations, namely the
lack of diversity of samples, which cannot improve the
classification effect in practical application [27]. This paper
presents a method of data augmentation based on RBM
auto-encoder. RBM auto-encoder can achieve nonlinear data
compression and extract high-level probability distribution of
data. The original data can be decoded by the multi-layer
RBM structure symmetrical to the encoder. This decoder
can reconstruct the original data through the high-level prob-
ability distribution characteristics of the original data, and
obtain the results that conform to the overall characteris-
tics of the sample. These reconstruction results are not the
accurate restoration of original data, because the encoding
and decoding process of RBM includes random sampling
from data probability to corresponding neuron state. The
reconstruction result of the decoder is the result of the prob-
ability characteristics of the sample population acting on the
single sample restoration, which can weaken the uniqueness
of a single sample and obtain new samples with statistical
similarity.

RBM auto-encoder is used to reconstruct the samples,
and the reconstructed data is used to increase the number
of training data, which is conducive to preventing overfit-
ting and facilitating the classification of small samples. The
experiment shows that the target recognition accuracy can be
improved by using the sample expansion training set recon-
structed by the RBM auto-encoder.

The reconstructor was tested with four sets of data. Each
dataset contains 600 samples. The samples in data set A are
sinusoidal function with noise, the samples in data set B are
higher frequency sinusoidal function with noise, the samples
in data set C are cosine function with noise, and the samples
in data set D are power spectrum data of the real signal.
According to the method of algorithm 1, the 4-layer RBM
reconstructor is trained. Figure 12 shows the input data and
reconstruction data of the reconstructor.

TABLE 1. MSE of the reconstrction samples and orignal samples.

The mean square error (MSE) of the reconstruction sam-
ples and orignal samples are shown in Table 1.
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FIGURE 12. Origin data (left) and reconstructed data (right).

As can be seen from Figure 12 and Table 1, the recon-
structed sample has good similarity with the original sample,
and retains certain randomness.

III. TARGET RECOGNITION SYSTEM
This paper constructs an underwater acoustic target recogni-
tion system based on the RBM auto-encoder and BP neu-
ral network. Its structure is shown in Figure 13. In target
recognition, the input of the model is the spectrum of the
underwater acoustic signal, and the high-level features of
data are extracted by layer by layer auto-coding of stacked
RBM, and the target recognition is based on these features by
BP neural network. BP neural network is the most common
DNN, which is often used in the classification and recogni-
tion of complex signals. BP neural network is a multi-layer
network composed of a large number of neurons and their
connections. The output expectation of the network can be
consistent with the actual situation by the gradient descent
method.

The training process of the BP neural network is to use
labeled samples to calculate the parameter update gradi-
ent by comparing the difference between the model output
and the expected output, to calculate the connection weight
matrix W and neuron threshold θ of each layer. Because
of the deep layers of the neural network, the calculation of

FIGURE 13. Deep clustering system structure.

the gradient generally depends on the chain derivation of the
network layer by layer. The training process can be divided
into forwarding propagation and backpropagation. During
forward propagation, the state of the back layer neurons is
determined by the parameters of the front layer neurons and
the network. In this process, the states of all hidden layer
neurons are calculated, and the states of input neurons are
given by samples.

x(p+1)j = f (
n−1∑
i=0

W (p)
ij x

(p)
i − θ

(p)
j ), j ∈ [0, n− 1] (12)

where x(p)i is the ith neuron in the pth layer. W (p)
ij is the

connection weight of the corresponding neuron in the current
layer, θj is the threshold of the corresponding neuron, and
f (x) is the activation function.
In the process of back-propagation, the training parameters

are gradient solved according to the neuron values and train-
ing errors in the model. The training errors can be measured
by the loss function E(W , θ)

E(W , θ) =
∑
i∈D

(ti − yi)2 (13)

where D is the training set, ti is the label of the data, and yi is
the forward propagation output.

Using a chain derivative to calculate gradient can reduce
the computational complexity and speed up the training of
the BP neural network.

∂E(W , θ)
∂W

=
∂E(W , θ)
∂zl

∂zl

∂W
∂E(W , θ)

∂θ
=
∂E(W , θ)
∂zl

∂zl

∂θ
(14)

where the calculation of zl = W (l)
·
−→
x(l)−θ (l), ∂E(W ,θ)

∂zl depends
on activation function form.
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BP neural network can adapt to different input scales by
adjusting the number of neurons, and can also classify more
complex problems by increasing the number of hidden lay-
ers. Compared with GMM, K-means, and other conventional
underwater acoustic target classifiers, BP neural network is
more flexible in structure and needs less manual intervention.
At the same time, BP neural network has a complex structure,
which is competent for the classification of a large number of
data samples. BP neural network is an effective method to
solve the complex classification problem, which can be used
as an underwater acoustic target classifier. However, the low
signal-to-noise ratio of the underwater acoustic signal and the
few labeled samples affect the good classification results of
the BP neural network.

