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ABSTRACT Managing the vulnerabilities reported by a number of security scanning software is a tedious
and time-consuming task, especially in large-scale, modern communication networks. Particular software
vulnerabilities can have a range of impacts on an IT system depending on the context in which they were
detected. Moreover, scanning software can report thousands of issues, which makes performing operations,
such as analysis and prioritization, very costly from an organizational point of view. In this paper, we propose
a context-aware software vulnerability classification system, Mixeway, that relies on machine learning to
automatize the whole process. By training a model using known and analyzed vulnerabilities together
with Natural Language Processing techniques to properly manage the information that the vulnerability
description contains, we show that it is possible to predict the class that defines how severe the detected
vulnerability is. The experimental results obtained on a real-life dataset collected by Mixeway for about
12 months from the infrastructure of one of the major mobile network operators in Poland prove that the

proposed solution is useful and effective.

INDEX TERMS IT security, devsecops, machine learning, classification, vulnerability classification.

I. INTRODUCTION

The introduction of DevOps methodology to the software
development industry has led to various changes [1]. Project
management changes enables applications to be developed in
a more flexible way. IT system architecture changed from a
monolith to MicroService design [2] and the time to deploy a
new version of an application into a production environment
accessible for end-users is expected to be as short as possible.
The last aspect is caused by the rapid growth of interest in
software that automates operations related to software devel-
opment. Such automation is a set of operations triggered by
particular events (like pushing source code to the code repos-
itory) defined in a structured format called a pipeline [3].
When simplifying the whole process, steps like ‘application
building’ and ‘application deployment’ are executed without
human interaction and triggered by a specific event, and
they are preceded by a specific set of tests that confirms
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that the new version of the developed software functions as
expected.

A credible pipeline should include, in addition to mech-
anisms for verifying the correct behavior of the application,
security verification mechanisms, which are one of the factors
determining the software quality. The mentioned mechanisms
should consist of an operation that verifies if a new version
of an application does not contain security vulnerabilities
(a deficit that may lead to unauthorized access or other threats
that can compromise the system) [4]. In a model where
dozens or hundreds of deployments are introduced daily, it is
no longer possible to perform a manual review created by an
IT security professional. Such verification should be replaced
by tools allowing for the automatic verification of application
security — vulnerability scanners. Unfortunately, the infor-
mation obtained from such data sources may cause potential
problems. One of which could be false positives (FP) that are
reported in a given context but for which they may not be a
real threat to the application. According to research published
in [5] the ratio of all detected vulnerabilities to FPs is even
50% for some particular vulnerability scanners. This means
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that one of two reported deficits should never be announced
to development teams. Thus, it is hard to rely on such results
when trying to design an automated process that will include
a security checkup.

Currently, software vulnerability classification is an inter-
esting research topic that has been raised by several
researchers who have proved that machine learning algo-
rithms can be useful for this purpose. The work of [6] demon-
strates that the Neural Network algorithm gives the best
results (compared to Naive Bayes, Support Vector Machine,
and K-Nearest Neighbors) in the category prediction of
reported vulnerabilities (Cross-Site Scripting, SQL Injec-
tion, etc.) based on a description of the deficit in the soft-
ware. A large number of researchers focus on techniques
that allow the detection of vulnerabilities, which leads to
the classification of the source code as a vulnerability. The
papers [7] and [8] introduce the concept of the Vulnera-
bility Extrapolation, which is a multistep process that aims
to identify unknown vulnerabilities based on programming
patterns observed in the familiar security vulnerabilities [9].
The research presented in [10] and [11] describes the concept
of PhpMinerl, which allows to predict if a specific statement
in the source code of applications created in PHP technology
is vulnerable either to Cross-Site Scripting or SQL Injection
attacks. Unfortunately, none of these proposals could be used
in large-scale real-life software development and security
assurance processes. Current IT system architectures support
a number of various technologies, so restricting the classifier
in scope of the source code language (only for PHP or C/C++
applications) is the factor that makes it impossible to use
such a solution. The predicted outcome is also important.
Thus, rather than the defect category, which is often provided,
it is information about the severity and impact of a software
vulnerability what is desired instead.

That is why, in this paper we would like to address these
deficits by proposing a context-aware software vulnerabil-
ity classification system, called Mixeway, that uses machine
learning techniques to make the process automatic. Based
on a real-life dataset of software and network vulnerabilities,
we train a model and we utilize Natural Language Processing
techniques on the vulnerabilities’ descriptions. Using such
an approach we are able to successfully predict the severity
of the vulnerability and assign it a proper label, called later
a grade, so it can be efficiently mitigated. To the authors’
best knowledge, such an approach has not been proposed nor
evaluated previously in the literature.

In this paper, the term context-aware software vulnera-
bility classification is defined as a classification that allows
to distinguish if a given software vulnerability (reported by
the automated scanning software) is relevant, thus should
be fixed, or irrelevant when taking the context of an asset
(affected by the reported deficit) into account.

Considering the above, the main contributions of this paper
include:

e proposing a novel context-aware software vulnerabil-

ity classification system, called Mixeway, which relies
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on machine learning and NLP techniques and allows
to automatically predict the vulnerability category
(i.e., whether it is necessary to be fixed or it is not
relevant in the given context) and assign it a proper label.

« evaluating the effectiveness of the proposed system on a
real-life dataset consisting of more than 50,000 software
and network vulnerabilities gathered from the infrastruc-
ture of one of the major mobile operators in Poland.

« utilizing Natural Language Processing techniques on
vulnerabilities’ descriptions which have not been previ-
ously used in this context in the literature.

« making Mixeway publicly available as an open-source
software at GitHub (https://github.com/mixeway).

The proposed solution is used to analyze and classify vul-
nerabilities detected by various sources to help security teams
sift out the “noise” (irrelevant findings or false positives)
contained in reports from automated testing tools (evaluation
of the performance of the individual scanners is out of scope
in this research).

