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ABSTRACT In this paper a small sag-to-span ratio conductor, belonging to overhead power transmission
conductors, is studied. The single conductor is assumed to withstand a prescribed motion at a single
conductor ends caused by suspended insulator swing and placed in the simultaneous wind and rain condition.
It is modeled as a planar, nonlinear, one-dimensional continuum, and its ends are assumed to undergo the
suspended insulator swing of given amplitude and frequency. Raindrops are blowing by uniformed wind
flow, hitting the single conductor and may form rivulets on its surface. Besides rain-wind flow induces
aerodynamic instability, the motions of the suspended insulator swing contribute to external and parametric
excitation. Vertical motion equation of the single conductor is discretized with Galerkin method of which
first order in-plane symmetric mode is took as trial function. Multiple-scale perturbation technique and
computation methods are introduced to study nonlinear dynamic responses of the single conductor under
parametric excitation or force excitation, or both excitations. Effects of key parameters, such as total damping
ratio, upper rivulet angle, suspended insulator swing amplitude and frequency on dynamic characteristics of
the single conductor are discussed. The results indicated that those key-parameters have obviously affected
the dynamic characteristics of high-voltage conductor.

INDEX TERMS Overhead power transmission conductor, sub-harmonic resonance, upper rivulet, rain-wind
flow.

I. INTRODUCTION
Overhead power transmission conductors are prone to vibrate
due to their structural flexible and sensitive to external
loads or tip motion. There are a few of research about this
type of unanticipated nonlinear vibrations for the conductors
under coupling action of wind and rain [1]–[3]. Such large
amplitude vibrations make the conductors stress undue, and
produce metal fatigue, especially on conductor supports or
clamps, in surprisingly short periods. Therefore, it is urgently
needing an in-depth investigation to revealmechanism behind
such a vibration.

The dynamic behaviors of the overhead power
transmission conductors under rain-wind condition are very
complicated and have attracted increasing amount of atten-
tion from electrical, mechanics and mechanical engineering.
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Wang and Tang [4] proposed a partial differential equation of
nonlinear vibration of suspended power line in consideration
of initial relaxation degree and obtained the nonlinear vibra-
tion response under harmonic forces and pulse excitation.
Rienstra [5] studied nonlinear free vibration of coupled spans
of suspended overhead transmission lines. It is shown that the
natural vibration is the gravity model, of which the tension
component vanishes in the first harmonic. Barbieri et al. [6]
analyzed nonlinear characteristics of the large amplitude
free vibrations of non-inclined and inclined sagged elastic
transmission lines with finite element method and validated
the nonlinear models with experimental data. Xia et al. [7]
established a finite element model of a domestic 500kV high-
voltage tower-line system to study the nonlinear dynamic
response under mechanical failure. Wu [8] studied a class of
nonlinear vibration model of a transmission line and obtained
an approximate solution with an arbitrary degree of accuracy.
Yan et al. [9] modeled the galloping of iced transmission
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line considering eccentricity and analyzed the bifurcation
and stability of 1:1 and 2:1 resonance. Liu and Huo [10]
developed a model of iced transmission line with thin ice
accretions to describe the nonlinear interactions between the
in-plane, out-of-plane and torsional vibration, and observed
Hopf bifurcation, mono-modal, bi-modal and multi-modal
galloping. Wang et al. [11] estimated the buffeting response
of overhead conductor based on random vibration theory with
closed form formulations and placed special attention on
the influenced of geometric non-linearity. Zhang et al. [12]
established a 3-DOF model of transmission line with initial
deflection and studied the nonlinear-coupled in-plane and
out-of-plane internal resonance. Alminhana et al. [13] devel-
oped a special-purpose nonlinear dynamic analysis technique
for themodeling ofmulti-span line sections under progressive
failure scenarios. Burgh and Harton [14], Burgh et al. [15]
presented amodel equation for the study of rain-wind induced
vibrations of a simple oscillator and found that variations of
the detuning parameter will lead to saddle-node and Hopf
bifurcations. Fu and Li [16], [17] established the calculating
method of wind and rain loads for transmission conductor
and discussed the effects of wind and rain excitation, and
the results indicated that the rain loads relative to the wind
loads could reach to 22%. Zhou et al. [18], [19] developed
a two-dimensional model of rain-wind induced vibration of
transmission line and discussed aerodynamic instability zone
with Lyapunov stability criterion.

