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ABSTRACT Automation diagnosis of parathyroid nodules is of crucial importance to recognize parathyroid
nodules in ultrasound images. Aiming at the different nodule shapes of diverse patients, blurred boundaries,
complex backgrounds and inhomogeneous intensity of ultrasound images, we propose a novel hybrid level
set model to accurately segment nodules. The adaptive global term weight is determined based on the image
local entropy of the region around the evolution contour and two scales are proposed for the local term to drive
the evolution contour fast approaching to the boundary in order to avoid large amount of calculation and over-
segmentation. We also propose membrane features and relative position features based on prior pathological
knowledge to describe the inherent characteristics of parathyroid nodules different from thyroid and other
nodules. We fused prior pathological knowledge features, morphology features and texture features of the
segmented nodules to recognize parathyroid nodules by the support vector data description(SVDD). The
experiment result indicates that the incorporation of the proposed hybrid level set segmentation method
and the fused prior pathological knowledge features, morphology features and texture features improve
the recognition accuracy and efficiency of parathyroid nodules, which is much higher than that only with
morphology and texture features.

INDEX TERMS Parathyroid nodules, ultrasound images, hybrid level set, prior pathological knowledge,
image local entropy, SVDD.

I. INTRODUCTION
Metabolism dysregulation of calcium and phosphorus is a
common complication for chronic kidney disease (CKD)
patients, which easily leads to secondary hyperparathy-
roidism (SHPT) [1] and seriously affects the life quality of
patients. Therefore, it’s necessary to remove the hyperplastic
parathyroid nodules as early as possible [2].

Ultrasound-guided thermal ablation is gradually adopted
to treat parathyroid nodules [3] with its advantages of precise
positioning, minimally invasion and staged surgery. How-
ever, parathyroid nodules in ultrasound images have complex
backgrounds accompanying around tissues and organs such
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as thyroids, tracheas and vessels. These tissues in ultrasound
images are inhomogeneous and have no clear boundaries
from other tissues. Furthermore, the locations, shapes and
sizes of parathyroid nodules are diverse depending on dif-
ferent patients. Only the experienced experts can diagnose
parathyroid nodules from thyroid nodules and lymph nodules
accurately.

Currently deep learning is widely used to recognize
objects. However the noises in ultrasound images are seri-
ous and the boundaries between different tissues are blurry,
so the extracted object features by the network are not obvi-
ous from other tissues and the tissue recognition accuracy
is not satisfied. Although some networks [4], [5] are used
to improve the image quality, the recognition accuracy is
also not satisfied for the ultrasound images with complex
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backgrounds. Further it is difficult to get large parathyroid
ultrasound images marked by the experienced experts. There-
fore, automatic recognition of parathyroid nodules in ultra-
sound images based on machine learning is a better solution.
This method mainly includes three steps: suspected parathy-
roid nodules segmentation, features extraction and parathy-
roid nodules recognition.

Traditional segmentation methods such as threshold meth-
ods and regional growth algorithms exhibit excellent effects
to objects with high contrast and homogeneous intensity.
However it is unsatisfied to parathyroid nodules segmen-
tation in ultrasound images because of the heavy noises,
blurry boundaries and complex backgrounds. At present,
researchers have tried to apply fuzzy theory [6], neural net-
work [7] and active contour model [8] to segment objects
with inhomogeneous intensity and complex backgrounds in
images. The level set method as one of the active contour
models embeds two dimensional contours into the higher
dimensional surfaces and transfers the segmentation prob-
lem to the solving of partial differential equations. These
characteristics make the level set method suitable to segment
parathyroid nodules in ultrasound images. Chan-Vese(CV)
model segments objects [9] based on global information,
however there is over segmentation or under segmentation
when intensity is inhomogeneous. Region Scale Fitting(RSF)
model is adaptable to segment objects when intensity is inho-
mogeneous based on local information [10], however it is
sensitive to the initial contour position and easily falls into
local minimum. Reference [11] gets better results for the
most real and simulation medical images when boundaries
are clear. Aiming to the blurry boundaries between tissues,
inhomogeneous intensity of parathyroid nodules and heavy
noises in ultrasound images, this study proposes a hybrid
level set model to improve the segmentation accuracy and
adaptability to diversiform parathyroid nodules by fully using
global and local intensity information in images.