When the number or distribution of input samples is not
ideal, the model may have fitting problems, including over-
fitting and underfitting. As a high-capacity deep network, BP
neural network can solve complex tasks, but when the number
of samples is too small, the details and noise of samples
are learned by the BP neural network, which will lead to
overfitting of the model. Overfitting mainly shows that the
performance gap between the training set and the test set is
large. In order to avoid overfitting, the common method is
to increase the diversity of samples. The RBM auto-encoder
can reconstruct the original samples in a statistical sense,
and the reconstructed samples conform to the probability
characteristics of the sample set data. Using an RBM auto-
encoder to reconstruct the training set can avoid overfitting.

BP neural network with more than 5 layers can implement
extremely intricate functions of its inputs that are simul-
taneously sensitive to minute details [28], [29]. Therefore,
we choose the 5-layer BP network structure. We set the
dimension of the first hidden layer neuron of BP neural
network to 500, which is close to the dimension of con-
ventional underwater acoustic power spectrum data, and the
dimension of the later hidden layer decreases on the basis
of the former. We set the number of neurons in each layer
as 50-500-200-50-1.

Because of the problem of overfitting of the BP neural
network in a small training set, the system uses the recon-
struction sample of the RBM auto-encoder to expand the
training set, as shown in Figure 14. The sample reconstructed
by the RBM auto-encoder is a new sample with the overall
probability characteristics of the data set and achieves the
effect of denoising the original data. Firstly, the original
spectrum is randomly divided into a training set and test
set according to 6:1 random sampling. Then the RBM auto-
encoder is run on the training set to get the appropriate RBM
parameters and the reconstruction samples of the training set.
Then, the BP neural network is trained by using the neural
network training set. Finally, the underwater acoustic target
recognition results are obtained by the RBM auto-encoder
and BP neural network.

In a word, the RBM auto-encoder BP neural network
system has the following advantages. RBM auto-encoder
reduces the dimension of the original spectrum and extracts

FIGURE 14. The structure of the proposed target recognition system.

high-level probability features layer by layer, which increases
the separability of data, which is conducive to BP neural
network classification. RBM auto-encoder can reconstruct
and denoise the training samples, and reduce the overfitting
probability of the BP neural network by adding additional
samples. Both BP neural network and RBM auto-encoder are
self-learning algorithms and do not need to design too many
parameters, which is conducive to the application of an under-
water acoustic recognition system in complex situations.

IV. EXPERIMENT
The experimental process is divided into four stages. Firstly,
the original underwater acoustic time-domain data are prepro-
cessed in different ways, and then aligned and spliced in the
time axis, to obtain the original input samples. In the second
step, the original input samples corresponding to the training
set are sent to the RBM auto-encoder, and the reconstructed
samples are obtained by auto-encoding and decoding. In the
third step, the original input samples are randomly divided
into a training set and test set according to 6:1, and the
reconstructed samples are added to the training set. These
samples are sent to the RBM auto-encoder to complete fea-
ture extraction. Finally, the dataset was used to train and test
the underwater acoustic target recognition system to evaluate
the performance of different systems.

The number of layers of the RBM auto-encoder was set to
4, and the number of units in each layer was 985, 500, 200,
and 50. The learning rate during training was set to 0.001.
The value of the weight matrix was initialized randomly at
[−0.001, 0.001], the offset value was initialized to 0, and
the number of iterations for each layer was set to 100. The
Boltzmann machine took the normalized spectrum of the
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segmented signal as input and completed the feature extrac-
tion through the four-layer RBMauto-encoder. BP neural net-
work obtained the output features of the RBM auto-encoder
to complete target recognition.

To verify the performance improvement of the proposed
method in improving the recognition rate and reducing over-
fitting, we arranged a control experiment to use the train-
ing set without reconstruction samples to train the network.
Besides, to verify the performance of the feature fusion algo-
rithm in increasing the separability of the data, we arrange
a comparative experiment to use a separate algorithm to
preprocess the time-domain underwater acoustic data.

