
Received April 3, 2021, accepted April 16, 2021, date of publication April 23, 2021, date of current version May 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3075340

A Cloud Secure Storage Mechanism Based on
Data Dispersion and Encryption
HEQING SONG , JIFEI LI , AND HAOTENG LI
Hangzhou College of Commerce, Zhejiang Gongshang University, Hangzhou 311599, China

Corresponding author: Jifei Li (shq@zjhzcc.edu.cn)

ABSTRACT Cloud storage service has shown its great power and wide popularity which provides funda-
mental support for rapid development of cloud computing. However, due to management negligence and
malicious attack, there still lie enormous security incidents that lead to quantities of sensitive data leakage
at cloud storage layer. From the perspective of protecting cloud data confidentiality, this paper proposed a
Cloud Secure Storage Mechanism named CSSM. To avoid data breach at the storage layer, CSSM integrated
data dispersion and distributed storage to realize encrypted, chucked and distributed storage. In addition,
CSSM adopted a hierarchical management approach and combined user password with secret sharing to
prevent cryptographic materials leakage. The experimental results indicate that proposed mechanism is not
only suitable for ensuring the data security at storage layer from leakage, but also can store huge amount of
cloud data effectively without imposing too much time overhead. For example, when users upload/download
5G sized file with CSSM, it only takes 646seconds/269seconds, which is acceptable for users.

INDEX TERMS Cloud computing, data dispersion, data encryption, key management, storage security.

I. INTRODUCTION
Cloud computing has shown remarkable development in
recent decades. When the storage as a service, it occupies
the center stage and backbone for many applications, such
as pattern recognition [1], image forensic [2] and forgery
detection [3]. As a result, larger volumes of data will be a
part of the cloud area. In the cloud industry, Amazon Web
Service (AWS) has become the de facto standard. As the
core component of the OpenStack that follows this standard,
Swift has become one of the most popular cloud storage
mechanism [4], [5].

However, Openstack Swift mechanism still faces many
real security threats [6]–[8] while providing convenient ser-
vices. According to Cloud Security Alliance’s top threat case
analysis report [9] released in 2018, two thirds of the cases
will cause user data leakage, mainly due to management
negligence and malicious attacks. For instance, under default
configuration, OpenStack Swift mechanism typically stores
data in plaintext for the sake of performance. That will lead
unauthorized access to user data at storage layer. In addition,
Security Report [10] released by Openstack Vulnerability
Management Team VMT, the Swift mechanism may leak

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Anwar Hossain .

user data or configuration information in virtue of security
vulnerabilities [11], [12].

Shah et al. [13] proposed a cloud-oriented data secu-
rity storage mechanism under the framework of Apache
Spark, which prevents data leakage and improves the security
of Apache Spark framework. To protect user data on the
cloud, different encryption schemes [14]–[17] have been
adopted to avoid information leakage during machine learn-
ing process. Nevertheless, above researches require secure
key management mechanisms to prevent cryptographic mate-
rials exposure [18], [19].

Zerfos et al. [20] constructed a secure distributed storage
system based on Hadoop system, which keep the confiden-
tiality of cloud data through data dispersion and encryption.
It performs the data decryption and assembly tasks before
reading data. To prevent the keys from being stolen, this
method requires key cache server and all keys should be
stored in memory only. Some approaches [21], [22] intro-
duced independent third party to manage the key. It is
assumed that third parties stay trusted. However, the assump-
tion cloud not always exists in the real cloud storage
environments [23].

Wang et al. [24] presented a data privacy preserving
scheme for sensor-cloud system, based on edge computing
and differential storage method. In this scheme, user data

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 63745

https://orcid.org/0000-0002-3558-7521
https://orcid.org/0000-0002-6818-6249
https://orcid.org/0000-0001-5320-6668
https://orcid.org/0000-0002-7673-8410

H. Song et al.: CSSM Based on Data Dispersion and Encryption

would be divided into different parts and stored in local, edge
and cloud layer respectively. But the scheme relies on the
characteristics of data from wireless sensor networks, and
requires skilled users to manage the edge servers. To improve
the efficiency and decrease the redundancy, Zheng et al. [25]
provided a cloud data deduplication scheme to detect and
remove identical user data in the cloud. However, from the
perspective of preventing data loss due to disaster, a certain
number of copies should be sent to multiple regions.

