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ABSTRACT The internet of things is a worldwide technological development in communications. Low
Power and Lossy Networks (LLN) are a fundamental part of the internet of things with numerous monitoring
and controlling applications. This network has many challenges as well, due to limited hardware and
communication resources, which causes problems in applications such as routing, connections, data transfer,
and aggregation between nodes. The IETF group has provided a routing model for LLN networks, which
expands IPv6 protocol based on Routing Protocol (RPL). The pro-posed decision system DDSLA-RPL
creates a list of limited k member optimal parents based on qualitatively effective parameters such as
hop, link quality, SNR rate, and ETX energy consumption, by informing child nodes of their connection
link to available parents. In the routing section, a decision system approach based on learning automata
has been proposed to dynamically determine and update the weight of influential parameters in routing.
The effective parameters in the routing phase of DDSLA-RPL include battery depletion index, connection
delay, and node queuing and throughput. The results of the simulation show that the proposed method
outperforms other methods by about 30, 17, 20, 18, and 24 percent in mean longevity and energy efficiency,
graph sustainability, operational power and latency, packet delivery rate test, and finally number of control
messages test, respectively.

INDEX TERMS Internet of Things, routing protocol, routing, quality of service, dynamic decision system,
learning automata.

I. INTRODUCTION
With the major developments of technology and the increas-
ing popularity of digital tools and infrastructure, the com-
munication needs of societies have undergone significant
alteration. These changes have been effective in quality of
life, jobs, and aspects of urban life. Therefore, the technology
required to improve these practical areas involves structured
communication. The internet of things has been recognized as
a suitable scenario to influence human lives, which can merge
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modern technology with future life. The internet of things
has expanded the definition of the world web from merely a
homogenous network of computers connected to the internet,
to a network of heterogeneous gadgets and appliances like
home appliances, mobile electronic devices, andwireless sen-
sor networks [1], [2]. Today, the internet of things is a world
issue, and because of its increasing applications, it has created
a large amount of data. These data must be first transferred to
target servers to be processed. This transfer of data from A to
B must be carried out correctly and without error and latency
which has revolutionized routing in this network [3]. The lim-
itations and challenges of routing in the sensor network, as the
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most important part of the internet of things, distinguishes it
from other distributed systems [4]. These limitations affect
the design of wireless sensor networks including protocols
and algorithms different from other categories of the internet
of things. The research area of the present study focuses on
the structure of graph construction and routing in the internet
of things [5]; therefore, some of the most important limita-
tions in sensor routing are considered which include, traf-
fic patterns, energy efficiency, scalability, motion, two-way
links, and the rate of radio transmission. In recent years,
many routing protocols have been proposed in the field of
sensor networks and LLN, each with a specific purpose in
the network. After the idea of the internet of things and
connecting mobile digital devices through the internet, a need
for multi-hop connections arose and researchers are seeking
to design and implement a standard routing protocol based on
6LowPAN [6] to alleviate the current and future needs of the
internet of things. In the present study, a quality-aware service
approach is pro-posed based on a multiple-criteria decision
system calledDDSLA-RPL. Themanuscript is categorized as
follows; in part two, routing protocols in this type of network
are reviewed and in part three, the proposed method is intro-
duced. In part four, the results pertaining to the simulations
and practical tests for use in the internet of things based on
proper metrics are presented. Finally, part five concludes the
research.

II. REVIEW OF PAST RESEARCH
In the world of distributed communication and heteroge-
neous networks, the network nodes do not always possess
high resources and computing ability and often face limita-
tions such as hardware resources, the short-range of radio
signals, low transfer rate, and data production. Simply put,
LowPAN is a simple and inexpensive network connection,
which allows nodes with limited energy sources to connect to
each other. The nodes in the LowPAN network use the IEEE
802.15.4 standard to connect to each other. With the require-
ments of IPv6 based networks [7], the LLN networks [8] and
consequently, the internet of things has undergone a structural
change, which led to a wave of new research in the field of
network routing protocols [9]. In this section, the most well-
known basic routing protocols for the internet of things are
introduced and their standard abilities in this platform are
assessed.

A. RPL PROTOCOL
Based on the specifications mentioned for 6LowPAN net-
works and generally, for LowPAN and LLN network, routing
is of great importance in this type of network. Previously,
protocols had been designed for LLN networks, none of
which presented a comprehensive and standard solution for
these types of networks. As a result, a task force ROLL in the
IETF organization introduced a routing protocol named RPL,
which is the main candidate for a standard routing protocol
in LLN networks. This taskforce introduced other RFCs in

TABLE 1. Units for magnetic properties.
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other applications of LLN networks; namely, RFC 5548, RFC
5826, RFC 5673, and RFC 5867 [10].

The RPL is a distance-vector protocol, which operates,
based on source routing. This protocol transfer’s data, based
on several methods, point-to-point connection LLN (be-
tween devices or nodes), point-to-multipoint LLN (from one
central control point to a collection of nodes), and multipoint-
to-point (from the collection of LLN nodes to one central
control point). The RPL protocol works based on a graph
called DODAG that is the basis for all activities in the routing
protocol. In the following, this graph and its interaction with
the new versions of RPL are introduced and discussed.

B. OBJECTIVE FUNCTION IN RPL
The practical RPL protocol has been designed for diverse
environments that support important properties in the net-
work’s objective function; such as preventing and discover-
ing loops in the DODAG graph, repairing routes or out of
service nodes, and supporting various types of metrics and
regulations. The RPL routing protocol is a protocol that can
alleviate the network’s various requirements. Considering the
various practical applications of these types of networks and
having different regulations, therefore, it cannot be expected
that a fixed combination of metrics will be beneficial in all
applications. Therefore, the RPL protocol is flexible with
different types of networks. The main purpose behind the
objective function in the RPL protocol is tomake this protocol
more flexible in different areas and applications. An inter-
esting fact in the design of the RPL protocol is that it is a
combination of two topologies, mesh and hierarchical. This
design will make the RPL protocol flexible in routing and
topology management. The RPL forces the nodes to organize
in a hierarchy and create a parent-child relation. On the other
hand, in times of need, RPL allows the nodes to use sibling
nodes instead of parent nodes to send packets. In fact, each
node has a list of candidate parent and sibling nodes within
itself; and the nodes in this list are used whenever the current
parent node lacks the ability to send packets. Based on the
definition provided in the RFC documentary about the RPL
proto-col, the objective function determines how the network
nodes choose their route. In other words, the objective func-
tion determines how the nodes turn the metrics and principles
into ranks to be able to choose a suitable parent [11].