Compared with the dynamics of the overhead power
transmission conductors subjected to parametric excitation
or force excitation, or both excitation, nonlinear investiga-
tion towards the mechanism of rain-wind induced conductor
vibration are still insufficient. Though nonlinear dynamics
of suspended horizontal and inclined cables subjected to
wind and rain loads are studied [20]–[23], the structural
characteristics, cross-sectional dimension between the stayed
cables and the conductors are clearly different. Thus, there
is an urgent need to reveal the in-plane nonlinear charac-
teristics of the conductors, especially first- order symmetric
in-plane mode under parametric and aerodynamic excitation.
The paper is organized as follows: in section 2, equations of
the single conductor motion are presented and discretized.
In section 3, the perturbation analysis is carried out and the
amplitude modulation equation is derived. In section 4, these
latter are numerical computed for a sample example. Finally,
the paper ends with some conclusions.

II. GOVERNING EQUATIONS
A. BASIC CONFIGURATIONS
The overhead power transmission conductors made of a
sequence of several spans, and each span ends hinge-
supported with anchoring or suspension insulator. The over-
head transmission line is model as a single conductor
with sag-to-span ratio about 1:8 or less, having its weight
expressed by mass per unit of length, m, subject to tension
H . A Cartesian coordinate systemOxy is used here to identify

FIGURE 1. Configuration of conductor-insulator structure with two-span.

FIGURE 2. Substructure of conductor-insulator.

motions of the single conductor, with original pointO located
at the end of themiddle suspension insulator. The geometrical
configuration of a conductor-insulator structure with two-
span (see Fig. 1), and the static profile be defined by a
parabolic function as

y = 4fi(x/li − x2/l2i ) i = 1, 2 (1)

where l1, l2 are the span of first-span conductor and second-
span conductor, respectively. f1, f2 are the sage of first-span
conductor and second-span conductor.

The flexural, torsional, and shear stiffness of the single
conductor is negligible, for brevity, will be neglected in the
following studies. Moreover, the motion of the suspended
insulator swing be simplified defined as a harmonic excita-
tion acts on the end of single conductor. Therefore, in-plane
motion equations of the single conductor based onHamilton’s
theory, are derived as

∂

∂x

(
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[
∂u
∂x
+
∂v
∂x

dy
dx
+

1
2

(
∂v
∂x

)2
])
− mü+ Fx = 0 (2)
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+
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)[
∂u
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+
∂v
∂x
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dx
+

1
2

(
∂v
∂x

)2
])

−mv̈+ Fy = 0 (3)

where Fx and Fy are the external forces. A is cross sectional
area of the single conductor, and E is Young’s modulus. u and
v are axial and vertical motion at point x and time t from the
static equilibrium, respectively. The dot is the derivative with
respect to time t .

In order to reveal the interaction between each span of the
single conductor vibration, we select the first-span conduc-
tor and the suspended insulator as substructure. The effect
of the second-span conductor movement to the substruc-
ture is equivalent to the motion of the suspended insulator
(see Fig. 2).
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FIGURE 3. Aerodynamic force exerted on the surface of the single
conductor.

Assumed that the tangential excitation is acted to the first-
span conductor, caused by swing of the suspended insulator
as

s(t) = Bcosωbt (4)

where B = b
√
2(1− cosβ) is the tangential amplitude, b is

length of the insulator, and β is yaw angle.
Thus, the connection conditions between the first-span

conductor and the tangential excitation can be expressed as:

u(0, t)− s(t) cosβ = 0, v(0, t)− s(t) sinβ = 0 (5)

From the Fig. 2, it can be seen that the boundary conditions
on the left side of the first-span conductor, axial motion u and
vertical motion v can be given by

u(l1, t) = 0, v(l1, t) = 0 (6)

Given that ratio of transverse-to-longitudinal squared fre-
quency get a small value and the interaction between axial
displacement and vertical displacement is negligible, the iner-
tial and damping terms are neglected in Eq. (2). Thus,
the axial displacement is statically condensed as