In a word, to protect cloud data from leakage at stor-
age layer, this paper presents CSSM, a Cloud Secure Stor-
age Mechanism. CSSM combines data dispersion with data
encryption, so that large-scale cloud data and keys would be
stored in chunked cipher texts. On this basis, user password
and secret sharing are introduced to further protect keys
security. We implemented CSSM based on OpenStack Swift
mechanism and made several tests.

The major contributions of this work are listed below:
1) Data Secure Storage: In order to prevent data leakage

and increase the difficulty of attack, this paper presents a
method combining data distribution and data encryption to
improve data storage security.

2) Hierarchical Key Management: To protect the key and
prevent the attacker from using the key to recover the data,
this paper introduces secret sharing and key hierarchy deriva-
tion algorithm in combination with user password to enhance
key security.

3) Experimental Evaluation and Analysis: The security
analysis and experimental results show that CSSM can effec-
tively guarantee the security of data storage, and the increased
performance cost is acceptable to users

Remainder of the paper is organized as follows:
A brief overview of CSSM mechanism is made in
Section 2. Section 3 explains the proposed mechanism, and
Section 4 introduces the implementation of CSSM. The
experimental evaluations have been shown in Section 5.
We discussed several variants and extensions of CSSM in
Section 6. Finally, Section 7 concludes our work.

II. CSSM OVERVIEW
A. REQUIREMENTS ANALYSIS
The main objective of the proposed mechanism is to secure
cloud storage against data breach, which may be the result of
targeted attack (e.g. disk cloning) or management negligence
(e.g. misconfiguration), in case hackers even some malicious
administrator is able to steal user data.

Aiming at this goal, data dispersion or encryption is the
most commonly adopted way in numerous cases. Both tech-
niques could provide privacy-preserving, but they also come
with inherent risks. Data dispersion spreads data pieces across
different storage areas, but there still lies an opportunity
to recover data when attackers obtain enough pieces. Data
encryption technology stores data in cipher texts by encrypt-
ing data with cryptographic keys. However, attackers can still
recover the original data by stealing the keys. That raises
the problem of key protection and management. Therefore,

to maximize the confidentiality of cloud data storage, the pro-
posed mechanism should make full use of the advantages of
the method and effectively control its disadvantages. Mean-
while, the increased cost of the mechanism should be within
a reasonable range.

Specifically, following properties should be met:
Property 1: From the perspective of protecting cloud data

confidentiality, any user data stored in the cloud would not be
released, viewed, stolen or used by unauthorized individual,
such as hackers or some malicious administrator.

Property 2: On the basis of property 1, any parameters
like cryptographic keys, which related to keep cloud data
confidential, should also be protected.

Property 3: The additional performance overhead of
deploying proposed mechanism should be within the user’s
acceptance.

B. ARCHITECTURE OVERVIEW
To realize primary object and properties above, this paper
presents CSSM, a cloud secure storagemechanism. As shown
in Figure 1, CSSM could be divided into three layers: The
user layer, the proxy layer, and the storage layer. Specifically,
the main functions of each layer are as follows:

1) User Layer: This layer is deployed on the user’s
machine, and the user operates (upload, download, etc.) cloud
data through the client.

2) Proxy Layer: This layer is deployed in the cloud and
composed of proxy nodes with trusted execution environ-
ments, such as Intel SGX technology [26] and ARM Trust-
Zone technology [27]. In trusted execution environment,
CSSM programs could perform as expected. CSSM in proxy
layer includes four modules: data encryption/decryption, data
dispersal, key management and distributed storage.

¬ Encryption/Decryption: This module is used to encrypt
user uploaded data and decrypt user downloaded data.

 Data Dispersal: According to the data dispersal model,
the cipher texts is divided into several small blocks.

®Key Management: This module is not only responsible
for the generation and maintenance of the key, but also uses
the hierarchical key management approach to protect the key.

¯Distributed storage: This module distributes chunked
and encrypted data to storage layer.

