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ABSTRACT This article develops a special decomposition methodology for the traditional optimal power
flow which facilitates optimal integration of stochastic distributed energy resources in power distribution
systems. The resulting distributed optimal power flow algorithm reduces the computational complexity of
the conventional linear programming approach while avoiding the challenges associated with the stochastic
nature of the energy resources and loads. It does so using machine learning algorithms employed for two
crucial tasks. First, two proposed algorithms, Dynamic Distributed Multi-Microgrid and Monte Carlo Tree
Search based Reinforcement Learning, constitute dynamic microgrids of network nodes to confirm the
electric power transaction optimality. Second, the optimal distributed energy resources are obtained by
the proposed deep reinforcement learning method named Multi Leader-Follower Actors under Centralized
Critic. It accelerates conventional linear programming approach by considering a reduced set of resources
and their constraints. The proposed method is demonstrated through a real-time balancing electricity market
constructed over the IEEE 123-bus system and enhanced using price signals based on distribution locational
marginal prices. This application clearly shows the ability of the new approach to effectively coordinate
multiple distribution system entities while maintaining system security constraints.

INDEX TERMS Distributed architecture, distributed optimization, Monte Carlo tree search, multi-agent
deep reinforcement learning, optimal power flow.

I. INTRODUCTION
Optimal power flow (OPF) is an essential tool for managing
energy in electric power systems. It seeks the least cost
operation of a power system by dispatching generation for
given power demand while satisfying the system constraints.
The changing nature of modern power grids brings new
entities into electric power markets. They include owners
of distributed energy resources (DERs), and even so called
prosumers-individual customers equipped with self-owned
DER units. The new market participants are interested in
autonomous maximization of their profits. Therefore, they
can be considered independent entities of the system [1].
However, a decision made by a single entity may affect
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the decisions of the remaining entities that are physically
interconnected in the same system.

As power distribution systems are becoming more and
more dispersed, they may require additional generation
capacity and new line assets to supply the peak demand. The
network participants may need to cooperate with each other
to achieve reliable and effective operation of the network
without changing the system infrastructure. The incremen-
tal dispersion of new network entities will also affect the
electric power markets. In this new scenario, the interac-
tions between two independent bilateral power transactions
in the network need to be checked and optimized using OPF.
However, the conventional centralized OPF method poses a
number of problems [2]. To avoid these issues and provide the
power industry with tools to support highly efficient system
operation, distributed optimization architectures are required.
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Such architectures can capture all physical realities of a dis-
persed network and alleviate a centralized optimization agent
from tremendous amount of computing.

A. RELATED WORK
Recent literature presents several approaches to distributed
economic dispatch [3], [4]. They resolve the randomness
of DER units and loads in microgrids through the use of
Markov decision processes (MDPs). Distributed model pre-
dictive control (MPC) for stochastic dispatch optimization in
microgrids have been proposed by several authors [5]–[7].
They use a local MPC for each entity to implement
receding-horizon optimization. Other authors use a divide-
and-conquer approach [8], [9]. They decompose the central-
ized optimization problem into many smaller optimization
problems executed by local agents. Each agent can exchange
information with its network neighbors. After the information
is processed, agents adjust production of their DER units in
a distributed manner with limited communication among the
entities.

A common shortcoming of all these approaches to dis-
tributed economic dispatch is that they require prior statistical
information on all DER units and loads. In addition, they
cannot effectively cope with the dynamic nature of power
transactions that occur under varying load and generation
conditions, and at different locations.

Reinforcement learning (RL) is a powerful tool to solve
complex sequential decision-making and control problems.
RL can effectively learn optimal stochastic policies, even in
high-dimensional or dynamic action spaces. It can reach the
goal state in a few steps, with high probability, and without
relying on prior information or complex stochastic model-
ing. These properties make RL a suitable tool to address
the multistate stochastic optimization problems in modern
distribution grids. As a result, RL has been widely used for
energy management and demand response schemes [10].

An approach to distributed optimization in distribution
systems that uses tabular Q-learning is presented in [4]. In this
method, RL only finds a feasible region that contains DERs
that are implicitly considered optimal. However, it does not
find DERs that can contribute to the acceleration of the
optimization process. In addition, tabular Q-learning does not
work well with continuous observations in complex systems
with many DERs. A deep RL has been adopted for real-time
energy management, but only at individual home level [11].
A cooperative RL approach for distribution systems has been
proposed by Liu et al. [12]. The authors suggest that each
distributed controller exchanges information with its neigh-
bours, makes action decision based on its own state and
the neigbourhood states, and performs so called distributed
cooperative mechanism. However, the system observability
is limited to the neighbouring buses, leading to limited power
transactions. In addition, this approach does not consider the
real-time impact of the line flow variations due to the power
transactions.

To resolve this issue, the capability of distributed OPF
algorithms has to be expanded. In addition, to deal with
complex distribution circuits in stochastic environment, it is
necessary to monitor network states and communicate them
among the network buses. This can be accomplished through
the proposed multi-agent system (MAS) architecture. This
article proposes a multi-agent RL system that allows agent
controllers to adapt to changes in the power distribution
network as a means to maintain system security. The feasible
region in a large system is obtained using Monte Carlo Tree
Search (MCTS) to divide the network into multi microgrids.
It uses RL to navigate from a buyer bus through the entire
network (i.e. beyond the local neighbourhood). It is then
followed by deep RL-based optimization procedure that finds
the most suitable DER units to buy power from, while reduc-
ing the search space compared to the centralized OPF.

The uncertainty of load can substantially affect the sys-
tem loss computations and the DER prices in this stochastic
problem [13]. Recently, there have been several probabilistic
approaches proposed to deal with this issue. Zeng et al. [14]
use the regret-matching (RM) technique to analyze and
correct the estimation of humans’ decision-making with
incomplete system information. Its stochastic optimization is
solved using genetic algorithm basedMonte Carlo simulation
(MCS). Another possibilistic method presents a hybrid par-
ticle swarm optimization/genetic algorithm for PEVs’ load
modelling [15]. In this approach, uncertain factors such as
home arrival time, daily travelled distance and home depar-
ture time, are based on approximating given probability distri-
bution functions (PDFs). Uncertain wind and solarmodels are
solved using multi-objective interval optimization [16]. This
approach predicts the intervals [17] of the uncertain wind and
solar power generation amounts.