∂u
∂x
+
∂v
∂x

dy
dx
+

1
2

(
∂v
∂x

)2

= −
u(0, t)
l1

+
1
l1

∫ l1

0

(
∂v
∂x

dy
dx
+

1
2

(
∂v
∂x

)2
)
dx (7)

Substitute Eq. (7) into Eq. (3), one can obtain

EA
∂

∂x

(
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+
dy
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)(
−
u(0, t)
l1
+

1
l1

∫ l1

0

(
∂v
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+
1
2

(
∂v
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)2
)
dx

)
+ H

∂2v
∂x2
− mv̈+ Fy = 0 (8)

B. RAIN-WIND MODEL OF THE SINGLE CONDUCTOR
An available rain-wind model of the single conductor, allow-
ing one to obtain the expression for the aerodynamic force
Fy in Eq. (3), is introduced as the one presented in [24].
It describes the aerodynamic force Fy exerted on the surface
of the single conductor with upper rivulet (radius ratio r/R =
0.1). The single conductor is capable of in-plane motion
and withstand to an horizontal uniform wind of velocity U ,
as shown in Fig. 3.

Based on some appropriate assumptions, quasi-steady the-
ory is adopted, the axial flow and axial vortexes along the
single conductor be neglected, whereas an upper rivulet is
presented on the surface of the single conductor. When the
single conductor moves in the positive y with velocity v̇,
the relative wind velocity Urel can be obtained with angle of
attack α. The upper rivulet position θ on the surface of the
single conductor is varies with time. From Fig. 3, it follows
that 

sinα = v̇/Urel
cosα = U/Urel
θ = θ0 + arctan(v̇/U )

(9)

On the basis of the quasi-steady theory, the aerodynamic
force Fy exerts on the surface of the single conductor per unit
length as:

Fy = −ρRU2
√
1+ (v̇/U )2(CD(θ )v̇/U + CL(θ )) (10)

where ρ is the air density, andR is the radius of the single con-
ductor. CD,CL are the drag and lift coefficients, respectively.
The aerodynamic coefficients CD and CL can be approx-

imated by a constant and a cubic polynomial [25],
respectively.{

CD(θ ) = CD0
CL(θ ) = CL1(θ − θ0)+ CL3(θ − θ0)3

(11)

where θ0 is an angle in the domain of the θ , at which the slope
curve of CL(θ ) is negative, that is, CL(θ ) < 0.
By using Eq. (9) and Eq. (11) can be written as

CD(θ ) = CD0
CL(θ ) = CL1(θ + artan(v̇/U ))

+CL3(θ + artan(v̇/U ))3
(12)

The motion of the upper rivulet, θ , can be assumed to
be harmonic as the steady-state vibration is concerned by
reference to the wind-rain tests [26]. Thus,

θ = θ̄sinωat (13)

where θ is the oscillation range of the upper rivulet. ωa is the
oscillation frequency of the upper rivulet, which is very close
to that of the single conductor.

Substitute Eq. (12), (13) into Eq. (10), and expand the
right-side with respect to v̇/U in the neighborhood of v̇/U ≈
0 yields

Fy = −(f0(ωat)+ f1(ωat)v̇+ f2(ωat)v̇2)+ 0(v̇)3 (14)

where
f0(ωat) = ρRθ̄sinωat(CL1 + CL3θ̄2sin2ωat)
f1(ωat) = ρRU (CD0 + CL1 + 3CL3θ̄2sin2ωat)
f2(ωat) =ρRθ̄sinωat(CL1+ CL3θ̄sinωat+ 6CL3)/2
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C. QUASI-STATIC SOLUTION
Galerkin method is applied to solve Eq. (8), and the in-plane
motion is expressed with a method of variables separable.
Thus,

v(x, t) = s(t) sinβ(1− x/l)+ sin(πx/l)φ(t) (15)

where φ(t) time variation of v(x, t), and l has been used
to replace l1 for brevity. It should be pointed out that first
symmetric in-plane mode and the connection condition are
taking into consideration.