3)Storage Layer:This layer consists of a number of storage
nodes that are used to store chunked and encrypted data.
Considering data loss or unavailability caused by accident
like equipment damage or natural disasters, cloud service
providers divide large number of storage nodes into several
zones, each of which acts as a failure boundary between
multiple copies of the same data.

III. CSSM DESCRIPTION
From the perspective of improving the confidentiality of user
data in the cloud, this paper presents CSSM, a cloud secure
mechanism to ensure data security and avoid data breach. The
core idea of CSSM mechanism is to increase the difficulty of
stealing data. To this end, CSSM process data before stored
to cloud storage nodes through two aspects of work.

63746 VOLUME 9, 2021

H. Song et al.: CSSM Based on Data Dispersion and Encryption

FIGURE 1. CSSM system model architecture.

First, CSSM uses data dispersion to divide uploaded file
into several parts, and each part is called fragment. When
users upload files into cloud, files will be divided and stored
as fragments into different storage nodes. Compared with
undivided way, our mechanism would contribute to protect
data, leading it difficult for attackers to obtain complete data.

On the other hand, although user files are stored in frag-
ments, it is still possible for attackers to recover the fragments
to complete user files according to the logical relationship
between the contents. Therefore, our mechanism introduces
data encryption. The introduction of data encryption technol-
ogy is helpful for fragmentation cipher-text storage, and it
further increases the difficulty for attackers to steal data.

A. DATA DISPERSION
In order to prevent attackers from stealing complete user data,
CSSM first uses data dispersion technology to split data into
fragments, and then distribute the fragments to different stor-
age nodes. Due to the uncertainty of the location where data
stored, attackers could hardly locate all fragments and recover
user files. To further reduce system overhead, CSSM selected
DDS——Stripping(1,n,n) [28] as the dispersal model.

However, cloud storage mechanism still needs to restore
each fragment when the user downloads files. And CSSM
needs to keep the record of the composition relationship
between user file and fragment. By stealing the record, attack-
ers have the opportunity to obtain the complete user file.
In addition, the code stored in the proxy nodes may be
viewed or tampered by malicious entities, and the sensitive
information in CSSM may be maliciously spied or stolen
during the operation of the system.

In response to the above security threats, we believe those
can be dealt with by trusted computing technology (such as
trusted execution environment and remote attestation tech-
nology). The problems that trusted execution environment
addresses can be twofold. One is to prevent the code of
the proxy service node from being tampered, which usu-
ally adopts integrity measurement and remote attestation
technology to determine whether the code should be trusted.

FIGURE 2. CSSM system mechanism.

On the other hand, trusted execution environment could
ensure that CSSM code runs without interference.We assume
CSSM is implemented in trusted execution environment on
proxy nodes. Detection mechanism and monitoring mecha-
nism are needed to prevent code tampering and ensure the
trusted execution of programs in case of malicious behavior.
Nowadays there are many achievements that can be used
for reference [29], [30]. CSSM mechanism is based on the
research of trusted computing.

B. DATA ENCRYPTION
Encryption is the most common way to secure user data.
In order to reduce time overhead, 128 bit AES symmetric
encryption algorithm is selected to implement the encryp-
tion and decryption for user data. Key generator should be
required in the proxy layer to generate the symmetric key for
encryption and decryption.

Due to the introduction of data encryption, it brings the
necessity and importance of key management. As shown
in Figure 2, we put forward the key hierarchical management
method to protect various keys. In cloud storage system, user
data is usually regarded as an object and stored in some

VOLUME 9, 2021 63747

H. Song et al.: CSSM Based on Data Dispersion and Encryption

FIGURE 3. CSSM system implementation architecture.

specified container. In CSSM, each object and container
would be assigned a symmetric key, respectively called object
key and container key. Object key would be used for encrypt-
ing assigned object. That is to say, the confidential issue of
objects will be turned to the same number of object keys.

Besides, we design an object key box for each container,
in which the object keys of all object in the container are
stored. Then, all the object keys in the object key box are
encrypted by their container key and stored in the cloud. Sim-
ilarly, the confidential issue of object keys will be changed to
fewer number of container keys.