The rest of the article is structured as follows. Section II
contains a review of the related research, while Section III
describes how the software delivery automation is currently
being adopted by programming teams and how the secu-
rity scanning software to support Continuous Integration
and Continuous Deployment (CICD) process can be imple-
mented. Next, in Section IV the basics of the selected algo-
rithms used during the experimental evaluation are provided.
Then, in Section VI the experimental test-bed, the methodol-
ogy, and dataset are outlined, while Section VII presents the
obtained results. Finally, Section VIII summarizes our work
and indicates potential future research directions.

Il. RELATED WORK

Machine learning algorithms are widely used in cyber secu-
rity research. Currently, several works exist in the literature
that demonstrate how machine learning algorithms can be uti-
lized to analyze software vulnerabilities. They can be roughly
grouped into two categories: detection of vulnerabilities in
software and software vulnerability classification. The most
relevant works from both groups are briefly reviewed below.
There is a third group worth mentioning, that is network
traffic classification. It corresponds to the solutions that use
ML algorithms to detect cyber-attacks based on the network
traffic incoming to a particular asset [12]. There is also a wide
range of research regarding self-protection methods in mobile
computing [13]. Those groups, however, will not be further
described, as presented research is focused on software vul-
nerabilities rather than network vulnerabilities.

A. SOFTWARE VULNERABILITIES DETECTION

USING MACHINE LEARNING

The first group is related to the detection of vulnerabili-
ties in software. The solutions described in [14] and [15]
investigate multiple types of neural networks to analyze the
source code written in C/C++. The results enclosed in both
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papers confirm that Convolutional Neural Networks (CNN)
are promising solutions for this purpose. Next, in paper [16]
the authors analyze the use of the Support Vector Machine
algorithm with the Bag of Words representation of the source
code. The obtained results prove the high accuracy of the
developed model, although the training set was limited to just
one Java application. Finally, the research in [17] analyzed
multiple algorithms and showed that the CNN algorithm is the
most suitable for vulnerability detection in the source code
written in C/C++.

B. SOFTWARE VULNERABILITIES CLASSIFICATION

USING MACHINE LEARNING

The second category is software vulnerability classification.
The solutions within this group are most closely related to
the topic of this paper. The research described in [18] evalu-
ated multiple classifying algorithms, such as Random Forest,
C4.5 Decision Tree, Naive Bayes, and Logistic Regression
for this purpose. The authors proposed a classifier that can
detect if the vulnerability (from bug trackers like Bugzilla')
is a type of BV (BohrVulnerability, i.e., easy to find and easy
to fix) or MV (MandelVulnerability, i.e., hard to find and
complex to fix). Based on the obtained experimental results,
it turned out that Random Forest and Decision Tree gave the
best results. Next, in [19] the National Vulnerability Database
(NVD), which contains information about publicly disclosed
vulnerabilities, was utilized. This solution proposed a classi-
fier using Support Vector Machines (SVM) to build a model
that would predict the category of vulnerability, e.g., Cross-
Site Scripting (CSS). Another work [20] in which NVD and
CVE databases are used, proposes a classifier that can predict
vulnerability severity based on its description. According to
the presented results, the Neural Network algorithm obtained
slightly better results than SVM. Research presented in [21]
investigates the possibility of creating a model able to predict
a number of vulnerabilities to be disclosed in the future
(operating system affected). Extensive research in the scope
of prediction when the next vulnerability for the particular
software (e.g., a version of the operating system) will be
published, is presented in [22]. The authors state that the poor
quality of NVD makes it difficult to build an accurate model
for such prediction. Both of the last-mentioned researches
([21] and [22]) use NVD database as a dataset. Then the
papers [18] and [19] both deal with the software vulner-
ability classification problem. Their training set contained
information on confirmed vulnerabilities (gathered from the
bug tracking system and the NVD database). However, both
solutions lack context for the environment that the appli-
cation is working in. For example, CVE-2017-7529, which
describes the integer overflow vulnerability in the Nginx web
application server (affected versions from 0.5.6 to 1.13.2),
is detected by the automated scanning software based on a
banner (by default the server header may contain information
about the version of the WebServer). If an administrator

1 https://www.bugzilla.org
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manipulates this header, then the detected vulnerability may
be correctly reported as well as treated as a false positive.
Without the application or environmental context, it is impos-
sible to classify such vulnerabilities in a correct manner.

There are also commercial products available. For exam-
ple, MicroFocus released an application called Audit Assis-
tant that takes as the input the list of vulnerabilities in the
source code reported by the MicroFocus Fortify software.”
As a result, the classification of an analyzed vulnerability is
provided with information if the deficit could be exploited
(the vulnerability can be used to get, for example, unautho-
rized access) or whether it is not an issue (false positives
reported by a scanner). Unfortunately, the software vendors
do not provide any information about the algorithms or mech-
anisms used within the Audit Assistant.

C. SUMMARY

The comparison of the related research in the field of vul-
nerability classification is presented in Table 1. It refers to
the possibility of using the proposed solutions for security
assurance within the CICD process.

TABLE 1. Comparison of related research.

Research Classification Type Vuln. Possible to be
Source used in CICD
[18] BV or MV Bug Possibly yes
Trackers
[19] Vulnerability category NVD No
[20] Vulnerability severity NVD No
[21] Number of vulnerabili- | NVD No
ties in future
[22] Time to next vulnerabil- | NVD No
ity
Audit Assistant | Confirmed and not con- | Fortify Yes
firmed vulnerability
Presented solu- | Confirmed and not con- | All Vuln. | Yes
tion firmed vulnerability Scanners

To summarize, when using state-of-the-art methods, it is
clear that machine learning algorithms can be used to classify
software vulnerabilities. The classification described in [18]
can be utilized as a solution that will accelerate the process
of prioritizing any identified security vulnerabilities, where
issues of the BV type could be mitigated first, as they are
easy to fix. Unfortunately, no available models or solutions
allow to confirm whether the identified vulnerability can
be exploited in the context of a given application, which is
crucial in terms of building a security quality gateway or at
least meets the organizational security policy. Consider, for
example, an ‘SSL/TLS Untrusted Certificate’ vulnerability
reported by the scanning software. Each time a vulnerability
occurs in the scope of an application, it will be marked
as BV. This kind of weak spot could violate the policy in
some cases (e.g., when the application is accessed by end
users directly) while in others, it might not (e.g., when the
application is accessible via a proxy or load-balancing where