Based on this definition, OF has the main role in finding
and improving the routes between nodes and it is the OF that
decides which nodes can join the route according to available
metrics and principles. In an RPL network, a node can have
several parents. Up until now, the IETF ROLL has published
two standard objective functions with RFC for the RPL pro-
tocol. One is called Objective Function Zero or OF0 for short
and the other is theMinimumRank with Hysteresis Objective
Function or MRHOF. The OF0 uses the best parent metric to
choose ‘‘the least number of jumps’’ and the MRHOF uses
the ETXmetric to find the best routes.When the network uses
MRHOF as the objective function, it is obvious that the route
with the lowest ETX is chosen as the optimum route towards

the root. However, one objective function cannot be used for
various applications and situations; and RPL’s strong point is
that it can be optimized for any application using OF. In fact,
the OF must be designed according to the type of application
it is required to perform. This is an issue that researchers have
begun to redefine in their current studies.

C. NETWORK MANAGEMENT METRICS
The available metrics for routing are so important that RFC
has been written for them (RFC 6551) and in that docu-
mentary, their properties have been explained extensively.
We aim to introduce some of the most important routing
metrics and provide a short description for each one. Some of
the important routing metrics can be categorized as follows:

1) NODE METRICS
• Node Energy: the energy of a node or its battery is
considered an important factor in many LLN networks.
For this reason, in many networks, longer routes are
chosen to reach the root in order to increase node and
network longevity. The transmitter has the highest bat-
tery consumption in the nodes; as a result, either work
has been done to regulate the transmitter strength or the
nodes are distanced as much as possible so that they
cover a larger area. One of the metrics related to energy
is the BDI metric which has been introduced based on
the RER metric in [12] and [13].

• The number of hops: which is shown as HC in many
kinds of works of literature, is the number of required
hops for the packet to reach its destination. In many
studies, this metric has been used as a basis for creating
the DODAG graph or routing. The base metric in the
standard objective function OF0 is also the number of
hops.

• Delay: as you know, four types of delay are present in
network concepts. These are release delay, processing
delay in the node, queuing delay, and sending delay.
Some of these delays are inherent properties of the net-
work and cannot be improved using objective functions.
Others on the other hand, like queuing delay, can be
improved through some measures.

2) LINK METRICS
• ETX: the expected transmission rate of the link is an
important index of network reliability. Based on the ETX
definition, it is the number of times required to transmit a
packet in order to reach its destination correctly. In other
words, the number of transmissions a nodemust perform
to deliver the packet correctly. Another definition of
ETX is available and it is the total number of transmis-
sions divided by the number of successful transmissions.
The range of ETX can be from one to infinity; if ETX
equals 1 it means link quality is extremely high. As ETX
moves towards infinity, link quality declines.

• RSSI: the physical layer provides the possibility of
determining the network connection properties such as
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TABLE 2. Frequently used metrics in research from 2014 to 2020.

TABLE 3. Other metrics in research.

signal, frequency, voltage, etc. The best way to estimate
the radio link is the signal strength index received from
the RSSI index, which is a function of the nodes trans-
mission power and is conversely related to the distance
factor.

• SNR: this metric is the ratio of signal to noise in the
connection link between two nodes. Signal refers to
the quality of the connection and noise refers to the
connection failure rate. In other words, the signal is the
expected status and noise is the amount of disturbance
or fault in the signal. The low transmission rate and
limited resources in the LLN networks lead to a lower
signal to noise ratio and consequently results in lower
data transmission quality. Similar to node metrics, other
metrics can be designed from a combination of the afore-
mentioned metrics.

• LQL: the link quality index LQL estimates and presents
the reliability of the link using a range of 0 to 7. This
metric directly affects the packet delivery rate (PDR).

• Throughput: this index addresses the mean number
of successful connections in a link and is one of the
key factors in identifying, controlling, and managing
network congestion.

III. THE PROPOSED DDSLA-RPL METHOD
The challenges discussed for providing quality services in the
internet of things routing are mostly a result of lack of bal-
ance, fairness, intelligent routing and topology control. Based
on the alignment pattern for the RPL protocol, this protocol
consists of two main phases, which include the formation of
the network tree and the steady state phase. The universality
of these two phases typically causes researchers to look at

it from a one-dimensional perspective, for example studying
merely on the first or second phase. Therefore, we have
focused our study on both phases of the RPL protocol since
correct decisions in these two phases are correlative. In other
words, a precautionary approach is much more beneficial
and cheaper than confrontational approaches or periodical
decisions in a network based on RPL. Based on previous
studies, using one or more link or node metrics, or even avari-
ciously using them together, is not necessarily beneficial. As a
consequence of one-way traffic towards the root, the closer
we get to the root the quality of services from the parent nodes
close to the root becomes critical; because the funnel effect
of traffic has been drawn to them, and in the circumstance
that received data is not transferred in due time, the queue
buffer will overflow and eventually lead to packet loss. This
effect of congestion was proven in our previous studies [5]
and [42]; however, the proposed model in the present study
named DDSLA-RPL consists of two main phases. For this
purpose, we have proposed a multi-criteria and multi-object
system to make dynamic decisions based on effective metrics
in service quality within two phases of graph formation and
routing. In section 3-1, the different stages of the decision
system are described.