Morphology features describe the shape and the boundary
contour of objects, and texture features describe inner echo
mode characteristics of tissues in ultrasound images. So they
are widely used to recognize tissues or organs in ultrasound
images. Zhang et al. [12] recognized benign ormalignant of
lymph nodes by boundaries regularity, sharpness, similarity
to the circle and texture based on inner echo modes. Thyroid
texture features were extracted by using wavelet transfor-
mation and Gabor transformation in references [13], [14]
to recognize benign or malignant thyroid nodules in ultra-
sound images. Due to low contrast between parathyroid nod-
ules and backgrounds, diverse shapes of parathyroid nodules
and heavy noises, the features difference between parathy-
roid nodules, thyroid nodules or lymph nodes in ultrasound
images is not obvious. Therefore it is difficult to distinguish
parathyroid nodules only using morphology features and tex-
ture features.

Aiming to the highly inhomogeneous intensity, heavy
noises and diverse parathyroids in ultrasound images,
an adaptive hybrid level set model based on the image local

entropy is proposed to segment nodules. We also propose the
features of highlight membranes, relative positions between
parathyroid nodules and thyroids which are inherent charac-
teristics of parathyroid nodules different from other nodules
based on prior pathology knowledge to improve the recogni-
tion accuracy of parathyroid nodules. The main ideas in this
paper are: (a) The suspected parathyroid nodule is accurately
segmented by the proposed hybrid level set model based on
the image local entropy, then (b) the prior knowledge features
of the segmented nodule are extracted and described, and
finally (c) the parathyroid nodule in the ultrasound images
provided by an interventional ultrasound department of a
hospital is recognized by the fused features.

II. SEGMENTATION OF PARATHYROID NODULES BY THE
HYBRID LEVEL SET MODEL USING IMAGE LOCAL
ENTROPY
The segmentation accuracy of nodules is the precondition
to accurately recognize parathyroid nodules. Inhomogeneous
intensity, diverse shapes and blurred boundaries of parathy-
roid nodules bring great challenges to accurate segmentation
of parathyroid nodules in ultrasound images. The improved
CV model [15] based on global information has fast conver-
gence speed, however parathyroid nodules are often under-
segmented by only using global information. The fixed
weight model [16] easily falls into the local minimum when
intensity around the nodules is inhomogeneous, which is not
adaptive to parathyroid ultrasound images. In this paper we
proposed a hybrid level set model aiming to accurately seg-
ment noduleswith complex backgrounds and inhomogeneous
intensity in ultrasound images by adjusting the model weight
adaptively.

The adaptive hybrid level set for segmentation of suspected
nodules in ultrasound images consists of two main parts as
shown in Fig. 1. The initial contour of the suspected nodule is
determined by the marked points and the image local entropy
is calculated as the global term weight. First, the global term
dominates the evolution curve fast converging to the bound-
ary and the large scale is used for the local term. Secondly,
the local term dominates the evolution when the evolution
curve is near to the boundary. When the change of evolution
curve is smaller than the threshold, the smaller scale is used
and makes the curve accurately stop at the real boundary.

A. THE HYBRID LEVEL SET MODEL
I : � → < is an intensity image, the energy function of the
CV level set model is:

ECV(C, c1, c2)=λ1

∫
�1

|I (x)−c1|2dx+λ2

∫
�2

|I (x)−c2|2dx

(1)

where I (x) is the intensity of the point x, contour C is the
zero level set of the level set function φ. C separates � into
the inside region�1 and the outside region�2 corresponding
to the object and the background respectively. c1 and c2 are
the mean intensities of�1 and�2, λ1 and λ2 are non-negative
constants.
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FIGURE 1. Flow chart of segmentation based on the hybrid level set model.

Based on the variational method and gradient descent prin-
ciple, we get the partial differential equation (2) of the CV
model by substituting the level set function φ [9] into the
formula (1):

∂φ

∂t
= δε[−λ1(I − c1)2 + λ2(I − c2)2] (2)

c1, c2 are calculated by formula (3):
c1 =

∫
�
I (x)Hε(φ)dx∫
�
Hε(φ)dx

c2 =

∫
�
I (x)(1− Hε(φ))dx∫
�
(1− Hε(φ))dx

(3)

whereHε (φ), δε (φ) are the smoothedHeaviside function and
the smoothed Dirac delta function respectively.

The energy function of RSF model is:

ERSF(C, f1, f2)= λ1

∫∫
�1

Kσ (x − y) |I (y)−f1(x)|2dydx

+ λ2

∫∫
�2

Kσ (x − y) |I (y)−f2(x)|2dydx

(4)

where Kσ is Gaussian function, its size is controlled by the
standard deviation σ . The point x is the center of the local
region I (y). f1 (x), f2 (x) are the approximate intensities of
�1 and �2, which are calculated by formula (5):

f1 =
Kσ ∗ (Hε(φ)I (x))
Kσ ∗ Hε(φ)

f2 =
Kσ ∗ ((1− Hε(φ))I (x))
Kσ ∗ (1− Hε(φ))