However, most of these approaches rely on PDFs or MCS
which average a number of simulated scenarios. For instance,
MCS selects a DER unit with the highest probability in most
simulated scenarios, but it might not be the right choice in
some other scenarios. Thus, a few scenarios in the simulated
model may impact the optimization result. The proposed
approach uses deep RL that is based on advanced experiential
learning. Although it is a probabilistic method, it mimics a
massive number of actions to understand the system states.
Unlike MCS that just averages simulated scenarios, deep RL
has a powerful and robust architecture; it uses a regression
process based on neural network (NN) to correlate each sce-
nario with a best action result. Eventually, this process builds
an expert system for every particular power system model.
Therefore, unlike the MCS, deep RL’s result is not symmetric
over the load scenarios. There are almost as many unique
actions strategy as there are distinctive scenarios.

In practice, operation of power systems relying onmachine
learning may be affected by approximation errors [18]–[20].
This may increase the cumulative operation costs of the sys-
tem or even cause damage to the equipment connected to the
circuit. An obvious approach to adapt deep RL methods such
as DQN to continuous domains is by simply discretizing the
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action space. However, this approach has a critical limitation–
the curse of dimensionality: the number of actions increases
exponentially with the number of degrees of freedom [21].
There are algorithms to deal with this challenge, such as deep
deterministic policy gradient (DDPG) and soft actor-critic
(SAC). However, manual tuning of their hyperparameters
may degrade the performance. This problem has been tackled
by a modified version of SAC that automates the process
of selecting the optimal hyperparameters [22]. However, this
algorithm is still very demanding, as it sometimes requires up
to 10 million environmental steps to achieve successful train-
ing [23]. In power complex system environments, such as in
multi-microgrid systems with high penetration of DERs con-
sidered here, the use of the modified SAC is impractical. It is
computationally very expensive, as it requires to train every
DER in each microgrid to large control steps within the DER
generation capacity. Practically, the number of DERs may
reach the order of hundreds in some microgrids. On the other
hand, the use of exact optimization methods in complex dis-
tribution systems with stochastic DER units is often imprac-
tical due to the increase of computational burden associated
with such methods. For example, the use of linear program-
ming (LP) may not be possible due to a massive number of
control variables and associated conditional statements [24].
Hence, the proposed model presents a hybrid approach that
avoids the drawbacks of both constituents: machine learning
errors and lack of scalability of conventional optimizers.
The proposed system, called Multi Leader-Follower Actors
under Centralized Critic (MLFACC), can fully capture the
environment states and learn from the behavior of network
participants to determine the optimal DERs before they are
sent to LP for power generation optimization.

Recently, the use the alternating direction method of multi-
pliers (ADMM) algorithm gain popularity. It breaks complex
optimization problems into smaller, distributed optimiza-
tion sub-problems that workable with partitioning of electric
power networks. ADMM is widely used for the transmission
systems, because the boundaries of the split areas are always
fixed inside the main network, and their expansion in the
short term is unlikely [25], [26]. In the last few years, many
studies on distributed OPF algorithms have started to use
the ADMM for distribution networks as well. Similar to the
transmission networks, these studies assume that distribu-
tion networks are static and not affected by changing grid
configurations [27]–[29].

However, modern grids usually involve a high number
of DER units and load nodes that are stochastic in nature.
As a result, restricting the power generation and load values
in fixed zones is very challenging and it may lead to a
suboptimality of DER power dispatch. The contribution of
these DERs, including photovoltaic (PV) systems, electric
vehicles (EV), and battery storage systems (BESS), in new
power distribution systems will only increase. They induce
uncertain load and generation power over the network buses,
and they cannot be specified in regions with stationary bound-
aries inside the network. This is especially true for EVs that

regularly travel between different regions/microgrids. On the
other hand, suppose that there is a substantial load located
very close to a boundary between two neighbouring micro-
grids. From the economic perspective, it may be desirable to
allow this load to be supplied from both microgrids; hence,
these microgrids are merged, so that all their DERs can be
utilized, depending on the actual situation of the system in
any given moment.

To address the issues described in the previous para-
graph, the network partitioning may need to be dynamic,
allowing real-time adjustments.In other words, some previ-
ously divided regions may need to be merged or reformed.
Therefore, under such dynamic network partitioning, the use
of ADMM technique may encounter significant chal-
lenges. Its convergence rate relies on the choice of a
problem-dependent penalty factor ρ. The structure of this
factor is based on a vector of variables common between the
partitioning zones. The common variables are, in turn, chosen
based on the power flow model of a particular network. The
penalty factor also controls power flow mismatches; active
power, reactive power, and the bus voltages that are used in
the optimization problem constraints [30]. From a dynamic
network partitioning perspective, these issues make the tun-
ing of ρ very difficult and ADMM convergence cannot be
guaranteed. All in all, the use of ADMMwith a conventional
partitioning method in distribution networks with high pene-
tration and stochastic DERs that cannot be restricted in one
particular zone, may become impractical.

In this work, a novel, more general distributed algorithm
is proposed to better accommodate the dynamic partition-
ing and the stochastic nature of DERs. In this algorithm,
the original non-convex power flow equation for the distri-
bution network is convexified first, then decomposed into
multi-microgrid sub-problems with a dynamic partitioning
ability. The proposed MCTS-RL and Dynamic Distributed
Multi-Microgrid (DDMM) techniques can change the micro-
grid boundaries dynamically in real-time, while tracking the
original network’s power flow computation to guarantee its
security level. Hence, these techniques can play a fundamen-
tal and crucial role in the subsequent optimization and oper-
ation of multi-microgrid systems integrated with stochastic
DERs.

B. CONTRIBUTIONS
This article is primarily concerned with power distribution
networks with high penetration of DER units. It highlights the
necessity of building a fully distributed OPF for distribution
systems that operate in stochastic environments. The major
contributions of this paper are:

1) Addressing the complexity of distribution systems with
high penetration of stochastic DER units through a
newly proposed model called Multi Leader-Follower
Actors under Centralized Critic (MLFACC). This
approach facilitates cooperative interaction between all
DER units, beyond the local neighbourhood. At the
same time, it maintains system security limits.
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2) Resolving the suboptimality problem of distribution
systems with high penetration of stochastic DER units
due to the existence of substantial loads close to the
boundaries between independent microgrids. The pro-
posed combination of Monte Carlo tree search based
reinforcement learning (MCTS-RL) and Dynamic Dis-
tributed Multi-Microgrid (DDMM) algorithms pro-
vides a new, flexible way to dynamically partition
the network and make the system optimization and
operation more efficient.