2https /Iwww.microfocus.com/media/data-sheet/fortify-audit-assistant-
ds.pdf
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SSL offloading is performed). On the other hand, commercial
solutions like Audit Assistant need specific input. In this
particular example, the input consists only of vulnerabilities
detected by MicroFocus Fortify, which is a major limitation.
In contrast to existing approaches, the solution proposed
in this paper uses potential vulnerabilities (gathered from
automation software, such as vulnerability scanners) and uti-
lizes neural network algorithms and the dataset processed
using a Natural Language Processing (NLP) approach (where
typically NNs yield the best results [23]) to classify the
vulnerabilities as confirmed/unconfirmed. As an input for
the introduced algorithm, any pre-compiled list of software
vulnerabilities (with no limitation to a specific scanning solu-
tion) can be used. As a result, the software vulnerabilities will
be classified either as marked to be fixed or not based on fields
such as vulnerability description and application context.

lIl. SECURING THE SOFTWARE DELIVERY CHAIN

While developing modern IT systems, more and more soft-
ware development teams use agile techniques that aim to
expedite the software delivery processes. Thanks to the
change in mindset, tooling ecosystem and application archi-
tecture, it is possible to significantly shorten the time for test-
ing and delivery of applications. All this combined enables
an increase in the number of deployments of a new version
of software in the production environment. In 2011, Amazon
was able to deploy a new version of its source code every
11.6 seconds (on average) thanks to adopting agile tech-
niques.®> By deployment, we mean the whole process from
source code creation, testing, building an application from the
source code, and then releasing it to the end customer.

A. SOFTWARE DEVELOPMENT LIFE CYCLE IN DEVOPS
DevOps methodology did not change the Software Develop-
ment Life cycle [24], which consists of the following steps:
(i) setting requirements where the development team gath-
ers information about how the software or a feature should
work; (ii) designing particular interfaces and their integration;
(iii) software development to create source code that meets
the criteria prepared earlier; (iv) implementation in a particu-
lar environment, so the developed software can be run there;
and (v) verification where the development team thoroughly
tests the software.

Agile and DevOps made a change in the way SDLC blocks
are executed (see Figure 1) [25]. The ability to automate some
steps made it possible to deliver new features on a scale that
was never possible a few years ago. The tool ecosystem for
such a purpose consists of the following elements:

o Source code repository: that contains the source code in
a versioned manner. Modern solutions like GitHub and
Gitlab [26] can also be used as bug tracking systems
in which the user gathers information about bugs in
the software or other deficits in the functionality of the
developed solution.

3Velocity 2011: Jon Jenkins, ‘“Velocity Culture”
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FIGURE 1. SDLC adoption in [23].

o Continuous integration and continuous deployment:
tools that store the set of created pipelines in the form of
a set of instructions that will be executed (to build ready
to use applications) and when it should be executed (the
scheduled event or triggered by a predefined action).

o Testing: for bug and problem-free applications, it should
only be allowed to be deployed in the production envi-
ronment where the end customers are dealing with the
delivered software. To create an automated pipeline,
there should be a complete test suite prepared for each
application. Such a test should cover the areas of unit
testing, functional acceptance testing, integration tests,
performance tests, and more if needed.

o Monitoring: each event which is generated inside or by
the infrastructure on which the application is working
should be logged and stored properly. If the monitoring
is properly configured, then the software developers can
find the problems and bugs faster.

The simplified process, including tools and methodology,
is presented in Figure 2. Each loop starts with the requirement
issued to the developer who prepares a change within the code
base and then sends it to the repository. The event of merging
a newly delivered source code with the one which is already
stored is triggered by a set of test suites. If the tests are com-
pleted successfully, the change is accepted and then the action
of building application is launched. The generated application
(if it passes the following test suite) is delivered for further
testing in the proper environment. By design, everything from
the start to the end is automatized. Note that what this process
lacks is security validation. Many developers tend to forget
that software security is one of the major factors that describe
the quality of the solution. Unfortunately, the security inside
a software delivery chain is often ignored, which can lead to
major breaches.
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FIGURE 2. Automated software delivery chain.

B. SECURITY INSIDE A SOFTWARE DELIVERY CHAIN
The whole process described in the previous subsection does
not cover the application security aspect of the software deliv-
ery automation. This phase should be described separately,
as it is often ignored by the software development teams.
There are a few reasons for that. Firstly, it is commonly
believed that security verification inside a pipeline is compli-
cated and the execution takes a large amount of time. Another
reason is that the security findings obtained in an automated
manner may contain many false positives and thus this can
stop a pipeline from execution without a reason. For business
owners, it is unacceptable to delay the implementation of a
new feature due to a vulnerability that would later occur to
be non-existing or unimportant. Both claims may be true,
especially in places where the organizational culture is not at
an appropriate level. Using properly integrated security tools,
it is possible to ensure security during different stages of the
delivery chain. The requirements for such tools are automatic
functioning (e.g., using a predefined list of rules or policies),
the ability to configure the scope and to run the security test
remotely (e.g., via a REST API). Moreover, the execution
time of such a scan should be as short as possible.*

There are several areas to be covered by the automated
vulnerability testing during the described process:

4Note, that for each application, the allowed execution time is different,
nevertheless, it should generally be counted in minutes rather than hours.
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o Static Application Security Testing (SAST) [27]: this

kind of test requires access to the source code of an appli-
cation. A vulnerability scanner analyzes the source code
line by line looking for predefined patterns. Matches
are reported as potential vulnerabilities. A SAST scan
should be triggered by an event, which is the merging of
a new code with the main source code repository.
Dynamic Application Security Testing (DAST) [28]: this
kind of test requires an application to run in a spe-
cific environment. The test logic executes several HTTP
requests to verify if the application is vulnerable to well-
known web attacks (e.g., from OWASP Top 10 list).
The DAST scan should be triggered by the event of
deployment (of a new version of application) in the first
test environment. In most cases, it is the development
environment.