(5)

The partial differential equation of the RSF model is:

∂φ

∂t
= −δε(φ) (λ1e1 − λ2e2) (6)

where e1, e2 are calculated by formula (7):{
e1 =

∫
Kσ (y− x) |I (x)− f1(y)|2 dy

e2 =
∫
Kσ (y− x) |I (x)− f2(y)|2 dy

(7)

The proposed hybrid level set model in this paper
consists of the global term of the improved CV model
[15], the local term of the RSF model, the length term
L (ϕ) =

∫
�
δε (ϕ) |∇ϕ|dx and the penalty term P (ϕ) =

1
2

∫
� (|∇ϕ − 1|)2dx.
Its partial differential equation is as formula (8):

∂φ

∂t

= α ·

(
δε(φ)(I −

c1+c2
2

)
)
+β · (−δε(φ) (λ1e1−λ2e2))

+ ν · δε(φ)div
(
∇φ

|∇φ|

)
+µ ·

(
∇

2φ−div
(
∇φ

|∇φ|

))
(8)

α is the weight of the global term, β is the weight of the
local term. ν, µ are the coefficients of the length term and
the penalty term respectively, whichmake the contour smooth
during evolution.

B. ADAPTIVE WEIGHT OF THE GLOBAL TERM BASED ON
IMAGE LOCAL ENTROPY
The global term of the hybrid level set model fully utilizes
global information in images to move the evolution contour
to the object boundary. Because the image local entropy
presents the local intensity distribution, it is used to adap-
tively determine the weight of the global term based on
the fact that the farther the curve is to the object boundary,
the more homogenous the intensity around the curve region
is, the smaller the image local entropy is accordingly. If the
image size is M × N , the size of the window centered the
point (i, j) is m × n, n′l is the pixels number of the intensity
l in the window centered the point (i, j), the probability p′l
of l is P′l =

n′l
m×n . The local entropy of the point (i, j)

is h(i, j) = −
L−1∑
l=0

P′l (i, j) logP
′
l (i, j) ,L = 1, 2 . . . ..256.

We use the image local entropy as the weight of the global
term in the hybrid level set model. The weight of the global
term is defined as:

α =

 α11 . . . α1N
... αij

...

αM1 · · · αMN

 , αij = e−h(i,j),

1 ≤ i ≤ M , 1 ≤ j ≤ N (9)

When the contour locates in the homogeneous intensity
region, the image local entropy is small and the weight of
the global term is large based on formula (9). The global
term is dominant and drives the curve quickly approach-
ing to the target boundary. Generally when the contour is
near to the boundary, the intensity around the boundary is
inhomogeneous and the weight of the global term becomes
smaller, so the local term is dominant and makes the contour
accurately approaching to the target boundary.

Compared with the fixed weight model, the image local
entropy adjusts the weight of the global term adaptively based
on the intensity distribution around the evolution curve. The
driving force of the contour by the hybrid level set model is
more adaptable to the diverse parathyroid nodules in ultra-
sound images.

The size of the local term scale depends on the standard
deviation of Gaussian function, which affects the calculation
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FIGURE 2. The contour evolution by the proposed hybrid level set model.
(a) The contours dominated by global and local terms with two scales
(b) The convergence curve to the nodule boundary.

amount and evolution speed of the contour. When the scale
is large, it cannot fall into local minimum as the small scale
does, however the object is easily over-segmented when the
contour is very near to the boundary and the large amount
calculation leads to the slow evolution speed. In order to
avoid this situation, two scales are proposed for the local term.
When the contour is a little far away from the object boundary
a larger scale is adopted to make the contour fast closing to
the object boundary, and when the contour is very near to the
object boundary, a smaller scale is adopted to make the curve
stopping at the nodule boundary accurately.

A threshold ξlength corresponding to the contour length
change is set. If the contour length change between two
consecutive iterations is less than the ξlength within a certain
number of iterations, the contour is considered to be very
near to the object boundary, the larger scale is instead by the
smaller scale. ξlength is determined by the empirical value,
which are normally 3 to 5 pixels.

Figure 2 gives the segmented nodule by the hybrid level set.
When the contour was far away from the nodule boundary,
it located in the homogeneous intensity region. The global
term weight was larger and dominated the contour approach-
ing to the boundary and the larger scale was used for the local
term, which was shown as the yellow curve in Fig.2(a). When
the contour was near to the nodule boundary it located in
the inhomogeneous intensity region, the local term with the
smaller scale dominated the contour accurately converging
to the nodule boundary, which was shown as the white curve
in Fig. 2(b).