3) The proposed MLFACC algorithm accelerates the lin-
ear programming optimization method by reducing
the number of arithmetic operators and their condi-
tional statements. In effect, this simplifies the opti-
mization problem by reducing the massive number of
DERs, which may reach the order of hundreds in some
real-world distribution networks.

II. POWER FLOW LINEARIZATION
In large distribution networks with high penetration of inter-
mittent DER units (such as photovoltaic and wind gen-
erators), the power flow computational burden becomes
substantial. In addition to the impact of scale, OPF needs to
be checked more frequently due to the dynamic behaviour of
DER units. However, the OPF in AC systems is a nonlinear,
non-convex problem [31]. Therefore, finding feasible solu-
tions for such problems is a very difficult task. A common
approach is DC OPF approximation that leads to a convex
optimization problem which can be solved quickly. However,
its use for practical large distribution networks with a high
system R/X ratio negatively affects the accuracy of OPF
computations.

Yang et al. [32] illustrate the impact of several approxima-
tions used in the linearization process on branch power flows.
They start from the well known polar AC power flow model

Pi =
N∑
j=1

GijViVj cos θij +
N∑
j=1

BijViVj sin θij (1)

Qi = −
N∑
j=1

BijViVj cos θij +
N∑
j=1

GijViVj sin θij (2)

where N is the bus number, and Gij and Bij are the con-
ductance and susceptance of the line. There are three main
approximations [32] of the expression for branch power flow
GijVi(Vi − Vjcosθij) ≈

a) 0, b) Gij(V 2
i − V

2
j ), c) Gij(Vi − Vj).

Based on voltage computation results [32], the third
approximation (c) provides the best accuracy. Using this
simplification, the linearizedmodels of the active and reactive
power injections at bus i are [33]

Pi =
N∑

j=1,j6=i

kij2
xij

(δi − δj)+
kij1
xij

(Vi − Vj), (3)

Qi =
N∑

j=1,j6=i

−
kij1
xij

(δi − δj)+
kij2
xij

(Vi − Vj), (4)

where

kij1 =
rijxij

r2ij + x
2
ij

, kij2 =
x2ij

r2ij + x
2
ij

. (5)

To solve equations (3) and (4), the node voltages have to
be obtained first[

P′

Q′

]
−

[
Bc2
−Bc1

]
δ1 −

[
Bc1
−Bc1

]
V1 =

[
B′2 B

′

1
B′1 B

′

2

] [
δ′

V ′

]
, (6)

where P′, Q′, δ′, and V ′ are vectors of real power injection,
reactive power injection, voltage angle, and voltage magni-
tude, respectively. Matrices Bc1, B

c
2, B
′

1 and B′2 can be found
in [33].

In a large scale power system, losses can be quite signif-
icant and their impact on the OPF and locational marginal
price (LMP) cannot be ignored [33]. The flow losses for line
l can be determined as follows [4], [34]

Ploss,l =
P2flow + Q

2
flow

V 2
l

rl, Qloss,l =
P2flow + Q

2
flow

V 2
l

xl, (7)

where Pflow and Qflow are the real and reactive power flow,
respectively. The loss factor is defined as a linear sensitivity
of the total system losses to the real power injections at
each bus with connected DER, i.e. LF = ∂Ploss,l/∂PDER.
Substituting (7) for Ploss,l , one gets

LF =
(
2Pflow

∂Pflow
∂PDER

+ 2Qflow
∂Qflow

∂PDER

)
rl
V 2
l

. (8)

Assuming that the reactive power is constant during DER
power transactions, its derivative is zero and thus the second
term can be excluded from formula (8), reducing it to

LF = 2Pflow
∂Pflow
∂PDER

· rl . (9)

III. DESCRIPTION OF THE ALGORITHM
A. MONTE CARLO TREE SEARCH BASED
REINFORCEMENT LEARNING
RL and game theory can be used to develop opti-
mization strategies for stochastic games. If considered a
stochastic game, the problem of integrating intermittent,
weather-dependent DERs on the grid can benefit from the
developments in these areas. In conventional strategies,
description of the system must be programmed in advance
with sufficient prior knowledge. However, in a dynamic envi-
ronment with stochastic behavior, the system itself changes
over time making the optimization problem very hard to
solve. In such situations, the optimization strategy can be
developed by an agent through a learning process, without
being explicitly programmed.

In a power system with high penetration of DERs, let S be
a finite or infinite set of environment states. Each state s ∈ S
is a vector that refers to the current status of a DER unit in the
search space. An agent may take an action a ∈ A from a set of

63062 VOLUME 9, 2021



M. Al-Saffar, P. Musilek: Distributed Optimization for Distribution Grids With Stochastic DER

all possible actions A. The transition probability p determines
the likelihood of the agent traversing from state s to s′ under
the joint action of all agents. In response to action a taken and
state s traversed, the agent will receive an immediate local
reward r(s, a, s′) [35]. Eventually, the learning objective of
the agent is to maximize the discounted cumulative reward at
each time step as follows

R(t) = r(t + 1)+ γ r(t + 2)+ γ 2r(t + 3)+ . . . , (10)

where γ ∈ [0, 1] is a discount factor expressing the effect of
the current decision on the long-term reward. A small value
of γ means that rewards in the near future are more important.
Applied to power systems, feasible regions with suit-

able energy resources can be identified using Monte Carlo
tree search-based Reinforcement Learning (MCTS-RL) [36].
This search algorithm provides the proposed approach with
the ability to navigate through the power network and gradu-
ally build experience.

FIGURE 1. Proposed MCTS-RL algorithm.

The regions feasible for power transactions with optimal
power transfer trajectories to the DERs are determined using
the diffusion strategies illustrated in Figure 1. Each bus in a
power network is modeled as a node in the MCTS graph [37].
Each edge stores a set of parameters: the state-action pair
(s, a) and the visit count N (s, a). A learned strategy is rep-
resented by a Q-value function that maps each state-action
pair to a value estimating goodness of the action in the next
state s′. The Q-value function is obtained as follows

Q(st , at )← Q(st , at )+ α

×

[
rt+1 + γQ(st+1, at+1)− Q(st , at )

]
, (11)

where α is the learning rate which controls the extent of the
value function update.