A. STAGES OF THE DECISION SYSTEM
Every decision is made at least for one specific object which
achieving it depends on other influential variables within
a decision making model. The object of the decision is
called the dependant variable and other influential variables
are independent variables. This decision system includes six
main steps:

• Step 1: In solvingmulti-indicator problems, the exact
definition of object/objects is an important issue.
In the present study, our objects, if it be service
quality or reducing energy consumption and increas-
ing network lifetime, are all considered objectives;
however, because at the onset of the network energy
criteria is not the first priority thus the proposed
decision system follows the other network service
quality criteria which in the duration of the network
activity have different priorities based on node status
and connection links.

• Step 2: After accurately describing the problem, fac-
tors, with obtainable data, that affect the object of
the problem must be determined. In section 3-2 of
the present study, the relative network management
metrics and their measurement methods have been
presented. Considering that some metrics are quali-
tative and some are quantitative, they will have dif-
ferent places, roles, coefficients, and priorities in the
decision system computations. Separating positive
and negative indicators is performed in this step.

• Step3: Options either are known and only require
decision-making or with researching the problem
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TABLE 4. Advantages and disadvantages of recent methods on the RPL protocol.
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TABLE 4. (Continued.) Advantages and disadvantages of recent methods on the RPL protocol.
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TABLE 4. (Continued.) Advantages and disadvantages of recent methods on the RPL protocol.

they become known and those with obtainable data
and information are chosen.

◦ Determining the scoring method for indices: after
determining the options and decision-making indi-
cators, we must decide on the manner of scoring
the indicators.

◦ Evaluating indicators: After determining the indi-
cators and options and choosing the scoring
method, we begin evaluating them.

• Step 4: Un-scaling: Every quantitative indicator has
its own measurement scale, which makes it impossi-
ble to compare themwith others; therefore, theymust
be somehow separated from the unit of measurement
to make comparisons possible. To un-scale, we have
utilized the linear un-scaling method in which the
amount of negative indicators are reversed and then
any value of the matrix is divided by the maximum
value in its corresponding column. Therefore, in gen-
eral we have:
For positive indicators:∑

ij
=

aij
Max aj

(1)

For negative indicators:∑
ij
=

1
aij

Max( 1aj )
(2)

It is obvious that 0 ≤ nij ≤ 1 and the advantage
of this un-scaling is that it is linear and all results
become linear, therefore the relative order of avail-
able results remains the same.

• Step 5:After un-scaling the values for each indicator
we must determine the relative importance of indica-
tors in relation to each other which was carried out by
least squares method. The main idea in this method
rests on the fact that by using pair-comparisons of
options the priority of each indicator is addressed.
For this reason, theweighted pairedmatrix is created,
the sum of values for each column is calculated and
then each column element is divided by the sum
values of the respective column. The newly obtained
matrix is called the normalized comparison matrix.
Finally, the mean value of each row is calculated
in the normalized comparison matrix and a column
matrix is obtained where its elements will be the
weight of compared indicators.
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FIGURE 1. The process of computing the MCDM algorithm using AHP
system.

• Step 6: Comparing with the objective function and
choosing the best option as the answer of the decision
system.

Cost(k = 1 . . . n) =
∑n

k=1
(Parami × wk ) (3)

Best Choise = Max (Costk) (4)

B. OF1 OBJECTIVE FUNCTION
The first phase of this project is dedicated to designing the
first objective function (OF1) for creating the RPL network
graph. In the RPL method, the child nodes are dependent
on their single parent and this connection remains up until
the link between parent and child is lost or the parent DIO’s

FIGURE 2. The making and structure of the parent list in the child node.

FIGURE 3. Multi criteria decision-making system in the OF1.

trickle timer expires. In the proposed method, the multi path
method has been utilized so that each child node can connect
to a fixed number of � parent nodes. In contrast to our
previous method, the LA-RPL, where each parent node had
a fixed number of� child nodes, now this condition happens
in the child node. In this method, the graph-rating limit is
the control and parent selection factor and the network has
been modelled as a connected acyclic graph G(V,E). The �
constant is k < |V | and |V | is the number of nodes in the
network graph. Each node recognizes the � constant and
this limit presents the number of acceptable parents. During
the making of DODAG, each node v chooses the optimal
parent(s) (p) for the parent list (PL), after computing the
multi-criteria decision making system in the OF1, and sends
its request as a DAO. After each child node receives DAO-
Ack from said parent(s), it adds them to its PL list. In this
example and our proposed method the optimal number of
� = 3 is obtained (Figure 2).

Based on thementionedmetrics in section 3-2 of this paper,
the considered criteria in the OF1 include the hop count
from the parent to the root, link quality level (LQL), signal
to noise ratio (SNR) and the expected energy expenditure
(ETX). Finally, for computing the aforementioned parameters
in the OF1 output, reciprocal values were not used while cal-
culating relative criteria due to similar proportions (Figure 3).

The first decision-making system parameters for making
the network graph include:

• Hop count (HC): In the RPL network, the root node
has an HC of zero and with each hop away from the
root; a digit is added to the hop counter. In this regard,
the amount of increase in rating is one unit.
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HC (N ) = Rank (ParentNode)+ Rankincrease (5)

• Link quality level (LQL): contrary to many other fac-
tors, the LQL factor in a multi hop route is not cumula-
tive (sigma) and must be computed separately for each
link. In general, Routej (i, d) is the route from i to d,
from the parent node j. This indicator is assessable by
the incoming DIO signal in the child node and will be
used during the making of the DODAG graph. The LQL
is computed based on [43], which is modelled after the
hardware specifications of the CC2430microchip in real
world.

LQL = (CORR-a) · b (6)

The result of this equation is from zero to 255. The value of a
and b depends on the hardware and is modelled according to
the CC2430 microchip datasheet in the simulator. The single
hop cycle of LQL for each available parent is obtained from
equation 7.