Substitute Eq. (4), (12) and (14)into Eq. (8), and intro-
ducing viscous damping coefficients c. Correspondingly, a
nonlinear ordinary differential equation is derived as:

1
2
mlφ̈(t)+

1
2
l(c+ f1(ωat)+

ωbBlsinβ
π

f2(ωat)sinωbt)φ̇(t)

+
l2

4
f2(ωat)φ̇2(t)+

{
π2H
2l
+
π2B2EAsin2β

2l3
+

256f 2EA
π2l3

+
BEAπ2cosβ

2l2
cosωbt +

B2EAπ2sin2β
2l3

cos2ωbt
}
φ(t)

+
12f πEA

l3
φ2(t) +

π4EA
8l3

φ3(t)+
16B2fEAsin2β

π l3

−

{
mlBω2

b

π
sinβ −

16BfEA
π l2

cosβ

}
cosωbt

+
16B2fEAsin2β

π l3
cos2ωbt +

2l
π
f0(ωat)

−
ωblBsinβ

π
f1(ωat)sinωbt +

2ω2
bl

2B2sin2β

π2 f2(ωat)

−
ωblBsinβ
π2 f2(ωat)cos2ωbt = 0 (16)

The non-dimensional variables are defined as following:

τ = ω0t; q =
φ

l
; s =

B
l
; ka =

ωa

ω0
; kb =

ωb

ω0

ω0 =
π

l

√
H
m
; ξs =

c
2mω0

ã1 =
BEAcosβ

Hl
;

ã2 =
B2EAsin2β

4Hl2
; ωc =

√
1+

B2EAsin2β
4Hl2

+
512f 2EA
Hl2π4

ã3 =
24f πEA

ml4ω2
0

; ã4 =
π4EA

4ml4ω2
0

; ã5 =
32BfEA

πml3ω2
0

cosβ

−
2Bω2

b

πω2
0

sinβã6 = ã7 =
8B2fEAsin2β

πml4ω2
0

; ā′1 =
1

mω0
;

ā′2 =
ωbBsinβ
mπω0

; ā′3=
l
2m

ā′4 =
4

mπω2
0

; ā′5=
2ωbBsinβ

mπω2
0

;

ā′6 =
4ω2

bB
2lsin2β

mπ2ω2
0

; ā′7 =
2ωbBsinβ

mπ2ω2
0

(17)

Substituting them into Eq. (16) yields

q̈+
{
2ξs + ā′1f1(kaτ )+ ā

′

2f2(kaτ )sinkbτ
}
q̇+ ā′3f2(kaτ )q̇

2

+

{
ω2
c + ã1coskbτ + ã2cos2kbτ

}
q+ ã3q2 + ã4q3

+ ã5coskbτ + (ã6 − ā′7f2(kaτ ))cos2kbτ + ã7 + ā
′

4f0(kaτ )

− ā′5f1(kaτ )sinkbτ + ā
′

6f2(kaτ ) = 0 (18)

where ξa = ā′1f1(kaτ ) + ā′2f2(kaτ )sinkbτ, ξa is aerodynamic
damping ratio. ξ = 2ξs + ā′1f1(kaτ ) + ā′2f2(kaτ )sinkbτ, ξ is
total damping ratio.

It can be found from Eq. (18) that self-, parametric and
external excitation are noted, especially quadratic and cubic
non-linearity occur else. The position of the upper rivulet θ
relates to the aerodynamic lift and drag forces, which may
cause a damping coupling and contributes to some nonlinear
mechanical coefficients.

III. CASE STUDY PERTURBATION ANALYSIS WITH
DYNAMICS OF SINGLE CONDUCTOR
Multiple-scale perturbation method is introduced here to
study the dynamics of the single conductor. As quadratic and
cubic terms appear in Eq. (18), three orders of perturbation
equations are need. Let Ti = εiτ , ε is a small factor. Apply
the following scaling to Eq. (8),

ε2ζ = ξs, ε
2ā1 = ā′1, ε

2ā2 = ā′2, ā3 = ā′3, ε
4ā4 = ā′4,

ε5ā5 = ā′5, ε
4ā6 = ā′6, ε

2ā7 = ā′7, ε
2a1 = ã1, ε2a2 = ã2,

a3 = ã3, a4 = ã4, ε2a5 = ã5, ε2a6 = ã6

It becomes of the following form

q̈+ ε2 {2ζ + ā1f1(kaτ )+ ā2f2(kaτ )sinkbτ } q̇+ ā3f2(kaτ )q̇2

+

{
ω2
c + ε

2a1coskbτ + ε2a2cos2kbτ
}
q+ a3q2

+ a4q3 + ε2a5coskbτ + ε2(a6 − ā7f2(kaτ ))cos2kbτ

+ε4ā4f0(kaτ )− ε3ā5f1(kaτ )sinkbτ + ε4ā6f2(kaτ ) = 0

(19)