OpenSource Vulnerability Scanning: requires access to
the source code. In the first step, the test suite looks
for OpenSource dependencies used within the code-
base (e.g., using integration frameworks like Apache
Maven or npm). The second step validates if there are
known vulnerabilities already reported within a particu-
lar package. The Open Source Vulnerability scan should
be triggered at the same time as the SAST scan as they
both rely on the source code of an application.

5 https://owasp.org/www-project-top-ten/
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FIGURE 3. Software delivery chain with the security verification steps.

e Network Vulnerability Scanning: in most cases, this
type of scanning is performed on assets with network
interfaces. In general, such a scanner enumerates open
ports on the tested assets. Then, it uses the obtained
information to detect the service which is listening on
a given port to verify whether there is any published
vulnerability related to it, e.g., in the NVD database. The
network vulnerability scan should be triggered when
a new resource is added to the project or to the sys-
tem infrastructure (e.g., when a new virtual machine is
launched).

o Image Vulnerability Scanning: in most cases, the result
of the Application Build step shown in Figure 2 is a
docker image [29], which is built from a number of
layers (one of those is an application that has just been
built) that are executed using a shared host kernel. These
layers can be created by particular services or even
whole operating systems that use software packages.
Image vulnerability scanning verifies if the layers that
the image consists of have no security vulnerabilities.
It should be triggered before pushing the newly built
image to the repository.

All above-mentioned components combined can be uti-

lized to modify the Automated Software Delivery Chain
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(Figure 2) to enable security within the Software Delivery
process. Figure 3 illustrates their location in the automated
pipeline that describes the software delivery chain where
a particular security verification should be placed. SAST,
OpenSource, and Image verification should be executed right
after the source code has been sent to the repository. A deci-
sion about merging the newly created code with the existing
one should be based on the results of a security test. Then
it should be performed in the testing environment where the
already built application is run. The decision to deploy the
application to the production environment should consider
the results of the security vulnerability testing.
Unfortunately, the information about the vulnerabilities
required to be fixed has to be obtained manually by the
IT security professionals. The outcome of the automated
vulnerability scanning software could result in hundreds of
potential issues that have to be analyzed. It is not always
possible to rely on the severity, which is reported by an
automated tool. For instance, the vulnerability “SSL Certifi-
cate is issued by an untrusted authority”’, which is detected
in the context of the application and works in the internal
ecosystem (available only to a specific number of users) is
not as important as the same vulnerability discovered in an
application available for external customers. We would like to
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use this, as well as the fact that machine learning techniques
have already been proven to be accurate for software vulner-
ability classification, to provide the context-aware software
vulnerability classification. For this purpose, a concept of
“grading” will be presented, i.e., the possibility to mark
an issue as “Confirmed and Relevant Vulnerability” (CRV),
which is a security issue reported by a vulnerability scanner
and confirmed as relevant to be fixed, and ‘“‘Detected but
Not Relevant Vulnerability” (DNRV), which is a security
issue discovered by a vulnerability scanner that, however,
cannot be confirmed or is not relevant in an application
context. The Authors strongly believe that by automating the
process of labeling software or network vulnerabilities as
“CRV” or “DRNV”, they will significantly affect the level
of security in the automated software delivery pipeline.

IV. CLASSIFICATION WITH MACHINE LEARNING
Text classification is used in various applications, e.g,
in social media analysis [30], online advertisements (where to
put proper ad) [31] or chatbots [32]. In the scope of Software
Vulnerability Classification where deficit’s description is an
essential field to analyze (as the content may vary a lot based
on the vulnerability source — see Section III-B, but the struc-
ture remains the same) there are several techniques which
allow to classify the vulnerability. Text Mining (TM) [33]
is commonly used when the goal of the task is to extract
particular information from a large amount of text content.
In this case, semantics in the text is not considered. Natural
Language Processing (NLP) techniques are applied to teach
the algorithm to understand the given text including seman-
tics. There are several algorithms introduced to NLP tech-
niques to prepare data before passing it to the training, such as
Bag Of Words and tokenization. Since the goal of this work
is to propose the context-aware vulnerability classification
semantics is essential, thus only NLP techniques will be con-
sidered in this paper. Moreover, classification algorithms can
be categorized in various ways, e.g., as supervised or unsu-
pervised learning [34], binary or multiclass [35], and senti-
ment or content classification [36]. Considering the problem
described in Section I, we consider supervised (the training
dataset will be labeled), binary (output will be the grade
of one of the two classes), and content (decision will be
made based on the content of given sentences) classification.
Furthermore, combining all above with the results obtained
by other researchers in the field of software vulnerability
classification (see Section II)it leads to a conclusion that
algorithms such as Neural Networks (NN), Support Vector
Machine (SVM), and Random Forrest (RF) [37] achieve
significantly better results than other algorithms, e.g., Naive
Bayes and k-Nearest Neighbors. Considering the above,
we chose these three techniques (NN, SVM, and RF) for
further analysis and experimental evaluation. These three
techniques are also briefly described below:
o Neural Network: consists of three main elements. Input
layer which is built of features selected for the algorithm
to use. This layer does not perform any operations.
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Hidden layers are trying to put proper weights for a given
input. In general, the output of each node inside a partic-
ular hidden layer can be described by (y; = ¢(D_; wjix;+
bj)) where (y;) is an output of the neuron, (x;) is the
input, (b;) is the bias, and (¢) is the activation function.
The final layer is the output layer. In most cases, it can
be treated just like the other hidden units while it uses
a different activation function. Besides parameters like
bias, weight or activation function, there are a number
of hyper-parameters that include the layer size, number
of nodes in a layer, learning rate for optimizing func-
tion, optimizing function, regularization or activation
function. There are a number of elements that can be
configured and tuned for an algorithm to work better,
which make Neural Networks the most suitable for text
classification purposes.