LQ(n) = Max{LQ (n)+ (LQ(n− 1) ∗ θ )} (7)

where the best value for θ is 0.20. In other words, the parent
node’s link quality can ultimately add 20 percent to the parent
node value.
• Signal to noise ratio (SNR): in order to estimate the
SNR, we used the proposed model by [43], [44]. This
model is based on simple calculations relative to the
sensor node while retaining the base model’s accuracy.
The SNR is a concave indicator (the SNR of one route
is limited by a link that has the maximum amount of
available signal to noise ratio). It is therefore desirable
to avoid choosing a node with a low SNR; as choosing,
an inappropriate link and a high amount of noise in the
link will lead to increased packet loss in the network
and somewhat wastes resources (energy and time). The
maximum value for SNR between source and destina-
tion [45] is obtained by equation 8:

SNRijd = max
{
Signal
Noise (l)

}
, ∀l ∈ routej (i, d) (8)

where Routej(i, d) is the route from i to d via j. In order to
prevent the greedy selection of a single hop parent, we have
used a higher single hop indicator with the respected parent
based on the LQ parameter, which resulted in the best value
(0.20) for θ . Therefore, the link SNR between child node and
its parent is obtained via equation 9.

SNR(n) = Max{SNR (n)+ (SNR(n− 1 ∗ θ )} (9)

• Energy expenditure rate per expected link transmis-
sion (EETX ): the energy expenditure of the expected link
transmission ETXlink, in the RPL network, has different
definitions each of which is determined based on the
network goals. The most common ETX definition is the
admission capacity or route cost which is obtained from
equation 10.

ETX =
1

df × dr
(10)

The delivery forward ratio (df) equals the probability that
a data packet successfully reaches its destination and the
reverse delivery ratio (dr) is the probability that the ACK
packet is successfully received at the packet-sending node.
It must be taken into account that ETX is in fact the mathe-
matical expectation for the number of required transmissions
(including re-transmissions) to deliver a packet to its destina-
tion.

Based on this, using the ETX metric, an estimate of
link loss ratio can be obtained. This estimation is obtained
from 11:

ETX l =
1

(1− df )× (1− dr )
(11)

In this equation, ETX calculates the information for link loss
ratio in any direction. If the link is asymmetric or unilateral,
the value for dr is zero. On the other hand, the expected ETX
energy expenditure and the residue energy rate of the node
is estimated during the same transfer and enters the decision
making system; however, based on the aim of this study,
we are looking to estimate energy expenditure per packet
transfer in the RPL network and its dependency on ETX,
which is obtained from equation 12 (P is energy expenditure,
λ is link transfer rate, L is packet size) [42], [46].

EETX = ETX × Pl ×
L
λl

(12)

C. OBJECTIVE FUNCTION OF2
The second phase of this study is dedicated to designing
the objective function OF2. We have proposed a decision-
making system aware of service quality by taking into
account indicators and parameters that are influential in link
quality and network energy consumption.When the decisions
facing a network are based on one metric, decisions are made
greedily which is not suitable in most applications. Service
quality in low power and lossy networks in the internet of
things has various parameters and definitions, which often
contain several metrics, and every decision must be made by
considering several indicators. Therefore, various solutions
have been proposed as objective functions based on a fuzzy
system or mathematical membership functions, to result in
choosing the correct alternative. The main problemwith most
previous methods has two aspects:

1- Metrics are only towards the node or they are links.
2- Metric weights in their proposed system are constant

during network operation.
In this study, by covering both above-mentioned issues,

we have introduced, as innovations of the current study,
the multiple combination of node and link metrics and the
dynamic weight of metrics. The parameters in the second
decision-making system in quality of service-aware routing
include:
• Battery Depletion Index (BDIi): The node energy
expenditure is one of the important factors in quality
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of service-aware routing in the RPL network; because,
as a result of early energy depletion in the node, its
connection with other nodes in the network is lost and
the node dies. Therefore, during routing in the proposed
decision-making system the battery depletion index can
be obtained from the remaining energy. In equation 13,
Ecurrent is the current energy of the node and Einitial is
the initial amount of energy in the node [12].

RERi =
Ecurrent
Einitial

(13)

However, the battery depletion index for node i is calculated
from equation 14.

BDI i= (1−RERi) (14)

• Node’s Queue Status Index (QSIi): The effective index
for determining node value in the RPL network is the
node’s queue status ratio in a specified time, which has
a direct relation to the network traffic load. In a node,
the size of the queue buffer for buffering, processing and
sending a packet is constant and specified. It is obvious
that when the input and output rates of the queue are not
compatible it will lead to an overflow of the node buffer
in the network. This index is calculable like the queue
status index introduced in the previous study [42].

QSI i =∑10
i=1 queueingPacket (i)+

∑20
i=11 2× queueingPacket (i)

15
(15)

The output from equation 15 can determine the node status.
If the result is more than 0.7 it means the node is likely to face
congestion and overflow in the near future. The node queue
status index obtained from this equation must be calculated
periodically (every second) in the node.
• Link Latency Index (LDIi): Latency in each network
node in the RPL structure includes link latency, queue
latency, processing latency and the latency in forwarding
the packet. Indeed, similar to the node queue index, this
index is also directly related to network traffic rate per
unit time. The latency for each parent p or child i are
obtained separately by equation 16 and the link latency
index is calculable via equation 17.

NodeDelayi = ProcDelayi + QueueDelayi + TransDelayi
+PropDelayi (16)

LinkDelayIndexpi =
∑

Delaypi (17)

• Node’s Throughput Index (TIi): This index is the
number of bytes, which are transmitted by a specific
parent node in the network during a specific alternation
period. Network node transmission is one of the most
important indicators for evaluating the internet of things
network based on quality service, and is calculated by
equation 18.