Considering Ti = εiτ , it has the differential operators
d
dτ
= D0 + εD1 + ε

2D2 + · · ·

d2

dτ 2
= D2

0 + 2εD0D1 + ε
2(D2

1 + 2D0D2)+ · · ·
(20)

where Di = ∂/∂Ti.
Solutions of Eq. (19), can be expanded in the following

form, in terms of a small positive parameter ε:

q(T0,T2, ε) = εq0(T0,T2)+ ε2q1(T0,T2)

+ε3q2(T0,T2)+ · · · (21)

To define φj(j = 0, 1, 2), let the coefficients of ε, ε2 and ε3

be zero, and substitute Eq. (21) into Eq. (19). Thus,
Order ε

D2
0q0 + ω

2
cq0 = 0 (22)

Order ε2

D2
0q1 + ω

2
cq1 = −ā3(D0q0)2 − a3q20

− (a6 − ā7f2(kaT0))cos(2kbT0)− a5cos(kbT0) (23)
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Order ε3

D2
0q2 + ω

2
cq2

= −2D0D2q0 − a1φ0cos(kbT0)− 2a3φ0φ1
− [2ζ + ā1f1(kaT0)+ ā2f2(kaT0)sin(kbT0)]D0q0
− a2φ0cos(2kbT0)− a4φ30 + ā5f1(kaT0)sin(kbT0) (24)

First-order in-plane motion, derived by Eq. (22) as

q0 = A(T2)exp(iωcT0)+ cc (25)

where exp(iωcT0) = eiωcT0 , and cc is complex conjugate of
other terms.

Substitute Eq. (25) into Eq. (23) gives

q1 = −ā3A2exp(2iωcT0)/3+ ā3AĀ− 2a3AĀ/ω2
c

+ a3A2exp(2iωcT0)/3ω2
c + a501exp(ikbT0)/2

+ (a6 − ā7f2(kaT0))02exp(2ikbT0)/2+ cc (26)

where 01 = 1/(k2b − ω
2
c ), 02 = 1/(4k2b − ω

2
c ), Ā is the

complex conjugate of A.
Substitute Eq. (26) and (25) into Eq. (24) yields

D2
0q2 + ω

2
cq2

= +A2Ā
[
10a23/3ω

2
c − 3a4 − 4a3ā3/3

]
× exp(iωcT0)+ iā5f1(kaT0)exp(iωbT0)/2

− iωc
[
2A′ + 2ζA+ ā1Af1(kaT0)

]
exp(iωcT0)

−A3(a4 − 2a23/3ω
2
c − 2a3ā3/3)exp(3iωbT0)

− (a1/2+ a3a501 + ωcā2f2(kaT0)/2)Aexp[i(kb + ωc)T0]

− (a1/2+ a3a501 − ωcā2f2(kaT0)/2)Āexp[i(kb − ωc)T0]

− (a2/2+ a3(a6 − ā7f2(kaT0))02)Aexp[i(2kb + ωc)T0]

− (a2/2+ a3(a6 − ā7f2(kaT0))02)Āexp[i(2kb − ωc)T0]

+ cc (27)

It is well known that in a transmission tower-line system,
large amplitude conductor vibration will be induced when
one of excitation frequencies is very close to twice the crit-
ical natural frequency (sub-harmonic resonance). By solv-
ing Eq. (27), the amplitude of conductor vibration with
sub-harmonic resonance can be calculated for the case con-
sidered here as follows. In this study, we defined that,

kb = 2ωc + ε2σ (28)

Substitute Eq. (28) into Eq. (27) and remove secular terms
in Eq. (27), yields

A2Ā(10a23/3ω
2
c − 3a4 − 4a3ā3/3)

− iωc(2A′ + 2ζA+ ā1Af1(kaT0))

− (a1/2+ a3a501 − ωcā2f2(kaT0)/2)Āexp(iε2σT0) = 0

(29)

A in Eq. (29) is defined as polar form. Thus,

A = χexp(iγ )/2 (30)

where χ is the amplitude and γ is phase angle, and both of
them with respect to T2.