In order to guarantee the security of the container key,
all the container keys of a user are integrated to form a
container key box. And secret sharing algorithm [31] is used
to divide container key box into n-block secret sharing blocks
whose threshold value is (m, n). To locate these secret sharing
blocks, we use the hierarchical key derivation algorithm [32]
to establish the index tree whose root node is user_key set by
the user. Because the user_key is considered to be a secret
only known to the user, it is difficult for attackers to obtain
the container key without the user_key, thus ensuring the
confidentiality of the container key. In addition, we regard
the problem of updating the index tree caused by the change
of user_key as a problem to be solved in the future.

As shown in Figure 2, CSSM adopts the ‘‘dispersion
and encryption’’ strategy for all objects: 1) each object is
encrypted to cipher-text first, and then divided into several
cipher-text fragments that would be stored in the cloud sepa-
rately; 2) the object key box consisting of a number of object
keys is encrypted by the container key and stored in the cloud;
3) by secret sharing and hierarchical key derivation algorithm,
secret sharing blocks are generated and stored in the cloud.

IV. PROTOTYPE IMPLEMENTATION
We implemented CSSM prototype based on OpenStack Swift
mechanism. The implementation architecture of CSSM is
shown in Figure 3. Swift mechanism follows Client/Server

TABLE 1. Prototype system experimental environment.

architecture. The Swift client consists of a swiftclient pro-
gram. We modify the swiftclient program to provide the user
interface (CSSM-API) for CSSM.

In addition, the Swift Server Program provides the core
storage service, which is implemented in the WSGI applica-
tion. Considering the design principles of CSSM, we imple-
ment data dispersal, key generator and key manager in the
WSGI application on Swift proxy node.

When user data needs to be stored, user initiates a storage
request containing user_key through the CSSM-API inter-
face. The proxy node’s key generator is responsible for gener-
ating the secret keys upon receipt of the request. The output of
the key and encryption operations includes: 1) key manager
encrypts these generated keys; 2) data dispersal module splits
encrypted data.

When user data needs to be downloaded, user initiates a
download request containing the user password through the
CSSM-API interface. The key generator on proxy node per-
forms the following operations: 1) recover the container key
box by using a keyword hierarchy derivation algorithm and
user_key; 2) read specific container keys from the container
key box; 3) decrypt and read specific object keys from the
container key box; 4) perform decryption operations based
on the object key, and return the needed data.

V. EXPERIMENTAL ANALYSIS AND EVALUATION
A. EXPERIMENTAL ENVIRONMENT
CSSM prototype consists of five servers, one as the proxy
service node and the other four as the storage service node.
Each storage server holds two hard disks, one for the system
and one for the data. The specific experimental environment
is shown in Table 1.

B. SECURITY ANALYSIS
CSSM enhances the security function of proxy layer, includ-
ing object encryption and dispersion, key generation and
management and so on. We created a container called
‘‘encon’’ for storing encrypted data, tested file called ‘‘ftxt’’
and ‘‘ukey’’ as our user password. The operation steps are as
follows:
∼# cat ftxt
I write this file to do a test.
I want to read the file from the storage device directly.
Can I success?
. ..
∼#swift –V3 post encon –u ukey

63748 VOLUME 9, 2021

H. Song et al.: CSSM Based on Data Dispersion and Encryption

FIGURE 4. CSSM ciphertext storage.

∼#swift –V3 upload encon ftxt –u ukey
∼#swift –V3 download encon ftxt –u ukey
As shown in figure 4, file ‘‘ftxt’’ has been divided into 10

blocks, and each block is stored in ciphertext form. In addi-
tion, the object key box is also stored in cipher text.

As for the container key box, it is processed by the secret
sharing algorithm and stored in the cloud in several ‘‘coding
blocks’’. Therefore, in order to guarantee the security of user
data, it is necessary to prove that the secret sharing algorithm
can guarantee the security of these ‘‘encoded blocks’’.

The secret sharing algorithm adopts the threshold value
[m, n], that is, data D is encoded and converted into n blocks
of data, and data D can be recovered at least throughm blocks,
while any data less than m blocks cannot obtain any part of
the metadata information. The proof is given as follows.