Throughput Indexp

=
((Sizedata)× (timetaken_data_transmitting))

Responsetime
(18)

1) UPDATING PARAMETER WEIGHTS WITH THE LEARNING
AUTOMATA
As mentioned in section 3-3, the main innovation of this
research is the dynamic weight of combined parameters in the
OF2. In other words, in the second decision-making system,
link and node parameters are combined and the weight of
each parameter in the network must be variable depending
on the network time and traffic changes. Because of the
random distribution of nodes in the network and the inability
to calculate traffic levels in different sections, considering
parameter weight as a constant is incorrect. On the other hand,
it is not possible to accurately calculate these weights since
we are faced with an NP-Hard problem. Therefore, we have
proposed a random learning automata system for this stage
so to update parameter weights according to time and traffic
changes in the network and by doing so we increase network
lifetime and satisfy other quality service indices. The system
learning process has become a favourable research topic in
recent years, which usually aims to provide a methodology
for learning principles within a machine. Learning is defined
as changes in the efficiency of a system based on experiences.
An important property of learning systems is the ability to
increase efficiency in time. From a mathematical perspective,
the aim of a learning system is to optimize a function (duty)
which is not completely known. Thus, an approach to this
matter is to reduce the goals of the learning system to an
optimization problem, which is defined on a collection of
parameters, and its aim is to find the optimum parameters.
A learning automaton can be considered as an individual
object with finite actions. The learning automata operates
by choosing one function from its collection of functions
and applying it to the environment. A random environment
evaluates this action and the automata uses this response
to choose its next action. During this process the automata
learns to choose the optimum action. The automata-learning
algorithm [47] determines the process by which the automata
uses the environment’s response to choose its next action.
A learning automaton consists of two main parts [48]:

• A random automaton with a finite number of actions
and a random environment, which the automata is con-
nected to.

• The learning algorithm, which the automata uses to learn
the optimized action.

A random automata is defined as a 4-tuple LA ≡ {α, β, p,T }
where α ≡ {α1,α2, . . . ,αn} is the actions of the automata
(n is the number of actions) and β ≡ {β1,β2, . . . ,βm} is
the inputs of the automata. The environment can be shown
as a 4-tuple E ≡ {α, β, c, d} where c ≡ {c1, c2, . . . , cn}
is the set of possible penalties and d ≡ {d1, d2, . . . , dn}
shows the automata’s rewards. The environment input is one
of the n number of actions chosen by the automata. The
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FIGURE 4. The Stochastic Learning Automata [49].

environment output (response) to each action i is determined
by β i. If β i is a binary response, the environment is called a
P-model. In such an environment β i (n) = 1 is considered an
unfavorable response or failure and β i (n) = 0 is a favorable
response or success. The set c determines the possibility of
penalties of environment responses and is defined by equation
19:

ci = Prob {β (n) = 1|α (n) = αi} , i = {1, 2, 3, . . . , n} (19)

Which shows the probability of action αi receiving an
unfavourable response from the environment. The αi val-
ues are unknown and ci are considered to have a unique
minimum. Therefore, the environment can be presented with
the probability set of rewards (success) {di} where d i is the
probability of receiving a favourable response to the action
αi. The random automata’s relation to the environment is
presented in figure 4. This set, alongside the learning algo-
rithm, is called the Stochastic Learning Automata. Accord-
ingly, the Stochastic Learning Automata can be shown as
a 4-tuple LA ≡ {α, β, p,T }, p ≡ {p1, p2, . . . , pn} is the
automata actions probability vector and T ≡ p (n+ 1) =
T [α (n) ,β (n) , p (n)] is the learning algorithm.

If in the nth step αi action is selected, thus in the nth+1
step we will have:

a) The favourable response from the environment:

Pi,j (n+ 1) =

{
Pi,j (n)+ α

(
1− Pi,j (n)

)
, i = j

Pi,j (n) (1− α) ,∀j, j 6= i
(20)

b) The unfavourable response from the environment:

Pi,j (n+ 1) =

{
Pi,j (n)+ (1− β) , i = j
β
r−1 + Pi,j (n) (1− β) , ∀j, j 6= i

(21)

The α set includes automata outputs (actions) which the
automata chooses one actions from r actions in the set to
apply to the environment. The β set of inputs determines the
automata inputs [48].

The learning automata is a decision-making system, which
determines the necessary policy for choosing one of its
actions based on the feedback received from the environment.
The learning automata consists of two phases, the selection
phase and the learning phase. In the selection phase it makes
decisions, based on feedback from the environment, to opti-
mize compared to previous periods [49].
• Selection phase: All the parameters of the sensor node
have a threshold label ( lbl-Threshold) which is valued

FIGURE 5. A schematic of the proposed decision making system in the
second objective function using the learning automata.

at zero for all the node metrics at the beginning of the
network operation. However, after t time spent, changes
will occur in the network traffic and node energy lev-
els and if they are in our permitted ranges the value
zero will remain, but if any of the parameters enter the
restricted range (outside of the problem answer) the lbl
- Threshold= 1 and the condition to enter the automata
has happened. In the beginning of the operation all,
the nodes have the same Sw, but after repeating the
algorithm and receiving reinforcement signals from the
environment this value changes.

• For the learning phase, the learning automata is used
as a distributed agent in the RPL network. Each sen-
sory node, as a learning agent, is equipped with learn-
ing automata, which has two different functions. The
concepts and parameters of the learning automata is
described as below:
◦ Agent: each sensor node, which acts as an indi-

vidual learner, which means the learning agent’s
action, has no effect on other learning agents.

◦ Action: an agent can act as a variable weight or
fixed weight.

◦ Reinforcement Signal (S): the number of parame-
ters exiting the answer range by the parent node j
in the time period t (input degree). ϑ Equals the
number of metrics.

(22) and (23), as shown at the bottom of the next page. If
S>Thresholdγ , the node j is awarded otherwise it is penal-
ized. If it receives an award, Pw changes as follows:

Pw = Pw + α × R×(1−Pw) (24)

An in case of receiving a penalty:

Pw = (1− β (1− R))Pw (25)

α is the coefficient of award, β the coefficient of penalty and
for each Pwi the changes in probability equals the sum of
ϑ − 1 parameters, which is modelled in equation 26.