A. ACOUSTIC SIGNAL PREPROCESS
The data samples processed in this study are single-channel
audio signals. The signal was divided into 2 seconds frames
with a 50% overlap between frames, and a Hanning window
was added to the signal to suppress high-frequency interfer-
ence and energy leakage.

By calculating the power spectrum and DEMON spectrum
of the windowed signal, the time-domain signal is converted
to the frequency domain. The power spectrum provides the
frequency domain energy distribution of the signal, and the
DEMON spectrum provides the analysis of the ship’s mod-
ulation noise. The subsequent target recognition system uses
this information to classify and recognize ships.

The normalized power spectrum Ŝ(k) and the normalized
DEMON spectrum D̂(k) are taken as the system input. The
normalized spectrum is calculated as follows.

Ŝ(k) =
S(k)−min[S(k)]

max[S(k)]−min[S(k)]

D̂(k) =
D(k)−min(D(k))

max[D(k)]−min[D(k)]
(15)

where S(k) and D(k) are given by formula (2) and (6)
respectively.

In order to effectively utilize the power spectrum infor-
mation and DEMON spectrum information to maximize the
recognition performance, it is necessary to fuse the two kinds
of spectra to correspond to the original time-domain infor-
mation and normalize the two kinds of spectra respectively,
to make the effective amplitude of the spectrum consistent.
Finally, the normalized fusion spectrum was obtained.

X̂ (k) = [Ŝ(k), D̂(k)] (16)

At this time, 0 ≤ X̂ (k) ≤ 1. X̂ (k) meets the requirements
of RBM for input data.

B. EXPERIMENT RESULT
In order to verify the performance of the proposed underwater
acoustic target recognition system, the ShipsEar database
is used in multi-target classification experiments. ShipsEar
database contains underwater noise records generated by a
variety of ships, as well as details of each record: ship type,
hydrophone gain depth (H_G_D), Real-time weather, etc.

FIGURE 15. ShipsEar data collection diagram.

TABLE 2. Data classification in ShipsEar.

Figure 15 is a schematic diagram of the database acquisi-
tion. Three hydrophones are arranged vertically under the
water to record the noise passing by the ship and conduct
beamforming to ensure the maximum dynamic range. In very
shallow areas (depths under 10 m), recordings were made
with one or two hydrophones [26]. The amplifier used a
100 Hz high-pass filter to suppress marine background noise,
the hydrophone sampling rate is 52,734 Hz, and the AD
converter bit depth is 24 bits. According to the size of the
ship, samples were divided into five categories, as shown
in Table 2.

After preprocessing the underwater acoustic signal, orig-
inal samples are obtained. There are 600 samples for each
type of vessel, with a total of 3,000 samples. Among them,
6/7 served as training samples, and the rest served as test
samples. Then, the RBM auto-encoder is used to encode and
decode the training samples to obtain the reconstruction sam-
ples, and the reconstructed samples are added to the training
set. In this experiment, the expanded sample set contains
6,000 samples. Then the training set is used to train the under-
water acoustic target recognition system. Finally, the training
system is used to test the multi-objective classification of the
test set.

In the experiment, the adjusted Rand index (ARI) and the
maximum value of the clustering rate (MVCR) were used
to quantify the effect of target classification. ARI is used
to quantifying the distribution similarity between the test
set classification results and the actual tags, and MVCR is
used to quantify the clustering accuracy of a single class.
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Assuming that the dataset of N classes is clustered into
K clusters, ARI is defined as

ARI =

∑
ij

(
nij
2

)
−

2ab
N (N−1)

1
2 (a+ b)−

2ab
N (N−1)

(17)

where nij is defined as the number of samples that should
belong to the ith clustered into the jth cluster. Higher ARI
value means better clustering results.

MVCR analyzes the clustering effect of each class, which
is defined as

MVCR(i) =
max(nij, j = 1, 2, . . . ,K , j /∈ 2i)∑

j nij
(18)

where2i is the set of label that has been previously selected.
nij is defined as the number of samples that should belong to
the ith clustered into the jth cluster.
In model design, the number of model layers and other

super parameters affect the performance of the underwater
acoustic target recognition system. The rationality of the
selected hyperparameters can be verified by experiment and
theoretical analysis. RBM auto-encoders usually use a three-
hidden layer model to complete feature extraction, but there
is no appropriate hyperparameter setting specification for
data reconstruction using it. Therefore, this paper verifies the
rationality of using independent hyperparameters in the data
reconstruction system by designing a controlled experiment.