1) DISTRIBUTION OF SECRET SHARES
The finite field GF(q) is used to select n different non-zero
elements in the finite field (q is prime, q > n). Note that
each element is denoted xi as xixi (xi is public). The elements
a1,a2,. . . ,am−1 are generated randomly to form polynomial
f (x) = a0 + a1x+ . . .+am−1xm−1 . For the original data D,
let D =a0 and calculate for xi(1 < i < x i):

f (x) = a0 +
∑m−1

j=1
ajx

j
mod q

The calculated result f (xi) is the ‘‘encoded block’’
(1 < i < n).

2) KEY RECOVERY
The recovery process of the original data needs to know at
least m blocks of data f (xi) in n blocks through calculating
the following equations(1 < i < m):

f (x1) = a0 + a1x1 + . . .+ am−1x
m−1
1

f (x2) = a0 + a1x2 + . . .+ am−1x
m−1
2

. . .

f (xm) = a0 + a1xm + . . .+ am−1xm−1m

These equations are converted to following matrix:
1
1
x1
x2

x21
x22

. . .

. . .

xm−11
xm−12

.

1 xm x2m · · · xm−1m

a0
a1
. . .

am−1

 =

f (x1)
f (x2)
. . .

f (xm)

letA =

1
1
x1
x2

x21
x22

. . .

. . .

xm−11
xm−12

.

1 xm x2m · · · xm−1m

Since A is Vandermonde Matrix, A is invertible and the
unique solution could be found in above equations. In other
words, we can find the a0,a1,. . . ,am−1, so as to obtain the
original data D. But if the number of blocks in f (xi) is
less than m, there’s an infinite number of solutions to (m-1)
equations with m unknowns. Therefore, the original data D
could not be obtained.

Hence, when the attacker cannot get the m block ‘‘encoded
block’’, the secret sharing algorithm with the threshold value
[m,n] can guarantee the security of the container key box. And
because of data dispersion in the cloud, the attacker could
hardly get m block ‘‘encoded block’’.

C. PERFORMANCE ANALYSIS AND EVALUATION
We analyzed and evaluated the performance of CSSMmainly
from three aspects: time complexities, space complexities and
performance result.

1) TIME COMPLEXITIES ANALYSIS
CSSM uses 128-bit AES encryption, so the time cost of
encryption is proportional to the size of the encrypted file.
And it encrypts a file of size N in O(N). The keys are stored
as object key boxes, each of which is 16 bytes in size. The
size of the object key box is proportional to the number of
user files in the container. Compared with the size of the user
file, the time cost of encryption and decryption of the object
key box is very small and can be basically ignored.

As for the index of keys, CSSM adopts keyword hierarchy
derivation algorithm and user_key set by user. In this way, a
p-layer full binary tree is generated. The number of leaf nodes
of the tree is n =2p−1, and the total number of nodes is 2n-1.
In the implementation, we choose n = 16, so the time cost is
small and can be ignored.

2) SPACE COMPLEXITIES ANALYSIS
As result of adopting AES algorithm, the encrypted data is
basically the same size as the original data. In terms of keys,
each key length is 16 bytes. The storage space of the object
key is proportional to the number of user files, and the storage
space of the container key is proportional to the number of
containers. Relative to the size of user files, all the storage
overhead is not large.

3) PERFORMANCE RESULTS
In order to evaluate the performance of CSSM, we compare
the time overhead with and without using CSSM in upload
and download operations based on Swift system.

In general, normal file sizes range from 32KB to 5GB.
Considering the randomness of the time to complete each

VOLUME 9, 2021 63749

H. Song et al.: CSSM Based on Data Dispersion and Encryption

FIGURE 5. File upload time cost comparison.

FIGURE 6. File download time cost comparison.

operation, we do 10 experiments on the same data file upload
and download respectively, and the time consumed is average.

As shown in figure 5 and figure 6, additional time over-
head spent on upload and download operations are illustrated
respectively. By analyzing the experimental results, we can
draw the following conclusions.

4) THE IMPACT OF CSSM ON SYSTEM OVERHEAD
According to the experimental results, the time overhead of
uploading and downloading files with CSSM increases as
the file size increases. By contrast, download operations add
more runtime overhead than upload operations. For example,
for files of 5G size, compared with the increased running time
before and after the security enhancement, the file download
operation increased by 85 seconds and the file upload opera-
tion increased by 78 seconds.