There are multiple variants of Neural Networks, for
instance, Recurrent Neural Network (RNN) [38], Con-
volutional Neural Network (CNN) [39], or hybrid [40].
RNN introduces the Memory Unit, which passes results
from units within the same layer (see Figure 4). There
are two types of Memory Units — Gated Recurrent
Unit (GRU), which introduces two gates into an algo-
rithm — reset and update. Through these gates, GRU
decides whether to pass the calculated value to another
unit or not. It just exposes the full hidden content without
any control. The second type of Memory Unit is Long
Short Term Memory (LSTM), which besides reset and
update, introduces the output gate. This type of RNN,
by design, performs better when memorizing longer
sentences [41].

CNN is commonly used for image classification due to
the extracting possibilities. The usage of CNN in NLP
problems has been recently proven to be efficient [42].
In this type of Neural Network, each input neuron is not
connected to the output neuron of the next layer (see
Figure 4). Instead, the convolution of the input is used
to compute the output.

o Random Forrest: is an algorithm that uses a large number
of uncorrelated decision trees [43]. The results of the
decision for each decision tree are taken into considera-
tion during the final decision making for the classifier.

o Support Vector Machine: is an algorithm that aims
to find the margin-maximizing hyper-plane between
classes. The main purpose for the SVM classifiers was
binary classification, but making use of kernel func-
tions allows SVM to perform operations of multiclass
classification [44].

V. DATA COLLECTION

As hinted earlier, to address the shortcomings described in
the previous section, a security quality gateway that would
be able to provide reliable and useful information for the
CICD tools about an application’s security is desired. That is
why, in response to these deficits, in this paper we design and
develop a solution called Mixeway, which has been publicly
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FIGURE 4. Overview of the general architecture for the simple neural network (left) and recurrent neural

network (right).

Scan Manager
Module

Network Scanners DAST Scanners

FIGURE 5. Architecture of the proposed solution.

shared with a community as an opensource on the GPL-3.0
license at GitHub.®

A. MIXEWAY STRUCTURE
The Mixeway architecture is illustrated in Figure 5 and it
consists of three main modules.

o Service Discovery Module: this module is responsible
for gathering information about the IT system in gen-
eral. It enables integration with IaaS (Infrastructure as
a Service) [45], i.e., whenever a new Virtual Machine
(VM) is deployed in the scope of a particular [aaS ten-
ant, the plugin obtains information, such as IP address,
hostname, routing rules, or local firewall permissions.
This data is used at a later stage for the configuration
of the Network Vulnerability scanners and audit tools,
which verify the network policy.

(’https:// github.com/Mixeway/MixewayHub
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o Scan Manager Module: this module is responsible for

interaction with various vulnerability scanners. Each
time the CICD or any other tool (using REST API)
requests a security test with a given scope (SAST, DAST,
OpenSource, or Network Scanners), the Scan Manager
Module uses the defined plugin to connect with a spe-
cific scanner, configure the scope of the test and later
load vulnerabilities. At this stage, vulnerabilities are
linked to the proper resources gathered from the Service
Discovery Module.

Vulnerability Correlation Module: as previously
described, the vulnerability list discovered by auto-
mated tools is likely to contain a number of false
positives. Additionally, different security scanners can
report the same vulnerabilities. As a result, the com-
plete report can be significantly lengthened and can
contain many redundancies. That is why the Vulnera-
bility Correlation Module is responsible for removing
duplicates and performing classification to verify if
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FIGURE 6. Graphical user interface of the mixeway project view (source: hub.mixeway.io).

a reported deficit is a software vulnerability or a false
positive.

Note that Mixeway is also equipped with a graphical user
interface (GUI) which, from the user point of view, makes it
easy to use and configure (see Figure 6).

B. MIXEWAY IN THE AUTOMATED SOFTWARE

DELIVERY PROCESS

Given that Mixeway is an orchestration tool for the func-
tionality of the security quality gateway, thus it is strongly
recommended to place it within the secured software delivery
pipeline (see Figure 3). The main advantages of using the
described software include:

o The software delivery process is independent of the
Vulnerability Scanner used within the organization. The
change of the scanning software will not affect the con-
figuration of the CICD pipeline.

o Vulnerabilities from multiple types of scanners are
stored in one place. Software developers and IT Security
team members do not need to browse multiple locations
to generate reports.

o Authorized team members are allowed to change the
status of each vulnerability to “CRV” or “DNRV”. Asa
result, software development teams are only notified
about confirmed and important issues.

o Security Quality Gateway can be configured to fit the
individual needs.

C. MOBILE NETWORK OPERATOR CASE STUDY OF
MIXEWAY IMPLEMENTATION

The Mixeway software has been implemented in the ecosys-
tem of a large mobile network operator to manage and
accelerate IT security inside an automated software delivery
chain. A variation in the workflow described in Figure 3 was
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designed and used. To be able to verify if a particular change
could be merged with the main repository branch, static tests
such as SAST and Open Source scans are being performed
(Scan Manager module). DAST scans are executed during
smoke tests [46]. Infrastructure scanning is executed in a
scheduled manner (every 8 hours) or every time a new VM is
being deployed in the name space of an IT system. To obtain
information about newly created assets, the Service Discov-
ery module is used. Finally, the Security Gateway serves
information if the modification of the software code is secure
(Vulnerability Correlation Module).

This way, hundreds or even thousands of vulnerability
scans could be performed daily (the overall number depends
on new feature releases).

VI. UTILIZED DATASET AND

EXPERIMENTAL METHODOLOGY

In this section, we first present the datasets that we used
during the performed evaluation. Moreover, we also present a
feature extraction process. Finally, we introduce the method-
ology that we applied during the experimental phase.