Pwi = 1− (
ϑ−1∑
i=1

Pwi) (26)

In Figure 6, LTmin equals the minimum determined life-
time of the node, LTmax is the maximum determined lifetime
of the node, T is the simulation time, LTC is the lifetime
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FIGURE 6. A schematic of the problem’s answer in regards to the
remaining energy parameter during sampling.

with the current energy consumption, Ren−1 is the remaining
energy in the previous sampling Tn−1, Ren is the remaining
energy in the node at the current sampling time, §2 is the prob-
lem’s maximum answer length, §1 is the problem’s minimum
answer length, and §C is the segment length of the current
sample.

The answer to the problem is located in the striped region
so that the automata system tries to keep the node’s remain-
ing energy in this range by giving penalties or awards to
parameter weights in the system. Calculating the answer to
the problem is possible via equations 27 to 30.

§2 =

√
IE2

max + LT
2
max (27)

§1 =

√
IE2

0 + LT
2
min (28)

§1 ≤ Answer range ≤ §2 (29)

The line m slope for two points is obtained as below:

Y = mX ,m =
y2 − y1
x2 − x1

(30)

Finally, the line slope for §C is obtained and the intersection
of line §C with the axis T which is LTC is derived. Both the
length of theLTC segment and the rate ofKc line slope, which
only inverts the condition for entering the automata, can be
measurement criteria. To enter the automata, the §C line slope
must be higher than the threshold slope for §1 or lower than
the threshold slope for §2. In other words, the aim is for the
line slope of §C to fall between the slopes of two lines §1
and §2. Therefore, the death of the first node is latency and
idle nodes or those with less traffic load will have greater
participation.

IV. SIMULATION AND PRACTICAL TEST RESULTS
In the present research, we have established our simulation on
the RPL routing protocol in an environment with randomly

FIGURE 7. The complete diagram for the proposed method in two phases,
graph formation and routing.

distributed sensor nodes and a centralized well node. This
simulation was implemented in an NS2.35 environment, and
the results of the simulation obtained from 20 repetitions
of algorithms and the variance calculation are presented in
the remainder of this chapter based on the type of test. The
algorithms simulated and compared in this study include
the following methods OF-FC, PMFR, NCRM, QWL-RPL,
CT-RPL, and the proposed DDSLA-RPL algorithm, which
have all been discussed in sections two and three of this
paper. In Table 5, parameters considered in the simulation
of the proposed method are presented. In the tests carried
out to compare the proposed method and five other methods,
the amount of entry traffic is considered λ = 1 and for more
precise evaluation the proposed method was compared with
two different traffic scenarios i.e. λ = 0.6, 0.8, and 1.

In order to evaluate the correct performance of the pro-
posed algorithm compared to other algorithms in this study,
each test was repeated 20 times and the variances of results
were recorded. The variance was calculated using equation

Rate j = [
(ECr − ECr−1)+ (Qr − Qr−1)+ (Dr − Dr−1)+ (Thrr − Thrr−1)

ϑ
] (22)

S = 1− 1/Rate j (23)
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TABLE 5. Units for magnetic properties.

31 in which n = 20 the number of algorithm runs. µ in
each level equals the average value of the number of test
repetitions.

δ =

√
1
N

∑n

i=1
(xi − µ)2 (31)

The evaluation metrics include:

• Average network lifetime: it is the predetermined aver-
age network lifetime and its realization rate per unit
time.

• Energy efficiency and consumption balance: the amount
of balance and fairness in nodes’ energy consumption
rates.

• Correlation graph consistency: the average changes to
the parent node in each net-work, which is a sign of
network consistency or inconsistency.

• Transmission latency: the average time spent for receiv-
ing, processing, queuing, transmission and distribution
of packets between child and parent.

• Route forwarding: the rate of transferred bytes per unit
of time spent for network packet transactions.

• Packet delivery rate: this metric refers to the proportion
of received packets to delivered ones.

• Control messages: the sum of control packets during
network operation time, which include DIO, DAO, DIS
and DAO-Ack.

A. AVERAGE NETWORK LIFETIME TEST
This test is for evaluating the lifetime of the proposed pro-
tocol and its parallel proto-cols under the influence of graph
formation, optimal route selection, and energy consumption
balance in the network. By intelligent and correct use of
the proposed decision-making system and by considering
the effective parameters energy consumption rate and net-
work resource consumption have been balanced. This means

TABLE 6. The time of death for the first node in the network in parallel
protocols with 50, 75 and 100 nodes.

FIGURE 8. The diagram for average network lifetime during 20 iterations
of tests with an entry traffic of one packet per second.

TABLE 7. The diagram shows the time of death for the first node in the
proposed DDSLA-RPL protocol at different traffic rates.

that the topology of the network nodes is more sustain-
able and stable compared to other methods and that the
network will not fail as easily from link quality issues or
energy loss. One of the ways to calculate average network
lifetime is by using the death of the first node criterion.
The more the death of the first node is latencies it shows
the higher efficacy of the method in creating balance and
resolving hotspots or energy consumption. The time of death
for the first nodes in the evaluated protocols is presented
in Table 6.

The time of death for the first node and the average lifetime
network (ALTN) is obtained from equation 32 [50]:

ALTN =

∑N−m
i=1 ti + (m× T )

N
(32)

where ti is the time of death for the ith node, N is the total
number of nodes in the network, m the number of surviving
nodes at the end of the simulation and T is the predetermined
network lifetime.

Also presented in table 7 is an evaluation of the time of
deaths for the first node in different traffics.
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TABLE 8. Node energy consumption variance in different methods.