The next joint action is selected by the ε-greedy policy

a =

{
maxQ(s, a) with probability 1− ε
random a ∈ A with probability ε

(12)

where ε ∈ [0, 1] is the exploration rate used to balance
the exploration and exploitation policies during the process
of learning the Q value function. This way, the state tree is
randomly built up and the experience accumulated in each
state is updated by random sampling and stored in the node
states by a back propagation process.

The diffusion strategy is also used to develop the par-
titioning method for the distribution network. It identifies
buses within zones that are electrically cohesive in terms of
electrical distance [27], [38]. The electrical distance theory
intends to avoid paths with high impedance that result in large
phase angle changes in the power flow network model. From
a power transaction perspective, large phase angle changes
lead to the increase of transaction leakage between buses or
even between zones. In addition, MCTS-RL also considers
the bus importance through their output power and demand.
Since the reward function plays an important role in guiding
the algorithm for the desired behavior, the reward function is
designed through the system’s power centroids – load or gen-
eration buses that are substantial compared to other regional
buses in the network. Power centroids can be represented
as [39]

Pc = Pj/Zij, (13)

where Pc is the power centroid and Pj is the power generation
or demand of the bus j under the MCTS-RL search space.
Zij is the impedance between that bus and the root node i of
the tree. This is the first stage of microgrid reformation, also
called microgrid initiation.

Since bus demands change in real-time and across loca-
tions, substantial demand may occur at buses that are
located close to the coupling links between the neighboring
microgrids. In such cases, a microgrid that has terminal buses
with heavy demand may draw power from its internal DERs
that cause power losses higher than if it were connected to
DERs from the neighboring microgrid. Hence, it may be
better to use the DERs of both microgrids to guarantee an
effective optimization result. Therefore, the second stage of
the MCTS-RL algorithm is designed to check and monitor
the dynamic load importance in a microgrid. This load is also
called a load centroid, expressed as

Lc =
∑
j∈�MG

PL,j/PL,max (14)

where Lc is the load centroid and PL is the power demand of
the inspected bus in microgrid �MG with maximum demand
PL,max . In addition, the algorithm checks the power bal-
ance in the generated microgrid: the nominal output power
of all DER units should be equal to or higher than the
microgrid demand. DDMM algorithm receives all these
updates and keeps tracking the newly generated micro-
grids to guarantee a legitimate power flow computation.
Further details about the algorithm are provided in the next
section.
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FIGURE 2. An illustrative example of microgrids’ coupling-decoupling.

B. DYNAMIC DISTRIBUTED MULTI-MICROGRID (DDMM)
Figure 2 shows two tie-lines that provide coupling between
three neighbouring microgrids. To establish a flexible,
generic dynamic decoupling for these microgrids, two condi-
tions must be satisfied: (i) there must be a virtual decoupling
method implemented, and (ii) the system must be autho-
rized to activate and deactivate virtual decoupling for any
line across the entire circuit to form or merge microgrids.
To decouple a tie line within the circuit, the power injection
and power flow have to be reformulated as follows:

1) Power injection decoupling: In DDMM memory,
boundary bus (A) at the first microgrid is flagged as
a PQ-type, whereas boundary bus (B) in the second
microgrid is flagged as PV-type. Otherwise, these two
microgrids are coupled. Similarly for the other neigh-
bouring microgrids [40]–[42].

2) Power flow decoupling: equations of the linearized
active (3) and reactive (4) power flows rely mainly on
two independent variables: the voltage magnitude V ′

and voltage angle δ′. When the examined buses are
located at the microgrid boundary, the voltage magni-
tude and voltage angle are called the boundary vari-
ables. Examination of the boundary variables is very
important to prevent any violation that may jeopar-
dize the system security, such as drawing an excessive
power by one of the neighbouring microgrids from
the other. Thus, the information on any changes to the
boundary variables has to be provided to the DDMM
algorithm.

Each microgrid agent first attempts to optimize the DER
generation levels within its microgrid boundary. However,
communicating through the DDMM, each microgrid also
tracks its impact to the entire circuit. This way, microgrid
agents can update the estimates and, accordingly, they can
change their optimization policies to maintain the required
security level of the circuit. Eventually, the DDMMalgorithm
can be used to control the interaction between the neigh-
bouring microgrids. The interactions of the microgrids are
terminated when they reach an agreement on the amounts and
prices of power supplied by their DERs. This agreement is
known as consensus dynamics [43].

To enhance the learning capability in terms of DER opti-
mization in complex power systems, the described so far;
agent-based algorithm can be expanded to multiagent case
through the proposedMLFACCmethod. A theoretical frame-
work of this method is introduced in the next section.

C. MULTI LEADER-FOLLOWER ACTORS UNDER
CENTRALIZED CRITIC
The proposed MLFACC algorithm relies on deep reinforce-
ment learning using the Advantage Actor Critic (A2C) algo-
rithm [44]–[46]. A2C is the best fit for the proposed dis-
tributed optimization algorithm. Three actor networks train
decentralized policies in a multi-agent framework, and share
information using a centralized critic network. The main idea
of using a critic network is to learn a centralized policy
with an attention mechanism. In complex multi-agent envi-
ronments, the attention mechanism has shown effective and
scalable learning [47]. The intuition behind this idea is that
the centralized critic can dynamically evaluate each agent’s
action; eventually, it sends attention to the agents to adjust
their actions according to the environment need.

Another crucial approach to obtain the optimal variables
of interest to accelerate the LP method is the leader-follower
policy. The idea of the leader-follower game policy is inspired
by Stackelberg game model [48]. In order to take an optimal
action, it is necessary that a leader fully understand the envi-
ronment and not only learns from its own actions but also
the follower’s actions. Typically, the leader acts first, then
announces its action. At this point, the game rule allows the
followers to make their decisions. In the proposed method,
the roles of the players in the game change: if the number of
agents is more than two, every follower agent can be a leader
to the next agent. However, the first agent is always a leader,
and the last agent is always a follower. Also, it is worth noting
that the follower’s action is estimated as a function of the
leader’s actions since the goal’s reservation of the previous
leader is already made. Thus, in this game, the leader uses
a competitive policy, while the follower is expected to use a
cooperative policy.