A. UTILIZED DATASET AND FEATURE EXTRACTION

The developed solution, i.e., Mixeway, which was described
in Section V-A, has been implemented and deployed in
one of the largest Mobile Network Operators in Poland.
Data related to vulnerabilities was collected for 12 months
(between 2019 and 2020). This allowed to gather information
about more than 50,000 software and network vulnerabili-
ties. Security flaws were discovered in the e-commerce class
IT systems. The detected vulnerabilities were verified by
the authors during manual inspection, which resulted in the
labeled dataset where each flaw has the “CRV” or “DNRV”’
tag. The data structure of the collected vulnerabilities is
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TABLE 2. Data structure related to vulnerabilities as gathered by the
mixeway.

Field Name Separation | Description
Token
Application XXAN Name of application in which con-

Name text a vulnerability was detected. It
could be an IP address when the
deficit is affecting network object,
URL when the issue was reported
by the DAST scanning software and
the name of the code repository if
the vulnerability is present in the
source code.

Context of the application. This
field contains information about the
source of a vulnerability, authenti-
cation type, network zone (internal
or external) and the type of end user
(employee or customer).
Vulnerability XXVN Name of the detected vulnerability
Name taken from the scanning software.
It could be the CVE name or a di-
rect phrase like “Cross-Site Script-
ing Reflected”.

This field contains a description of a
vulnerability and information about
why it is detected in the specific
context.

Severity as reported by a scan-
ner. The possible values are “Crit-
ical”, “High”, “Medium”, “Low”
and “Info”.

Verification performed by the IT se-
curity professional. It contains in-
formation whether a vulnerability
has been confirmed (“1”) or not
(“0”).

Application XXAC

Context

Vulnerability XXVD

Description

Severity XXSEV

Analysis N/A

presented in Table 2. As the prepared dataset contains sensi-
tive information about vulnerabilities of the existing software
and network systems, the authors were not allowed to share it
and thus it is not included in the Mixeway GitHub repository.
However, it must be noted that the performed experiments
can be repeated using any dataset which contains software
and network vulnerabilities in the format described by Mixe-
way VulnAuditor” in the Mixeway documentation. The choice
of such a dataset results from the need to combine three
aspects: a detected vulnerability, a specific web application
(e.g., an URL, where an error has been detected,) and the
context in which the application operates (who it is intended
for and what type of data it processes). NVD database con-
tains detailed information about vulnerabilities detected in
a particular software that may be used in various contexts.
For example, a particular version of the Content Management
System (CMS) WordPress® may be used as an organization
internal system for a few users to process irrelevant data.
On the other hand, it may also be used as a landing page
for customers. A vulnerability detected in such a CMS will
be treated the same, while a possible attack on the appli-
cation available for end-users might be much more severe.

7https://github.com/mixeway/mixewayvulnauditor
8 https://wordpress.org
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TABLE 3. Statistics of the utilized dataset.

Dataset attribute No.

Dataset size 55665 records
Applications analyzed 109

SAST Vulnerabilities 38675

DAST Vulnerabilities 2282
OpenSource Vulnerabilities 755

Network Vulnerabilities 11953

CRV 19890

DNRV 33913

Thus, the NVD database cannot be used for the described
purpose. Unfortunately, no organization is sharing such data
on a scale which would enable us to prepare a valid dataset to
be used for building an ML model.

Data containing long sentences, such as descriptions
of vulnerabilities or application context, cannot be passed
directly to the classification. There is a sequence of operations
that need to be performed to prepare such a dataset. The vul-
nerability description contains information that is intended
for the human operator to understand. It contains data about
the identified issue (with explanation why it was reported)
as well as details how to reproduce and fix it. To make
the algorithm understand this piece of information the NLP
preprocessing technique called “‘tokenization” is used. The
tokenization process (which was proved to be efficient in
previous research [47]) transforms a sentence into a numeric
vector where each number corresponds to the word location
in the prepared dictionary (see step 3 in Figure 7), which
contains each word in a given dataset. Note that the input
is multicolumn data and the output is a fixed length, one-
dimensional vector of the tokenized words. The sequence
of the described operations is presented in Figure 7. The
first step is data collection. Such a table can be loaded from
an exported file or a database directly. The classifier is not
able to recognize the table columns, so specific tokens will
act as a column separator. The second step is to add such
separators (described in Table 2) with the addition of XXBOS
and XXEOS, which are the ‘‘beginning of a sentence’” and the
“end of a sentence” tokens. Data prepared in this way is used
to create a dictionary of words (note: the dictionary contains
words detected in the dataset and corresponding numbers).
In the next step, each column is tokenized using the pre-
pared dictionary. The term “‘tokenized” means that the text
is transformed into a sequence of numbers of corresponding
words in the dictionary. Each column has to possess the same
length (Xcopmn Which is the length of a particular column),
so when the sequence length is shorter than X,y it is filled
with O to match the proper dimension. Next, each prepared
column is concatenated, so each example returns a one-
dimensional sequence of numbers. Finally, such a prepared
set of sequences is split into training and validation sets.

More information about the dataset is enclosed in Table 3
and Figure 8. As it can be seen, the majority of vulnerabil-
ities in the dataset come from the SAST scanner, i.e., 72%,
while the OpenSource Vulnerabilities represent only 2%.
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FIGURE 7. The sequence of operations to prepare data for classification).

Such uneven values should not be an issue for the imple-
mented classifier. Further analysis of the data leads to the
conclusion that the DAST scanners have greater accuracy
than the SAST scanners, as more detected issues are classified
as confirmed (62% vs. 31%).

B. EXPERIMENTAL METHODOLOGY

The experiments were performed on a machine with a CPU
Intel Core 17-7700HQ, 32GB RAM, GPU NVIDIA GeForce
GTX 1050. The experimental application was prepared using
Python 3 with TensorFlow® and scikit-learn'? library.