The main reason is that when uploading files, the system
uses multi-node concurrent operation in the data encryp-
tion and dispersion procedure. When downloading a file,
the system needs to locate the location of each cipher-text
fragment, and then recover from the fragments, which is a
serial operation.

5) THE FUNCTIONAL FEATURES OF CSSM
The experimental data show that the time cost of uploading
and downloading files increases with the increase of file

size, but the growth rate gradually slows down. For the time
cost required by files of different sizes, CSSM has a better
experimental effect for large files and its increase range is low.
Therefore, the enhanced security features are more suitable
for large files.

The experimental results show that CSSM can not only
guarantee the confidential storage of data, so as to prevent the
leakage of cloud data. And in terms of performance overhead,
the increased time overhead is acceptable to the user.

VI. DISCUSSION
In this section we discuss several variants and extensions of
CSSM which go beyond the scope. From the perspective of
improving storage security, a secure mechanism based on
proxy layer is proposed. In our design, the proxy layer can
be integrated into the cloud storage system or it can work
as a separate entity. For the sake of quick validation reason,
we have used a single proxy server to represent the proxy
layer in our implementation. In the experiment, the proxy
server we used was equipped with gigabit network card,
8-core CPU (model Xeon E5-2620 V3 2.4GHz or above),
32GB RAM, SAS-300GB hard disk, and 64-bit Ubuntu
14.04 LTS operating system. For the proxy server require-
ments, the general server can meet the requirements.

In terms of availability, improvements can be made in
the following areas. The current system implementation
of CSSM is based on a single proxy node, which cannot
avoid the problem of single point of failure. If the proxy
server crashes, the system will stop running and CSSM
will be unavailable. To solve this problem, dual-server hot-
backup or cluster approaches are common solutions we
could adopt in the future work. When some servers fail,
the proposed mechanism can still run automatically without
interference. For clusters, the main overhead comes from the
cluster construction phase, such as installing service cluster
software, adding common data storage devices, and so on.
The cluster approach will increase the data synchronization
and backup between multiple servers, which in turn improve
the availability and efficiency of the cloud storage system.
The proxy layer is designed to enhance the security of cloud
storage, so it covers a number of data security technolo-
gies such as data encryption and dispersion. As for data
replication to improve availability, it could be deployed in
either proxy layer or cloud storage system. If cloud storage
service provider goes for data replication, the cloud system
will not only bear data storage overhead, but also consume
data replication, network communication overhead. However,
for the purpose of not interfering with cloud storage system,
almost all data security technologies are implemented in the
proxy layer.

VII. CONCLUSION
For the issue of cloud data leakage caused by management
negligence and malicious attack at storage layer, we proposed
CSSM, a cloud secure storage mechanism. CSSM adopted
a combined approach of data dispersal and encryption

63750 VOLUME 9, 2021

H. Song et al.: CSSM Based on Data Dispersion and Encryption

technologies, which can improve the data security and pre-
vent attackers from stealing user data. The experimental
results show that CSSM can effectively prevent user data
leakage at cloud storage layer. In terms of performance, the
increased time overhead of CSSM is acceptable to users.

This paper provides a feasible approach to solve the stor-
age security problem, especially prevention from user data
leakage at cloud storage layer. CSSM could also effectively
protect cryptographic materials from storage perspective.

REFERENCES
[1] A. Bhardwaj, F. Al-Turjman, M. Kumar, T. Stephan, and L. Mostarda,

‘‘Capturing-the-invisible (CTI): Behavior-based attacks recognition
in IoT-oriented industrial control systems,’’ IEEE Access, vol. 8,
pp. 104956–104966, 2020.

[2] M. Kumar, A. Rani, and S. Srivastava, ‘‘Image forensics based on
lighting estimation,’’ Int. J. Image Graph., vol. 19, no. 3, Jul. 2019,
Art. no. 1950014.

[3] M. Kumar, S. Srivastava, and N. Uddin, ‘‘Image forensic based on light-
ing estimation,’’ Austral. J. Forensic Sci., vol. 51, no. 3, pp. 243–250,
Aug. 2017.