The main question that arises in this algorithm is how
agents learn from each other the optimal policies and get
higher rewards. The simplest form of policy gradient method
is REINFORCE which represents gradient as [35], [49]

g = Es0:∞,a0:∞ [
T∑
t=0

Rt∇θ logπθ (at , st ))]. (15)

Policy πθ is trained by following the gradient that relies
on a critic network, which estimates the value function.
In particular, Rt is replaced by any expression equivalent
to Q(st , at ) − b(st ), where b(st ) is a baseline designed to
reduce the variance. Common options are to substitute v(st )
for b(st ), and to replace Rt by the temporal difference (TD)
error rt+1+ γ v(st+1)− v̂(st ) [49]. Term v̂(st ) is the predicted
or approximated value of value network. It is computed by
a multi-layer NN, with a vector of connection weights in
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all layers θ . The target value rt+1 + γ v(st+1) is obtained
from the immediate reward rt+1 and the discounted estimated
value of next state γ v(st+1). To estimate the error between
the approximated value and the target value, stochastic gra-
dient descent (SGD) is used. The approximate value function
v(s, θ) is a differentiable function of θ for all s ∈ S [35], [50].
If an agent performs an action, it is based on the statesmapped
through the critic network. These states are always changing
by the actions of the agent itself as well as the other agents.
In other words, all agents should take optimal policies by their
action probabilities as in (∇ logπθ (at , st )) in order to increase
the return in the critic network in (rt+1 + γ v(st+1,wt+1)) of
the same equation. To represent this, (16) can be formulated
as the following by basing on the previous equations:

∇θJEπθ ← ∇ logπθ (aEt , s
E
t )

× (rt+1 + γ v(st+1,wt+1)− v̂(st ,wt )), (16)

where index E refers to a particular agent under policy estima-
tion. To reduce the variance of value functions, the advantage
function is estimated by the TD-error:

A = rt+1 + γ v(st+1)− v̂(st ). (17)

Since agents seek their own, unique goals, each agent has its
own loss gradient (∇θJEπθ ) that is sent to the critic network to
allow estimation of the policy probabilities advantage (Ât ).
Substituting (17) in (16), the final expression can be repre-
sented as:

∇θJEπθ ← ∇θ logπθ (a
E
t , s

E
t )Ât . (18)

This way, the central critic can teach the agents based on
the experience of the other agents and the state updates of the
system. To update the parameters of the policy network θ a
gradient descent of the SGD rule is used:

θt+1← θt + α∇θJEπθ , (19)

where α is the learning rate for the actor network, and the
gradient ∇θJEπθ is the gradient calculated by (18). Similarly
for updating the parameters of the critic network:

wt+1← wt + βδv̂(s,w). (20)

To prevent the follower agents from seeking the
same leader’s policy trajectories, a tracing constraint
(∇θ logπθ (aLt , s

L
t )) is added to (18), as

∇θJEπθ ← ∇θ logπθ (a
E
t , s

E
t )Ât

−µ
[
max

(
∇θ logπθ (aLt , s

L
t ), 9

)]
, (21)

where L is the index of all agent policies in a leader position,
and µ is a lagrangian multiplayer. This constraint forces the
follower agent that intends to choose the best goal to be
right inferior to the leader’s goal. However, this constraint
may result in inefficient policies by the follower agents and
slow learning. Since the leader plans its strategy to propel
the followers to take actions in its favour, it may pick a
trivial trajectory; consequently, the followers are constrained

to choose other trajectories with even less importance. Hence,
to relax this constraint at the beginning of the learning pro-
cess, a relaxation factor (9) is used. This factor is also
an action probability that allows the followers to break the
tracing constrained to a particular limit; once the leader finds
a proper trajectory that leads to obtain a better DER price, the
relaxation factor vanishes. At this point, just the first term of
the maximization operator is valid. This mechanism enables
the proposed algorithm to identify the best group of DERs in
a descending order, and without overlap.

The reward function originates from the DER units that
have the minimal active power flow losses. Based on their
locations, their engagement may reduce the active power
flow losses in a distribution network. Therefore, the reward
function is formulated as

R = min
∑
i∈�k

fi(C losses
i ), (22)

where �k refers to the feasible region that is generated by
MCTS, and index i the index of DER units. The agent states
include all conditions required to make an appropriate deci-
sion, including all relevant power system constraints. More
details about the system constraints are provided in the next
section which illustrates the optimization of the DER engage-
ment using RL-based Linear Programming. The pseudocode
is presented in Algorithm 1.

Algorithm 1:MLFACC Algorithm
Initialize actors’ weights; (θ1, . . . , θN ), θ ∈ Rn

Initialize critic weight; (w), w ∈ Rm

Initialize step size parameters: α > 0, β > 0.
for t = 1 to max episode length do

done = False
while not done do

for agents i = 1 to N do
Choose action at+1 based on probability:
log πθ (at , st )
Receive observation (st+1, st , rt+1, done)

end for
Compute the TD error:;
δ← (rt+1 + γ v̂(st+1,wt+1)− v̂(st ,wt ));
Compute the loss gradient for each agent by
eq. (21);
Update policy parameters for the actor networks:
θt+1← θt + α∇θJEπθ
Update policy parameters for the critic network:
wt+1← wt + βδv̂(s,w)

end while
end for

To explain the operation of the MLFACC algorithm,
assume that penetration of DERs, and especially EVs, is 30%.
To model this demand, it can be considered a load cen-
troid uniquely randomly distributed across all scenarios of a
stochastic game. Further, it is assumed that each load centroid
correspond to 150% of a particular bus-load in a microgrid.
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Through its learning policy, MLFACC attempts to identify
DERs with the lowest power generation prices. The price
differentiation of the DER power generation units is inversely
proportional to their power losses. However, uncertainty of
load locations can substantially affect the computation of
system losses and, consequently, the prices of DER units.