The five main steps performed during the experiments are
illustrated in Figure 9. As already mentioned, the dataset
used for experimental evaluation was gathered for over
12 months from the Mobile Network Operator’s ecosystem
by the Mixeway software (see section V-A). Next, the dis-
covered software vulnerabilities were exported to be used
for ML algorithms. Before using the data to train the model,
preprocessing was performed (see section VI-A). The pre-
pared data was then passed to the configured model (with
parameters and hyper-parameters set to the values described
below). The results obtained by the chosen classifiers are
described in Section VII. Steps 4 and 5 are repeated for
each classifier (NN, RNN, CNN, RF, and SVM). The created

9https://tensorf10w.0rg
10https://scikit—learn.org
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and trained model predicted a grade for the given sample.
The outcome is validated and marked as “True Positive”
(TP) — correct prediction of the CRV, “True Negative” (TN) —
correct prediction of the DNRV, ‘“False Positive” (FP) —
incorrect prediction of CRV, and ‘“False Negative”
(FN) — incorrect prediction of the DNRV based on the
provided “grade’ label (supervised learning). These values
(TP, TN, FP, and FN) are used to calculate metrics, such as
accuracy (Equation 2), which expresses the probability of the
classifier to detect the TP, precision (Equation 1) which is
the ability of the classifier to reduce the number of detected
FP values, recall (Equation 3) which is defined as an ability
of the classifier to reduce the number of detected FN values
and F1 (equation 4) which is the harmonic mean of recall and
precision.

Configurations of the NN, which were tested to verify the
software vulnerability classification, are enclosed in Table 4.

The values (such as the learning rate, regularization func-
tion, and a number of layers) described in Table 4 were
obtained experimentally. For RNN, adding more layers
resulted in a decrease in the classifier accuracy (and other
metrics).

For the given experiment, RF with 300 decision trees were
used from the scikit-learn library available in Python. During
the experimental evaluation, we used SVM with a poly kernel
and degree of eight. The parameters for RF and SVM were
picked experimentally. A lower number of decision trees in
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FIGURE 8. Overview of the dataset used for training and testing of the proposed model.
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FIGURE 9. The structure of the performed experimental evaluation.

the RF algorithm resulted in a significant decrease in the
metrics, such as accuracy, while using a number higher than
300 does not further improve the results. While examining the
SVM algorithm, different kernel functions were tested. The
polynomial kernel obtained the best results (while having the
degree set to eight).

Cross validation was not used, as the applied libraries
provided accurate and customizable functions, which ensures
randomness in splitting the dataset into training and valida-
tion data.
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TABLE 4. Configuration parameters for the ML algorithms.

Type Layers| Activation function Regularization
Basic NN 7 Hidden Layers - ReLU, | L2 (0.1)

Output - Sigmoid
Hidden Layers - ReLU, | L2 (0.1)
Output - Sigmoid
Hidden Layers - ReLU, | L2 (0.1)

CNN 6

RNN with | 5

LSTM Output - Sigmoid
RNN with | 3 Hidden Layers - ReLU, | L2 (0.1)
GRU Output - Sigmoid

To compare ML algorithms, we utilized the standard detec-
tion metrics calculated using the following equations:

.. TP )
recision = ——m——
p TP + FP
TP + TN
aCCuraCy = (2)
TP+ FP+ TN + FN
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FIGURE 10. Precision (left) and recall (right) metrics obtained during the experiment - results are corresponding to metrics on the validation

dataset.

TP
recall = ——— 3
TP +~ FN
precision * recall
Fl1=2 )

precision + recall

VII. RESULTS
When combining the prepared input described in
Section VI-A  with the properly configured algorithms
reviewed in Section VI, the experimental evaluation was
performed to determine whether the ML algorithm can be
used to effectively classify vulnerabilities in an application-
context-aware dataset.

The obtained results are presented in Table 5. They show
how the classifier deals with the validation dataset.

TABLE 5. Experimental results of the software vulnerability classification
using different ML algorithms.

ML Accuracy | Precision | Recall F1  score | Learning
algorithm [%] [%] [%] [%] time [s]
NN 0.98 0.96 0.99 0.98 16
RNNLSTM | 0.99 0.98 0.98 0.98 390
RNN GRU |0.92 0.87 0.92 0.89 375
CNN 0.99 0.98 0.99 0.98 27

RF 0.98 0.99 0.98 0.99 10

SVM 0.85 0.77 0.99 0.87 644

In most cases, the evaluation of a classifier can be lim-
ited to comparing the accuracy score (especially for image
classifiers). However, taking into consideration the nature
of IT security, the values of FP and FN have to be care-
fully analyzed as well. Considering the use case described in
Section III-B, i.e., the usage of classifiers in the evaluation of
changes within the software inside the CICD pipeline, a large
number of False Positive vulnerabilities may result in failing
the whole pipeline for no reason. This kind of behavior is not
acceptable for business owners. On the other hand, marking a
vulnerability as DNRV when a serious flaw is present in the
software, may result in a security breach, which is even more
dangerous for the organization. For this reason, to compare
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the mentioned algorithm metrics, precision and recall have
been used.

During the conducted experiment, we chose multiple vari-
ants of Neural Networks (RNN with LSTM and GRU, CNN,
and basic NN), Random Forrest and SVM. The selected algo-
rithms have already proven to be efficient in terms of software
vulnerability classification in the existing literature [14], [15],
[18], [19]. The SVM algorithm obtained the worst recall
result (0.85 vs. 0.99) when compared to the other algorithms.
A slightly better result was achieved in terms of precision for
the Random Forest when compared to any variant of the Neu-
ral Network implementation. Neural Networks obtained bet-
ter recall results (however, the difference of 0.01 is practically
negligible). In terms of model preparation and learning time,
the best results were obtained using Random Forrest — 10s.
For NN, the basic implementation was achieved in 16s (for a
single epoch) when compared to 390s for RNN LSTM, which
is a considerable difference.