[4] J. Li, Y. Zhang, X. Chen, and Y. Xiang, ‘‘Secure attribute-based data
sharing for resource-limited users in cloud computing,’’ Comput. Secur.,
vol. 72, pp. 1–12, Jan. 2018.

[5] Y. Zhang, X. Chen, J. Li, D. S. Wong, H. Li, and I. You, ‘‘Ensuring
attribute privacy protection and fast decryption for outsourced data security
in mobile cloud computing,’’ Inf. Sci., vol. 379, pp. 42–61, Feb. 2017.

[6] The OpenStack Project. OSSA-2015-006: Unauthorized Delete of Ver-
sioned Swift Object. Accessed: Apr. 14, 2015. [Online]. Available:
https://security.openstack.org/ossa/OSSA-2015-006.html

[7] The OpenStack Project. OSSA-2015-016: Information Leak Via Swift
Tempurls. Accessed: Aug. 26, 2015. [Online]. Available: https://security.
openstack.org/ossa/OSSA-2015-016.html

[8] The OpenStack Project. Possible Glance Image Exposure Via
Swift. Accessed: Feb. 23, 2015. [Online]. Available: https://wiki.
openstack.org/wiki/OSSN/OSSN-0025

[9] Cloud Security Alliance. Top Threats to Cloud Computing: Deep
Dive. Accessed: Aug. 8, 2018. [Online]. Available: https://downloads.
cloudsecurityalliance.org/assets/research/top-threats/top-threats-to-cloud-
computing-deep-dive.pdf

[10] The OpenStack Project. OpenStack Security Advisories. Accessed:
Feb. 2, 2015. [Online]. Available: https://security.openstack.org/ossalist.
html

[11] Common Vulnerabilities and Exposures. CVE-2015-5223. Accessed:
Jul. 1, 2015. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2015-5223

[12] Common Vulnerabilities and Exposures. CVE-2016-9590. Accessed:
Nov. 23, 2016. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2016-9590

[13] S. Y. Shah, B. Paulovicks, and P. Zerfos, ‘‘Data-at-rest security for spark,’’
in Proc. IEEE Int. Conf. Big Data (Big Data), Washington DC, USA,
Dec. 2016, pp. 1464–1473.

[14] Z. Liu, Y. Huang, J. Li, X. Cheng, and C. Shen, ‘‘DivORAM: Towards
a practical oblivious RAM with variable block size,’’ Inf. Sci., vol. 447,
pp. 1–11, Jun. 2018.

[15] X. Zhang, X. Chen, J. Wang, Z. Zhan, and J. Li, ‘‘Verifiable privacy-
preserving single-layer perceptron training scheme in cloud computing,’’
Soft Comput., vol. 22, no. 23, pp. 7719–7732, Dec. 2018.

[16] C.-Z. Gao, Q. Cheng, P. He,W. Susilo, and J. Li, ‘‘Privacy-preserving naive
bayes classifiers secure against the substitution-then-comparison attack,’’
Inf. Sci., vol. 444, pp. 72–88, May 2018.

[17] P. Li, T. Li, H. Ye, J. Li, X. Chen, and Y. Xiang, ‘‘Privacy-preserving
machine learning with multiple data providers,’’ Future Gener. Comput.
Syst., vol. 87, pp. 341–350, Oct. 2018.

[18] B. AlBelooshi, E. Damiani, K. Salah, and T. Martin, ‘‘Securing crypto-
graphic keys in the cloud: A survey,’’ IEEE Cloud Comput., vol. 3, no. 4,
pp. 42–56, Jul. 2016.

[19] B. AlBelooshi, K. Salah, T. Martin, and E. Damiani, ‘‘Securing crypto-
graphic keys in the IaaS cloud model,’’ in Proc. IEEE/ACM 8th Int. Conf.
Utility Cloud Comput. (UCC), Limassol, Cyprus, Dec. 2015, pp. 397–401.

[20] P. Zerfos, H. Yeo, B. D. Paulovicks, and V. Sheinin, ‘‘SDFS: Secure
distributed file system for data-at-rest security for Hadoop-as-a-service,’’
in Proc. IEEE Int. Conf. Big Data, Santa Clara, CA, USA, Oct. 2015,
pp. 1262–1271.