The RBM auto-encoder used for feature extraction uses
three hidden layers with the number of neurons of 500, 200,
and 50 respectively. This RBM auto-encoder can also be
used for sample reconstruction at the same time. However,
considering the quality of feature reconstruction samples
and the independence from feature extraction, RBM auto-
encoders of four hidden layers are used in this paper for
sample reconstruction, and the number of neurons is 1000,
500, 250, 30 respectively. To verify the effectiveness of the
reconstructed samples to the recognition system, this paper
uses power spectrum data to reconstruct the samples of three-
layer RBM and four-layer RBM respectively, and tests are
carried out according to the structure shown in Fig. 13. The
results are shown in Table 3.

TABLE 3. Experiment result of different level models.

Table 3 shows the classification effect of the different level
models after the reconstruction of the same data. It can be
seen that the recognition rate and reconstruction mean square
error obtained by using the four-hidden layer model are better
than that of the three-hidden layer model. It shows that it is
reasonable to choose an independent RBM reconstructor with
4 hidden layers in this paper.

To evaluate the spectrum types and the influence of
spectrum reconstruction on the performance of underwater

TABLE 4. Experiment result of different feature model.

acoustic target recognition systems, this paper constructed
a training set using the different spectrum of ShipsEar data
set to test the above underwater acoustic target recognition
system, to find the optimal performance of the spectrum
input. The experimental results are shown in Table 4.

Table 4 shows that the classification result of the model
which is trained by different features based on ShipsEar
database. The recognition rate of the fusion spectrum was
higher than that of the single spectrum, which shows that the
fusion spectrum experiment has higher ARI and MVCR. The
experiment of augmenting the training set with reconstructed
data also verified the inhibitory effect of the proposed method
on overfitting, and the original spectral results were improved
slightly.

TABLE 5. Result of control experiment.

GFCC + GMM is the method adopted in [26].
Table 5 shows the performance comparison of the two clas-
sification methods. The proposed method is significantly
superior to the GFCC + GMM method in terms of accuracy
and Min MVCRs.

The method proposed in this paper is a cascading form,
which has a low coupling degree between feature extrac-
tion module and classifier module and has good flexibility.
Similarly, the proposed method can be extended to an end-to-
end classification system. Figure 16 shows several extensions
of the proposed method and a case where an end-to-end
classifier is connected. Table 6 shows the results of direct
classification using DBN and classification using the struc-
ture in Figure 16.

The classification performance of DBN on the original
samples is obviously lower than that of the proposed method.
By expanding the sample with RBM reconstructor, the clas-
sification performance of DBN has been improved, which is
close to the performance of the proposed method. However,
the proposed method is a cascading network with a low

63852 VOLUME 9, 2021



X. Luo et al.: Underwater Acoustic Target Recognition Method Based on Combined Feature

FIGURE 16. Extensibility schematic of the proposed method.

TABLE 6. Experiment result of dbn.

TABLE 7. Training time.

coupling degree between the feature extraction module and
classifier module, and it has better openness than the DBN
network.

Table 7 shows the training time of the proposed method.
The proposed method is tested on a workstation with an
8-core CPU (I7 9700K) and 16GB RAM. The method is
simulated by MATLAB software. The result shows that the
training time is acceptable.

The results show that: (1) The features extracted by RBM
auto-encoding have better classification performance than
those extracted by traditional methods. (2) Under the con-
dition of comprehensive utilization of power spectrum and
demodulation spectrum information, the performance of the
recognition system has been significantly improved. (3) The
performance of the recognition system is further improved
after the data augmentation processing based on the RBM
auto-encoder.

V. CONCLUSION
This paper proposes an underwater acoustic target recogni-
tion method based on RBM auto-encoder and BP neural net-
work. The proposedmethod has the following characteristics.
(1) The power spectrum and demodulation spectrum of ship

radiated noise signals are used as the input of feature extrac-
tor, which avoids the loss of important rhythm characteristics
of ship radiated noise when only using the power spectrum
in the traditional recognition methods. (2) The RBM auto-
encoder is used for unsupervised feature extraction of the
combination data of the power spectrum and demodulation
spectrum, which has better feature extraction performance
than the conventional feature extraction methods based on the
presupposed models. (3) The RBM auto-encoder is used to
enlarge the data samples and improve the performance of the
recognition system.

The experimental results show that the proposed method
has better performance than the traditional method, which
provides good technical support for the target classification
and recognition function of the SONAR system.
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