The proposed MLFACC algorithm plays this stochastic
game, represented by an interactive environment between
the random load centroids and stochastic behavior of the
DERs. Specifically, MLFACC uses the power flow calculated
from the network model to find the optimal DER candi-
dates with the lowest power losses that do not violate any
grid constraints (such as voltage limits and line congestion).
To determine the best candidates, the DER selection trials
are simulated by the actor-network actions of the algorithm.
Although it is a probabilistic method, the selected DER are
not symmetrically distributed over the load scenarios. Unlike
Monte-Carlo and other probabilistic methods that are based
on averaging the data, the DNN of the actor-critic network in
the MLFACC architecture is based on a non-linear regression
analysis. In other words, the DNN performs a correlation
process between the outputs (labels) and the input data (load
scenarios). Hence, virtually every load scenario receives a
unique result.

To ensure a successful correlation process when analyzing
system states, the sample efficiency has to be considered
through the actor-networks of the MLFACC algorithm. This
can be achieved using the advantage function (18) which
also contributes to reducing the variance. Learning is initiated
using an exploration policy that uses random actions to per-
form preliminary examination of the system state. In addition,
the actor-networks under the policy gradient method also per-
form a number of deterministic exploitation actions. In this
step, each new action works along an existing action with the
aim to perform behaviors that yield better results. At every
epoch, the actor-networks collect news experience that is sent
to the critic network. The critic-network continuously updates
its weights, attempting to find the correlation between the
input data and the targets. This process continues until the
network converges to the final result.

The strength of this approach becomes clear when
applied to real-world distribution networks with hundreds of
DERs. In such cases, optimization of DERs dispatch using
conventional methods becomes very challenging. Using the
MLFACC approach that employs deep RL, the stochastic
game results in selecting a small number of DERs as the best
candidates for the subsequent LP optimization. Nevertheless,
if a substantial load centroid is located close to the coupling
line connecting two neighbouring microgrids, the stochastic
problem turns into a deterministic one, and the use of the
MLFACC is no longer needed to find the best DERs for these
bus locations.

D. DEEP RL-BASED LINEAR PROGRAMMING
A power distribution network can be modeled by a directed
tree graph T (�MG, �L) ⊆ (N ,L). The nodes of the

graph �MG, a subset of all network buses N , are linked by
a set of distribution lines �L , a subset of all network lines L.
Node 0 is the starting point of the tree search, referred to as
the root node j. In general, the root node can represent either
a buyer or a seller of energy. Under the scenario considered in
this study, the root node is specified as a buyer looking for the
best seller(s). The remaining nodes are referred to as branch
nodes. Each pair of adjacent branch nodes is connected by a
branch line l ∈ �L . All nodes (except the leaf nodes) in this
tree are parent nodes since they have a set of child nodes Ci
linked by the branch lines. In addition, the child nodes may
have connected DER units. i is the index of all buses that link
to load bus j. Each line in L has an impedance zi = ri + xi.
Power injection from node i to node j is calculated using
equation (3).

It is worth noting that there are many factors that sig-
nificantly impact deep RL accuracy. These factors include
the number of DERs, random variables such as the random
load centroid, the non-linearity of the system, the number
of system constraints, the resolution of time-series that may
involve massive generation and/or demand variations during
the day, and finally the circuit size. These factors leverage the
relatively more complex relationships in the data of the sys-
tem states and DERs’ generation amounts for deep RL train-
ing. To reduce this complexity, the optimization of the DER
power generation amount within eachmicrogrid is eliminated
from the deep RL decision task and, instead, it is determined
deterministically. Therefore, to minimize the cost of DER
generation dispatch under system constraints, we propose a
new distributed OPF algorithm based on deep learning called
Deep Reinforcement Learning-based Linear Programming
(DRL-LP). In this model, an optimal power generation that
is determined by LP is accelerated by selecting the optimal
DERs through MLFACC, determined within each microgrid
byMCTS-RL and DDMM. Chazelle andMatousek [24] have
analysed and estimated the computational complexity that
describes the amount of time it takes to run LP by counting the
number of input variables x and g(x) constraints as follows

O(x)7x(log x)xg(x), (23)

where O(.) denotes the time complexity. Thus, the behavior
of the LP complexity can be reduced by reducing the size of
the input.

Based on the linearized power flow model described in
section II, the DRL-LP problem can be formulated as follows

min
∑

x∈MLFACCMG

fx(CP
x ), (24)

g(x) =

{
Pi − dj =

∑
i∈�MG P

flow
ij + P

loss
ij , (25)

θref = 0, (26)

h(x) =



PDER 6 PDER 6 PDER∀DER ∈ �MG, (27)

Pflowij 6 Pflowij 6 Pflowij ∀lij ∈ �MG, (28)

Plossij 6 Plossij 6 Plossij ∀lij ∈ �MG, (29)

V i 6 Vi 6 V i ∀x ∈ �MG, (30)
ζij 6 φ ∀lij ∈ �MG, (31)
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In this optimization problem, CP
i is the optimal DER that

is determined by MLFACC. It belongs to a node in the tree
graph �MG delineated by MCTS as a feasible subset of the
original network. The objective function aims to minimize
the generation cost at node i, and implicitly minimizes the
losses Plossij of the line connecting nodes i and j. Functions
g(x) and h(x) express, respectively, the equality and inequal-
ity constraints. The nodal balance power flow is restricted
by constraint (25), where dj is the power demand, while
equation (26) holds the reference bus voltage angle at zero.
Inequalities (27)–(29) express the upper and lower bounds
of the power output of DER units, the power flows in the
branches, and the power losses in the branches, respectively.
The coupling constraint between the microgrid �MG and its
neighbors is denoted φ. Based on the concept of electric
distance, φ represents the threshold value of ζ of the line
impedance between the load bus j and the cross-border buses
separating microgrid from its neighbors. It can be considered
ameans to specify the borders of a feasible space of the DOPF
problem among multiple regions. However, the network con-
straints must still be observed and communicated among
microgrids. DDMM can efficiently manage the information
for multi-microgrid systems. From the implementation per-
spective, all information is sent to the DDMM during the
distributed optimizer instantiations and load bus solutions of
the OPF subproblems. The DDMM reconciles system state
information for multiple microgrids.

IV. REAL-TIME BALANCING ELECTRICITY MARKET
To illustrate application of the proposed DOPF method using
DRL-LP, we construct a distribution electricity market frame-
work to facilitate the effective integration of DERs into the
electricity system.A central role in this framework is assumed
by the distribution system operator (DSO) who facilitates
DERs integration and delivers location services. It also pro-
vides real-time power balancing through dispatch of stochas-
tic DERs and bidding of flexible loads.