[21] J. Zhou, H. Duan, K. Liang, Q. Yan, F. Chen, F. R. Yu, J. Wu, and J. Chen,
‘‘Securing outsourced data in the multi-authority cloud with fine-grained
access control and efficient attribute revocation,’’Comput. J., vol. 60, no. 8,
pp. 1210–1222, Feb. 2017.

[22] J. Shao, R. Lu, and X. Lin, ‘‘Fine-grained data sharing in cloud computing
for mobile devices,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Hong Kong, Apr. 2015, pp. 2677–2685.

[23] S. Han, K. Han, and S. Zhang, ‘‘A data sharing protocol to minimize
security and privacy risks of cloud storage in big data era,’’ IEEE Access,
vol. 7, pp. 60290–60298, 2019.

[24] T.Wang, Y.Mei, W. Jia, X. Zheng, G.Wang, andM. Xie, ‘‘Edge-based dif-
ferential privacy computing for sensor–cloud systems,’’ J. Parallel Distrib.
Comput., vol. 136, pp. 75–85, Feb. 2020.

[25] X. Zheng, Y. Zhou, Y. Ye, and F. Li, ‘‘A cloud data deduplication scheme
based on certificateless proxy re-encryption,’’ J. Syst. Archit., vol. 102,
Jan. 2020, Art. no. 101666.

[26] M. Schunter, ‘‘Intel software guard extensions: Introduction and open
research challenges,’’ in Proc. ACM Workshop Softw. Protection, Vienna,
Austria, Oct. 2016, p. 1.

[27] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, ‘‘VTZ: Virtualizing
ARM trustZone,’’ in Proc. 26th USENIX Secur. Symp., Vancouver, BC,
Canada, Aug. 2017, pp. 541–556.

[28] M. O. Rabin, ‘‘Efficient dispersal of information for security, load balanc-
ing, and fault tolerance,’’ J. ACM, vol. 36, no. 2, pp. 335–348, Apr. 1989.

[29] L. S. Jie and H. Y. Ping, ‘‘A privacy-preserving integrity measurement
architecture,’’ in Proc. 3rd Int. Symp. Electron. Commerce Secur., Beijing,
China, Jul. 2010, pp. 487–500.

[30] T. Zhang and R. B. Lee, ‘‘CloudMonatt: An architecture for security
health monitoring and attestation of virtual machines in cloud computing,’’
in Proc. 42nd Annu. Int. Symp. Comput. Archit., Portland, OR, USA,
Jun. 2015, pp. 362–374.

[31] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[32] W. Wang, Z. Li, R. Owens, and B. K. Bhargava, ‘‘Secure and efficient
access to outsourced data,’’ in Proc. 1st ACM Cloud Comput. Secur.
Workshop, vol. 2009, Chicago, IL, USA, Nov. 2009, pp. 55–66.

HEQING SONG received the B.S. degree from the
School of Information and Electronic Engineer-
ing, Zhejiang Gongshang University, Hangzhou,
China, and the master’s degree from the Uni-
versity of Quebec, Canada. He is currently an
Associate Professor with the Hangzhou College of
Commerce, Zhejiang Gongshang University. His
research interests include operating systems, sys-
tem security, trusted computing, and database.

JIFEI LI received the B.S. degree from the
College of Electrical and Information Engineer-
ing, Hunan University, Changsha, China, and the
master’s degree from Hunan University. He is
currently a Lecturer with the Hangzhou College
of Commerce, Zhejiang Gongshang University,
Hangzhou, China. His research interests include
video compression and artificial intelligence in
game design.

HAOTENG LI received the B.S. degree from the
School of Mathematical Science, Qufu Normal
University, Qufu, China, and the master’s degree
from the College of Mathematics and Information
Engineering, Zhejiang Normal University, China.
He is currently a Lecturer with the Hangzhou
College of Commerce, Zhejiang Gongshang Uni-
versity, Hangzhou, China. His research inter-
ests include natural language processing, artificial
intelligence, and software engineering technology.

VOLUME 9, 2021 63751