B. ENERGY EFFICIENCY AND FAIRNESS
Data transmission and network efficiency is usually affected
by the node energy consumption in Low power and Lossy
networks and this is a major concern. Therefore, one of
the important goals in the RPL network, because of lim-
ited resources such as node energy, is the balanced energy
consumption per node in the network. The more the energy
consumption slope falls within the permitted range the higher
the node lifetime is and the network does not face early node
death. The three important factors that are used to evalu-
ate network energy efficiency are average energy balance,
fairness and lifetime in nodes; however, before calculating
energy consumption fairness, the standard formula to calcu-
late energy in this study is according to equation 33.

Etx(m, d) = (Econ × m)+ )tamp × m× l
2) (33)

where Econ is energy consumption, l2 is energy loss, and
the distance between node and parent is d. The amplifying
value for node transmission is tamp and m is the transferred
bits between child and parent. Finally, based on equation 34,
average energy level is the proportion of remaining energy in
all nodes after complete simulation to the total initial energy
of the nodes. As can be seen, the proposed method has several
advantages compared to other methods which has led to sat-
isfying results in this test. The energy consumption variance
is obtained via equation 34 and nodes’ energy consumption
fairness is calculated via equation 35.

Dev =
∑n

i=1
(energyi − Average)

2 (34)

If the result of equation 35 is closer to 100 percent, it shows
fairness in node energy consumptions. Devworst is the worst
situation where half of the nodes have spent their energy and
the rest have no energy consumption.

Fairness =
1− Dev
Devworst

(35)

In Table 9, the fairness indicator is presented for the pro-
posed DDSLA-RPL protocol at variable traffic rates. Based
on the obtained results, the fairness indicator is directly
related to the number of nodes in the network. The higher
number of nodes in the network leads to higher possibility of
fairness in the network because the system has more options
to choose from; though this indicator is inversely related to
the network traffic andwith increasing network traffic, energy
consumption fairness in nodes decreases.

FIGURE 9. The nodes’ energy consumption fairness indicator during
20 iterations of tests with an entry traffic of 1 packet per second.

TABLE 9. The nodes’ energy consumption fairness indicator for the
proposed DDSLA-RPL protocol at variable traffic rates.

FIGURE 10. Average network consistency test during 20 test rounds with
incoming traffic of 1 packet per second.

C. NETWORK GRAPH ALIGNMENT CONSISTENCY TEST
The network tree is susceptible to change under two con-
ditions; the first is from decisions or regulations which are
made during the construction of network graph or tree. If the
network tree is made with reliability, considering the link,
then it possibly has a high consistency and faces fewer local
or global repairs; or in other words, the inconsistency count
in the node’s trickle timer does not reach the fixed coef-
ficient of k. The second condition is the effect of balance
and equalization in the routing energy consumption for RPL
network nodes. Quality of service aware routing and using the
multipath method but limited to the parent list for the nodes
has been successful in preventing early death in parent nodes.
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TABLE 10. Average number of node’s trickle timer resets in the proposed
method with variable traffic.

TABLE 11. Average node latency in the proposed method based on the
variable packet entry rate.

According to Figure 10, as obtained from the results of
the simulation, the proposed DDSLA-RPL algorithm sig-
nificantly outperforms the other five methods in the 50 to
100 node counts.

In addition, in Table 10, the proposed protocol was tested
on variable traffic of λ = 0.6 ∼1 which with the increase of
traffic rate in the network, the level of consistency decreased
at a reasonable rate, which was a predictable phenomenon.

D. AVERAGE NODE LATENCY
Based on different definitions provided in the field of net-
working, the latency criteria is the amount of time it takes the
packet to be transferred from the source to its full delivery
at the destination. In some methods, this criteria is calculated
as end-to-end and cumulative; but in the proposed method,
latency was analysed as step-by-step so that the latency for a
packet includes the sum of all the node processing, queue,
transfer and distribution latencies and the lower this rate
is the lower the end-to-end latency of the network will be.
Numerous factors and metrics, including hardware and soft-
ware impact the latency rate in every node which have all
been taken into account in the proposed method to limit the
probability of latencies. Factors such as noise, link quality,
retrying to access media, node queue status, and node latency
and forwarding rates, were all taken into account in the form
of two decision-making systems with variable weights that
are constantly updated by the learning automata. According
to the figure, the multi-criteria decision system for network
graph formation and quality of service aware routing with
dynamic parameter weights has had significant efficiency in
reducing latency and the number of exchanges and retrans-
mission between nodes. To calculate latency rate equations
16 and 17 in section 3-3 of this paper were used.

In Figure 11, the traffic rate has been set at 1 packet
per second and in case of testing for other methods with lower
incoming packet rates, their results would be worse than those
in Table 9.

FIGURE 11. Graph of average network latency during 20 test rounds with
an incoming traffic of 1 packet per second.

The average latency for the proposed DDSLA-RPL
method with a packet incoming rate of λ = 0.6 to λ = 1 is
presented in Table 9. As expected, with reduced packet entry
distances, the node latency increased.

E. JFI TEST FOR LINK THROUGHPUT
To calculate Jain’s Fairness Index (JFI) for allocating net-
work resources for forwarding links between nodes, the link
throughput must first be calculated. The link throughput
in the network may depend on many factors, which often
face challenges such as increased traffic load, link loss, net-
work queuing, bandwidth reduction, current rate imbalance
between transmitter and receiver, congestion and collision in
the receiver. Therefore, in the proposed DDSLA-RPLmethod
our aim was to decrease these challenges as much as possible
by using the decision system to create consistent links with
suitable parents with a maximum of three parents for each
child node in the network graph formation stage. Then in
the routing stage, a multi-route, quality of service aware
routing method was proposed which calculates and updates
the weight of effective parameters in the decision system at
specified intervals. Therefore, this dynamic has caused the
throughput of the nodes to be maintained as much as possible
by applying load balancing. The throughput of child link i
and parent p can be calculated through Equation 36. Also
calculated through Equation 37 is the amount of fairness (JFI)
in allocating network resources such as bandwidth to network
nodes, whereThi is the throughput of child link i and parent p.
Also n is the number of nodes in the network.