The algorithm for balancing the electricity market is exe-
cuted every minute to accommodate (near) real-time power
imbalances. Distribution locational marginal price (DLMP)
differs from location to location due to the limits of
the node voltage, line capacity, and network losses. This
facilitates the mitigation of over/under voltage and line con-
gestion, and compensation of location-dependent network
losses.

The main goal of the DSO is to maximize its economic
benefits while providing the amount of power required by
the balancing electricity market. The individual entities of the
distribution system respond to specific price signals derived
from the following DLMP equation

DLMPi = λ
p
0 + λ

p
0 ·

N∑
i=1

∂Pflowi

∂PDERi

+ λ
p
0 ·

N∑
i=1

∂Plossi

∂PDERi

+ λ
p
0 ·

N∑
i=1

∂Vi
∂PDERi

(32)

where λP0 is the active power exchange or the reference
price. This is a known parameter that can be adjusted
by the DSO. The three sum terms

∑N
i=1 ∂P

flow
i /∂PDERi ,∑N

i=1 ∂P
loss
i /∂PDERi , and

∑N
i=1 ∂Vi/∂P

DER
i are the total line

flow factor, total system losses factor, and voltage devia-
tion factor, respectively. All three factors are calculated with
respect to DER power injection, PDERi , from the constraint
equations (28), (29), and (30). DLMPworks as a price coordi-
nator to ensure that any power imbalance in the system can be
fully offset and objectives of all participating entities can be
optimized simultaneously. This coordinated operation model
is designed to include all required objective functions and
system constraints.

V. RESULTS AND DISCUSSION
To demonstrate the proposed DRL-LP algorithm, the modi-
fied IEEE 123-bus test system [51] is considered as a case
study. To examine the leverage provided by the RL agents
in the distributed optimization subproblems, a search tree is
progressively built using MCTS-RL. This tree is a randomly
biased sequence of actions applied by an RL agent to a given
series of states until a predefined coupling constraint φ is
reached. This way, the feasible region suitable for power
transactions is obtained based on the concept of electric
distance. The MCTS-RL process instantiates six microgrids
as shown in Figure. 3. Suppose that the stochastic load cen-
troids are randomly distributed over the system buses with
a penetration of 30% of the entire microgrid buses, and the
value of each load centroid is 150% of a particular bus load in
a microgrid. In this simulation, it is considered that all buses
in the microgrid have DERs with a limit of 100 kW each.
The algorithm determines the optimal DER candidates that
have the lowest power losses and maintain the grid limits,
voltage limit and line congestion, in a particular microgrid.
Consequently, the number of variables and their conditional
statements is reduced to accelerate the LP optimization pro-
cess.

To illustrate the learning simulation of obtaining a proper
number of optimal DERs by the MLFACC algorithm, first
microgrid is chosen, which is labeled as MG1 in Figure 3.
For simplicity, three agents are used in this illustration to
obtain the three best DERs in eachmicrogrid. Figure 4, shows
that most agents converged after about 5900 episodes. The
following subsections extensively analyze the optimization
process in three cases: (A) normal system operation, (B) a
system with dynamic microgirds, and (C) a system with line
congestion.

A. NORMAL SYSTEM OPERATION
The MLFACC algorithm has already been trained under the
random distribution of load centroids. To test the optimization
process through the algorithm, and for simplicity, a single
dynamic real-time load centroid is chosen in each microgrid
of the modified 123-bus system, at the following buses: 9,
23, 43, 58, 76, and 108, for the microgrids, 1, 2, 3, 4, 5,
and 6, respectively. The load data has been extracted from
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FIGURE 3. The modified IEEE 123-bus distribution with 6-microgrids.

FIGURE 4. The learning simulation of the MLFACC for region A buses.

a residential community in Edmonton, Alberta, Canada, and
scaled to the transformer level. This load is considered an
extra load to be balanced by the generation of the main feeder
of the circuit and the DER units in each microgrid. Loads of
the remaining buses of the circuit are based on the original
static load data. Each microgrid operates independently and
is responsible for its DERs when no merging process is
exerted by the DDMM algorithm. Real-time optimization of
the DERs’ generations are shown in the Figure 5. The opti-
mization is performed on a 1-minute basis, for instance: the
MLFACC algorithm obtains the best DERs of the first micro-
grid on buses 12, 15, and 17, as shown in Figure 5.a. It can be
seen that, when DER12 (at bus 12) reaches its limit (100kW),
the algorithm switches to DER15. In notation DER#i, index
i refers to the microgrid number. The optimization process
relies mainly on the variation of DER benefits stemming
from the reduction of the active power flow losses within the
circuit. Based on their location, the power the DERs generate
usually flows in the direction opposite to the main power
stream of the feeder. This causes a reduction of the total losses
of the feeder power flow. The variation of losses also causes
considerable differences of DLMP, especially when the DER
generation levels approach their maximum energy export
capacity. More details about the DLMP pricing are provided
in the third case (system with line congestion), to include the
microgrids’ merging and line congestion impact on the sys-

tem pricing. The proposed algorithm (including all its com-
ponents) executes in approximately 5 seconds to determine
1 minute of real-time optimized power generation. However,
the deep RL-LP algorithm uses the experience of MLFACC
obtained through training involving 10,000 games in about
84 hours required for one-time of training.

B. SYSTEM WITH DYNAMIC MICROGIRDS
In the previous case, the MLFACC algorithm was provided
plenty of training time and samples to play the stochastic
game and pick the most efficient and secure DER units for
each microgrid. However, when the load centroids are close
to the coupling lines between neighbouring microgrids, these
microgrids are merged. Due to the fact that most partitioning
algorithms result in only a few coupling lines between the
newly generated microgrids, the optimization problem can
be turned into a deterministic problem. Hence, it is easy to
determine the best DERs over the microgrids surrounding the
coupling lines.