Figure 10 illustrates how the values of the recall and pre-
cision change in the NN model for a specific number of
epochs (which is a single process of model training for the
whole dataset). Note that the optimal number of epochs is
15 for each type of NN. More epochs do not increase the
efficiency of the given models. On the other hand, if the
number of epochs is lower than 15, this results in classifier
instability (the fluctuations between the epochs at this stage
are significant — 2%). The results for the RNN with GRU
memory behaved in the opposite way and reached its best
outcome below 15 epochs, while for the higher value both
precision and recall dropped by 6% to 10%.

Regarding the precision and recall, the values obtained by
the CNN, simple NN and RNN with LSTM were similar
and the satisfying levels obtained accordingly were 98% and
99%, respectively. RNN with GRU obtained noticeably worse
results for both metrics. Such behavior was expected due
to the fact that the GRU unit does not perform well with
long sentences (the training dataset was padded to a vector
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TABLE 6. Results for TP, FP, FN, TN values for the selected ML algorithms.

ML algorithm TP [No./%] FP [No./%] TN [No./%] EFN [No./%]
NN 57971/35.8 181/1.1 10185/ 63.1 10/0.1
RNN LSTM 5733/35.4 72104 10294 / 63.6 74105
RNN GRU 5187/32.1 760/4.1 9806 / 60.6 420/2.6
CNN 5763 /35.6 109/0.7 10257/ 63.4 4470.7

RF 10321 /63.8 85/0.5 5658 /34.9 109/0.7
SVM 8106 /50.1 2324/14.3 5700/35.2 43/0.3

of 843 words). The best recall value (and the most stable)
was obtained for the RNN with LSTM.

Considering the values that are used to calculate the met-
rics, e.g., precision (Table 6) it is possible to observe that in
terms of FN — the LSTM, RF and SVM algorithms performed
best. However, to properly choose the classifier to be used
within the CICD pipeline (see Section III), both FN and FP
should be considered. The SVM with FP count of 2324 is far
less effective than the LSTM and RF (72 and 85).

The results for the RF and SVM classifiers are presented
in Table 5. The presented outcomes contain average values for
10 epochs (single run of model training for the whole dataset).
The difference between the particular runs is less than 1%,
so the metrics obtained for these classifiers are quite stable.
This proves that the data has been appropriately randomly
divided into training and verification sets.

To ensure the validity of the presented research we delib-
erately manipulated the dataset. We chose examples with
the same vulnerability and context but different applications.
Labels for 50% of these examples were switched to the oppo-
site value. This caused the dataset to contain contradictions
that should not have occurred. With 10% of all examples
affected, metrics for all classifiers deteriorated drastically.
Such change in the dataset resulted in accuracy and precision
drop by 13% for RNN, CNN, and RF and by 20% for SVM.
Unfortunately, the mentioned dataset contains information
about vulnerabilities identified in applications that work in
the mobile network operator environment. It is possible that
the prepared model would not be so accurate when used
for the classification of deficits detected in applications which
origin from, for example, banking industry. This issue would
be a subject of our future work.

VIIl. CONCLUSION

In this paper, we proposed a novel context-aware software
vulnerability classification system — Mixeway — which relies
on machine learning and NLP techniques and allows to
automatically predict the vulnerability category. Moreover,
we shared Mixeway with the security community as an open-
source software available at GitHub.

In more detail, in this research, we investigated the
efficiency and effectiveness of various machine learning algo-
rithms for software vulnerability classification. If proved
successful, such a classifier can be utilized as a security
component inside a software delivery chain to make the
whole CICD process more secure and to accelerate the work
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of both security and software development teams within
organizations. The dataset used during the experimental eval-
uation of the proposed solution contained information about
both the vulnerability (name, description) and the software
in which the security issue was detected. To use such data,
NLP techniques were applied. The efficiency of several types
of Neural Network, Random Forrest and Support Vector
Machine algorithms was verified.

The obtained experimental results prove that the ML algo-
rithm can be used to classify software vulnerabilities in a
context-aware dataset. Accuracy and recall values that were
obtained for NN and RF (98%) are enough to configure the
software delivery chain with confidence in the quality of
the output from the classifier. When taking into considera-
tion both metrics and the time needed for training, then the
Random Forrest algorithm yielded the best results. However,
the dataset gathered for the evaluation purpose contained soft-
ware vulnerabilities for only 100 applications (and the major-
ity are from e-commerce platforms). If the dataset would have
contained more diverse software vulnerabilities, it is expected
that the NN (especially RNN with LSTM variant) would
obtain better outcomes due to a number of hyper-parameters
that are possible to configure during the model preparation
process. The results described in Section VII prove the effi-
ciency of using the ML techniques for software vulnerability
classification. Introducing grades, such as CRV and DNRYV,
could significantly facilitate the security assurance within
the automated software delivery process. Using the proposed
prototype as a component of the implemented Mixeway soft-
ware could be desired as a part of a Vulnerability Correlation
module (see Figure 5). Integration in the scope of exporting
the stored software vulnerability to fit the learning process
has already been designed.'!

Trying to implement such a process in any organization
may require bidirectional integration (between the described
classifier and Mixeway) as once prepared, the model has to
be continuously updated for several reasons. Firstly, more
and more new types of software vulnerabilities are discovered
each day. The other reason is that the application context can
change.

Future work will be devoted to preparing ready to
use scenarios for CICD processes (GitHub actions'? and

1 https://github.com/Mixeway/Mixeway VulnAuditor — the source code of
the proposed prototype
12https:// github.com/features/actions
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GitLab-CI'?). The goal of such an action is to create a stan-
dard for a Security Quality Gateway inside an automated
software delivery chain (presented in Figure 3) where the
decision is based on a result provided by the presented
classifier. In parallel, further samples from the vulnerabil-
ity scanners will be collected (in particular from applica-
tions different than e-commerce), which will be later used
in the training phase and could be utilized to help improve

the

model efficiency. Possibility of using vulnerabilities

reported in the Hackerone'* program will also be investi-
gated, as reports available on the mentioned platform contain
information about vulnerabilities detected in scope of specific
web applications.
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