Throughput i,p

=

∑n
i=1 ((sizedata)× (time_takendata_transmitting))

(Responsetime)× n
(36)

JFITh =
[
∑n

i=1 Thi]
2

n
∑n

i=1 (Thi)
2 (37)

In Table 12, the average fairness rate JFI has been imple-
mented in the network nodes’ throughput for incoming traffic
rates of λ = 0.6 to λ = 1. As expected, with increasing

VOLUME 9, 2021 63145



M. H. Homaei et al.: DDSLA-RPL: Dynamic Decision System Based on Learning Automata

FIGURE 12. Average node link throughput in the network during 20 test
rounds with an incoming traffic of 1 packet per second.

TABLE 12. Fairness in the throughput of the network nodes in the
proposed DDSLA-RPL protocol with variable traffic.

number of nodes and decreasing packet production gaps the
network throughput decreased; but the important point is that
in the proposed DDSLA-RPL method, despite increased traf-
fic load, throughput rate did not decrease significantly, which
shows that the proposedmethod is capable of performingwell
in higher traffic rates.

F. PACKET DELIVERY RATE TEST
In the RPL tree structure, the packet delivery rate depends
on numerous factors but the most important challenges in the
way of this tree structure are link failure, congestion rate and
possible collisions in the network, which can greatly affect
the packet delivery rate to a great extent. In the DDSLA-RPL
method, the graph formation phase with the proposed deci-
sion system hasmanaged, to a great extent, create high quality
and consistent links. On the other hand, using the multi-route
mechanism has enabled the child nodes to choose another
parent from the list of available parents in times of congestion
or parent quality loss. This option delays the time of death
for the node and also prevents the parent node’s buffer over-
flow as much as possible. Updating the parent node status
and adjusting parameter weights with the learning automata
for calculating the final value of the node has been able to
optimally maintain the packet delivery rate in a 500 second
simulation period. The reduced rate of packet loss in the
network has eliminated the need for resending packets in the
direction of the root. This fact has improved the efficient
network operation time for data transfer.

Table 13 shows the delivery rate of network data packets
during variable incoming traffic. Obviously, the capacity of

FIGURE 13. Average packet delivery rate during 20 test rounds with
incoming traffic of 1 packet per second.

TABLE 13. Network packet delivery rate in the proposed DDSLA-RPL
protocol with variable traffic.

the data exchange rate in the network depends on the hard-
ware and the communication channel, and as the traffic rate
and the number of nodes in the network reaches the thresh-
old point, the throughput capacity will increase. However,
by exceeding the network capacity threshold, this rate will
gradually decrease.

G. THE NUMBER OF CONTROL PACKET TEST
A high rate of network time is always spent exchanging
control messages in the RPL tree structure, because any
connection in RPL requires sending a control packet. On the
other hand, in the tree structure of the network and in not
so large-scale environments the rate of collision or signal
collision of nodes in the network will be high due to the
use of common wireless communication media. Therefore,
accelerating the stability of the network graph, preventing
lossy communications, will reduce resending at a favourable
rate. However, considering that in the proposed DDSLA-RPL
method, we have used the CC control message as a factor to
update the weight of the parent node parameters, no signifi-
cant differences were observed in the results of comparing the
proposed method with other methods. In any case, the more
control there is over the network, the more control messages
need to be exchanged, and our method is no exception.

According to Table 14, the network control overhead
in the proposed method with an incoming traffic of 1
packet per second to 1 packet per 0.6 seconds increased
up to 20 percent. This 20 percent difference in the con-
trol overhead in the proposed method compared to others
is considerable (Figure 14) and the DDSLA-RPL was at

63146 VOLUME 9, 2021



M. H. Homaei et al.: DDSLA-RPL: Dynamic Decision System Based on Learning Automata

FIGURE 14. Average number of network control messages during 20 test
repetitions.

TABLE 14. Control overhead of the proposed DDSLA-RPL method at
variable traffic rates.

least 10 percent better than others in a traffic of 1 packet
per second.

V. CONCLUSION
Based on the results of this study, routing in the internet of
things has many aspects to it, which due to its high depen-
dency on hardware, software and embedded operating system
and the environment it has created many diverse challenges.
Items such as computational overhead, algorithmic complex-
ities, security, reliability, hardware error tolerance, data error,
and many other challenges will affect the routing and data
transfer from source to destination. Therefore, our goal was
to focus on the quality of routing services in the Internet
of Things, especially the RPL method, and based on the
effective parameters in providing quality of services, we have
presented our idea with metrics of network structure and
quality of routing services in a comprehensive method called
DDSLA-RPL based on a multi-criteria decision-making sys-
tem. In this method, creating and repairing a net-work graph
is derived from the effective parameters in the formation and
stability of links between nodes. For this purpose, the first
objective function includes the proposed decision system
based on step, link quality level, and signal-to-noise rate and
energy consumption parameters for ETX, which has created
a highly reliable graph. However, most of the innovation of
the proposed method is summarized in the second objective
function where a decision system with variable weight of
parameters was proposed. Since in the real-world network
environment the weight of the parameters is never equal in
the first moment of the network and during operation, many

researchers who have used fuzzy, K-MEANS, C-Means or
similar methods in routing have not achieved the necessary
accuracy and dynamism. Based on these reasons we equipped
the weight of the parameters of our decision system with
distributed learning automata. This automaton updates the
weight of the parameters in the decision system based on
the feedback it receives periodically from the environment
and leads to increased lifespan of nodes and higher quality
of network services. Our results indicate that the proposed
method outperformed other similar methods in recommended
tests such as average lifetime, energy fairness index, graph
consistency, latency, forwarding and packet delivery rate in
the network. For further re-search, we intend to use the
DDSLA-RPLmethod in the underwater sensor network envi-
ronment by changing the properties and network environ-
ment.
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