In addition to the information regarding the load centroids
provided in the previous case, it is assumed that there is
another load centroid at bus 19 of microgrid 2. This load
centroid is labeled as (Lc2−3 ) as it is located at the coupling
line betweenmicrogrids 2 and 3. Since Lc2−3 is real-time load,
if it reaches a high load value, it is identified as a load centroid
and the two microgrids are merged. Otherwise, they are split,
as this load is considered a normal load affiliated with micro-
grid 2. For simplicity, if the value Lc2−3 ≥ 1, it is considered
a load centroid. Figures 6.a and 6.b show the merge/split
process in real-time for the microgrids 2 and 3, respectively.
When they work independently, the best DERs are 31, 30, and
34 for microgrid 2, and 51, 50, and 49 for microgrid 3. When
they are merged into a single microgrid, the new best DERs
are 51, 52, and 49 (calculated deterministically). The power
optimization of the merging process is shown in the second
microgrid result, at the following time periods: 5.00–13.20,
and 22.30–23.30. On the other hand, for the same time peri-
ods, microgrid 3 produces no output power to represent the
fact that the microgrid is merged with microgrid 2. In addi-
tion, the original values of DER calculated by the MLFACC
of each microgrid are still considered in the optimization
problem due to the presence of the original load centroids at
buses 9 and 23. However, some DERs (such as 49 and 51)
are common for both cases (merge/split). Similar situation is
observed when considering another load centroid Lc4−5−6 at
bus 68, which is a terminal of two coupling lines between the
microgrids 4, 5 and 6. Note that, when the DERs are selected
deterministically during the merging process, they are just
from microgrids 5 and 6: 114, 95, and 96. Moreover, the load
centroid Lc4−5−6 is located in microgrid 5. Since there is no
participation from microgrid 4, only microgrids 5 and 6 are
considered in the merging process. The optimization result
of the microgrids 5 and 6 are shown in Figures 6.c and 6.d,
respectively. In the same figures, when the microgrids split
and work independently, the selected DERs are 95, 93, and
96 for microgrid 5, and 114, 115, and 113 for microgrid 6.
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FIGURE 5. The real-time optimization of the DER generations in the microgrids (1-6), referred to in the figures (a-f), respectively.

FIGURE 6. The real-time optimization of the DER generations in the dynamic microgrids 2,3,5, and 6, referred to in the
figures (a-c), respectively.

C. SYSTEM WITH LINE CONGESTION
Typically, when demand is concentrated on a few DERs,
the corresponding segments of distribution lines can become

overloaded. To mitigate the occurrence of overloaded lines
due to DER generation, agents in each microgrid have
to track their impact on system security limits. This way,
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the MLFACC algorithm is capable of maintaining microgrid
security limits under a stochastic load environment.

The DDMM algorithm also helps preventing any limit
violations across the coupling lines and the network in general
by sharing this information among microgrids. Therefore,
the risk of congestion that would threaten the coupling lines is
very low. Thus, it is assumed that the flow limit of a selected
coupling line is reduced in comparison to its original value.
The line connecting buses 120–36 and the coupling between
microgrids 2 and 3 are chosen for the contingency study so
that the microgrid merging process in demonstrated as well.
The flow limit of this coupling line, Cl2−3 , is reduced from
755 kW to 740 kW.

When the load of microgrid 3 increases such that the flow
on line l2−3 exceeds 740 kW, the flow congestion occurs at
this line. Typically, the amount of generation of the DERs that
compromise network security is reduced. Instead, another
DER that does not influence the system security, while offer-
ing an acceptable price, is called. In such case, DER unit 51 in
microgrid 3 keeps its power generation even when the load
centroid reduces to zero as shown in Figure 7a. This DER
unit attempts to compensate for the resultant power reduction
in microgrid 3 due to the new flow limit.

FIGURE 7. The real-time optimization of the DER generations in the
dynamic microgrids 2 and 3 under line congestion, referred to in the
figures a and b, respectively.

The primary goal of this step is to change the system flow
to prevent congestion, while providing energy to the load at
an acceptable price. However, this leads to a step change of
price (Figure 8). The price change to avoid 1 kW of line
congestion is called congestion DLMP. Similarly, the change
to avoid line losses is called losses DLMP. The daily values
of congestion and losses DLMP in microgrid 2 are 7.58 c/
and −125.62 c/, respectively. In microgrid 3, these values

FIGURE 8. The total generation costs for both regions A and B.

FIGURE 9. The total generation costs for both regions A and B.

are 7.94 c/ and 0.12 c/, respectively. The negative sign of
the second microgrid’s losses indicates a reduction of losses
due to DER generation. Conversely, the positive sign of losses
DLMP for microgrid 3 indicates a decline in counterbalance
of power flow losses’ in the direction between themain feeder
and the DERs; this due to the reduction in the main feeder
power generation. TheDLMPvalues for these twomicrogrids
are also shown in Figure 8. Finally, the total cost of generation
in these microgrids for this case is shown in Figure 9.

VI. CONCLUSION AND FUTURE WORK
This article introduces a novel approach in distributed OPF
for distribution systemswith high penetration of DERs. Using
modern methods of artificial intelligence, the proposed
approach facilitates OPF calculation while reducing its com-
putational burden. The proposed method is based on an
effective combination of Monte Carlo tree search-based rein-
forcement learning (MCTS-RL) and the dynamic distributed
multi-microgrid (DDMM) algorithm. Through the dynamic
network partitioning and navigation steps of a diffusion strat-
egy, they generate adaptable microgrid configurations with a
set of optimal paths to the most suitable generation and load
nodes.

The proposed deep learning-based actor-critic approach
(MLFACC) mitigates the challenges associated with the
stochasticity of DERs while addressing the problem of
dimensionality faced by conventional optimization tech-
niques. Only the selected DERs are then considered by the
optimizer applied to the linearized problem, thus guaran-
teeing convergence. The multiagent nature of the proposed
approach allows a direct application of DOPF in systems with
multiple interacting entities.
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The presented simulation results clearly demonstrate the
effectiveness of the proposed method to solve the distributed
economic dispatch problem while maintaining the system
security limits.

The IEEE 123-bus system considered in this study experi-
ences only minor voltage control issues. The losses are also
relatively low as they are proportional to the network size.
Nevertheless, the obtained results confirm that the proposed
model can successfully consider dynamic microgrid configu-
rations and provide an effective power market solution with-
out jeopardizing system security. In addition, the proposed
methodology is suitable for large and complex networks that
can accommodate various DER types such as PV systems,
EVs, and BESS that induce uncertain load and generation
patterns [14], [52], [53]. A good example to illustrate this
approach is an EV system model that has high complexity
due to stochastic transportation patterns. Therefore, in future
work, the authors will consider the EV system model in
more detail, to show the potential applicability of the pro-
posed approach to distributed optimization of such complex
systems.
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