Substitute Eq. (30) into Eq. (29), and separate it into the
real and imaginary parts. Thus,{

ωcχ
′
= −ωcχκ1 − χκ2 sin γ

ωcχγ
′
= ωcχσ − κ3χ

3
− 2χκ2 cos γ

(31)

where

κ1 = ζ + ā1f1(kaT0)/2

κ2 = a1/4+ a3a501/2− ωcā2f2(kaT0)/4

κ3 = 5a23/6ω
2
c − 3a4/4− a3ā3/3

γ = σT2 − 2ψ

Reduced equations of Eq. (31) governed the planar motion
of the single conductor. which can be directly evoked by
the combined forced and parametric excitation once the
sub-harmonic resonance occurs.

For steady state, χ ′ = γ ′ = 0, it can obtain the solution of
the system by solving Eq. (31). Thus,

ω2
cκ

2
1 + (ωcσ + κ3χ2)2/4 = κ22 (32)

It can be easily derived from Eq. (32) that vibration
amplitude varies depending on the detuning factor, excitation
amplitude, initial tension and aerodynamic coefficients.

IV. CASE STUDY
Numerical studies are discussed here for a single conduc-
tor(which nearly the same one that described in [25]) of span
l = 400 m, radius R = 13.41 mm, the mass per unit
length m = 1.35kg, elastic modulus E = 65 GPa, structural
damping ratio ξs = 0.1%. Initial tension H = 55.05 kN ,
radius of the rivulet r = 0.1R, and yaw angle β = 300.
The first order in-plane symmetric mode (Non-dimensional
natural frequency) ωc = 1.227. The critical angle θc = 520,
where the measured drag coefficient has a sudden change
from positive to negative. Thus, 400 < θ ≤ 700,CD0 =
0.8,CL1 = 0.85 and CL3 = −0.75.
Firstly, effects of the upper rivulet position θ on the total

damping ratio ξ is investigated, in absence (s = 0) or in
presence (s = 0.00375) of the suspended insulator swing.
As shown in Fig. 4, the zone between two curses of lower
boundary and upper boundary (s = 0) is the uncoupled region
which is affected only by aerodynamic force Fy, whereas
the zone between two curses of lower boundary and upper
boundary (s = 0.00375) is the coupled region which is
affected by both of the aerodynamic force Fy and the sus-
pended insulator swing B. From the comparison of these
curves, it can be found that the upper rivulet position has
obviously affect on the total damping ratio, which makes the
total damping ratio starts to fluctuate in a certain range and
negative values occur. Furthermore, the suspended insulator
swing B modifies variation zone of the total damping ratio,
which makes negative value is easier to appear.

The effects of the suspended insulator swing of small
amplitude, with or without the upper rivulet, on response
of the single conductor under sub-harmonic resonance are
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FIGURE 4. Total damping ratio ξ vs. upper rivulet position θ .

FIGURE 5. Amplitude χ vs. suspended insulator swing, in absence or
presence of upper rivulet. Continuous line: stable; dashed line: unstable.

illustrated (Fig. 5). The detuning is fixed at σ = 0.01,
the upper rivulet position is θ = 500 and the wind velocity
is U = 11m/s. There is a clear difference between these two
excitation-response curves. The sub-harmonic resonance of
the single conductor at sole suspended insulator swing (i.e.
In no upper rivulet condition) can be evoked even for a very
small excitation. It can find that the response amplitude of
the single conductor can reaches 0.0334 for the excitation is
0.002. The response amplitude will continue to increase with
the excitation is increasing gradually. Moreover, the onset
of sub-harmonic resonance in presence of the upper rivulet
is relatively larger compared to that of sole suspended insu-
lator swing. The response amplitude reaches 0.0335 for the
excitation is 0.029. With the further increasing of excitation
amplitude, the effect of the upper rivulet on the amplitude
is gradually decreased and two excitation-response curves
gradually tend to coincide with each other.

Fig. 6 shows the frequency-response curves in absence or
in presence of the upper rivulet, for s = 0.00375 and ξs =
0.1%. If excitation frequency ratio kb is applied as a control

FIGURE 6. Frequency-response curves in absence or in presence of the
upper rivulet when s = 0.00375 and ξs = 0.1%.

parameter, there will have two curves of super-critical and
sub-critical pitchfork bifurcations. In presence of the upper
rivulet, the super-critical pitchfork bifurcation will occur at
kb = 1.988, whereas the sub-critical pitchfork bifurcation
will occur at kb = 2.012. For kb < 1.988, there only has sta-
ble trivial solution available. For 1.988 < kb < 2.012, there
is a stable non-trivial branch. For kb > 2.012, two curves
of a stable super-critical parabolic branch and an unstable
sub-critical parabolic branch, both of them are occur. For the
subs-critical pitchfork point (kb = 2.012), there is a critical
point p that separates the branch as two zones. The lower zone
has large vibration response of the single conductor under
sub-critical resonance with small perturbations, which is very
dangerous to the single conductor for reason that it is easier
to occur. The upper zone is the excessive vibration response
of the single conductor under sub-critical resonance when
the perturbations is higher or equal to response amplitude.
The largest vibration would be happened during the single
conductor is under coupling effects of the suspended insulator
swing and other excitation, such as rain-wind aerodynamic
forces.

By comparison of these curves, it can be found that upper
rivulet enlarged space between the super-critical pitchfork
bifurcation point and the sub-critical pitchfork bifurcation
point. The response amplitude of the single conductor in
presence of the upper rivulet is larger than that of the sin-
gle conductor in absence of the upper rivulet. For example,
when kb = 2, the response amplitudes are 0.122(With upper
rivulet) and 0.058(Without upper rivulet), respectively. This
difference can be related to the effects of the upper rivulet on
damping coupling and other terms in the governing equation.

Fig. 7 shows the time-domain dynamic response and phase
plot of the single conductor with or without upper rivulet,
for s = 0.001, ξs = 0.1%, σ = 0.01 and θ0 = 450,
calculated with Eq. (19) and (31) by a given displacement.
It can be found that for a given displacement, the amplitude
of the single conductor is decrease to a certain level when
the angle θ reaches to critical angle of 520. Thus, ξa and ξ
will change alternately from positive to negative value rather
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FIGURE 7. Time evolution of the amplitude (a) and phase plot (b) in
absence or in presence of upper rivulet, s = 0.001, ξs = 0.1% and
σ = 0.01.

FIGURE 8. Frequency-Response curves of q in presence of the upper
rivulet.

than keep constant. Accordingly, the motion of the single
conductor with upper rivulet becomes almost periodic. The
peak amplitude of the single conductor with upper rivulet in
this case is higher than that of the single conductor without
upper rivulet.

As shown in Fig. 8, frequency-Response curves of q in
presence of the upper rivulet, for s = 0.00375 and ξs = 0.1%.
By comparison of this curves, it can be found that both of
the stable and unstable response amplitudes of conductor
computed by Multiple scales and Eq. (8) are very similar,
which indicated theMultiple scales here can be used to reflect
the nonlinear response of the conductor.

V. CONCLUSION
Analytical model for describing the nonlinear vibration of
overhead power transmission conductor has proposed in this
study. The effect of the upper rivulet position and the sus-
pended insulator motion were applied in the model and be
discussed. Some conclusions drawn as follows.

(1) Suspended insulators swing modified variation zone of
the total damping ratio, which makes negative value easier to
occur.

(2) Onset of sub-harmonic resonance in presence of the
upper rivulet is relatively larger compared to that of sole
suspended insulator swing. As the excitation amplitude
increases, the effect of the upper rivulet on the amplitude
gradually decreased and two excitation-response curves grad-
ually tend to coincide with each other.

(3) Due to the upper rivulet, the space zone between
super-critical and sub-critical pitchfork bifurcation points of
the single conductor is extended. The response amplitude of
the single conductor with upper rivulet is larger than that
of the single conductor without upper rivulet.

(4) By a given an initial displacement, the amplitude of
the single conductor is decrease to a certain level of which
the aerodynamic damping ratio and the total damping ratio
change alternately from positive to negative. themotion of the
single conductor with upper rivulet becomes almost periodic
and reduce slowly.
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