C. SEGMENTED PARATHYROID NODULES IN
ULTRASOUND IMAGES BASED ON THE HYBRID LEVEL SET
MODEL
Four nodules surrounded by tissues with different intensity
distributions in ultrasound images were selected as shown
in Fig. 3. The boundary of the nodule in Fig. 3(a) is relatively
distinct, only part boundary of the nodule is blurry in Fig.3(b),
the nodule boundary in Fig.3(c) is all blurry and the nodule
in Fig.3(d) connects to the vessel. These four ultrasound
images represent typical connection situations with other
tissues in the region around the nodule boundaries.

The hybrid level set model proposed in this paper,
the improved CVmodel [15] and the fixed weight model [16]

were used to segment four nodules in Fig.3 to compare the
segmentation accuracy for different parathyroid ultrasound
images. The segmentation results are shown in Fig. 4.

The first column of Fig.4 gives the initial irregular quad-
rangle contours obtained by four marks connected in turn.
The second column to the fourth column are the segmented
nodules by the improved CV model, the fixed weight model
and the proposed adaptive hybrid level set model respec-
tively. The nodules were under-segmented or over-segmented
because of only using the global information of images based
on the improved CV model. The nodules with clear bound-
aries were accurately segmented by the fixed weight model,
but there were improper segmentation for nodules with blurry
boundary or nodules connecting to the vessels as shown in
the third and fourth rows. The fourth column was segmented
nodules by our hybrid level set model, which all nodules
with different intensity distributions and tissues around were
accurately segmented. We simply set irregular quadrangles
as initial contours, the shapes of initial contours can also
be ovals, which scarcely has effect to the final segmented
boundaries.

Dice similarity coefficient(DSC) [17], iterations and run-
ning time were used to quantitatively compare the segmen-
tation results by these three models in Table 1. The DSC of
the adaptive hybrid model is higher than that of the two other
models, while the iterations and running time are less than
that of the two other models. It both owed to the adaptive
global item weight based on the image local entropy and
the two-scale local term of the hybrid model which made
the contours converging to the boundary accurately and also
decreased the calculation amount and iterations. The accu-
racy of the segmented nodules was also verified by the ima-
geological experts who gave the initial marks of nodules. The
accurate segmentation result is very important and helpful to
diagnose parathyroid nodules.

III. FEATURE EXTRACTION AND DESCRIPTION OF
PARATHYROID NODULES BASED ON PRIOR KNOWLEDGE
Although the shapes of thyroid, parathyroid and lymph are
different, they are all nearly diverse ovals depending on
patients. The texture of thyroid nodules and lymph is inho-
mogeneous while parathyroid nodules are mostly homoge-
neous in ultrasound images. However there is not distinct
texture difference due to noises and low contrast between
the parathyroid gland nodules and complex backgrounds.
Therefore the recognition accuracy of parathyroid nodules
only with morphology and texture features is not satisfied.
In this paper we try to find the inherent features of parathyroid
nodules different from thyroid and lymph glands based on
the prior pathological knowledge to improve the recognition
accuracy.

A. PRIOR PATHOLOGICAL KNOWLEDGE FEATURES
Based on pathological analysis, there is a membrane between
the parathyroid gland and the thyroid gland. When parathy-
roid glands proliferate to form nodules, the membranes
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FIGURE 3. Nodules in parathyroid ultrasound images with different intensity distribution.

FIGURE 4. Nodules segmentation results by three level set models.

TABLE 1. Evaluation of nodules segmented by the three level set models.

between thyroid glands and parathyroid glands are com-
pressed by parathyroid nodules and the high-level echo corre-
sponding to the bright area is detected in ultrasound images.
There is no membrane around the thyroid nodule because it

is inside the thyroid gland. Most areas around thyroid nod-
ules are thyroid tissues while the parathyroid gland normally
locates behind the thyroid gland. There is only part of the
thyroid tissue bordering with the parathyroid nodule.
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FIGURE 5. Membranes and relative positions between suspected nodules
and thyroid glands in ultrasound images, (a) the parathyroid nodule and
(b) the thyroid nodule.

Figure 5(a) is a parathyroid nodule. There is the membrane
between the thyroid and the parathyroid nodule, the red rect-
angle in the right is its enlarged view. Only the region outside
the upper boundary of the parathyroid nodule is the thyroid
tissue. A thyroid nodule is inside the thyroid and there is
no membrane as Fig.5(b) shown. Nearly all regions outside
the thyroid nodule are thyroid tissues, such as its up, right,
and bottom. Therefore, bright membrane features and the
position features relative to the thyroid based on pathological
characteristics are used to recognize parathyroid nodules.

B. EXTRACTION AND DESCRIPTION OF MEMBRANE
FEATURES
The membrane is located in the outer boundary of the
parathyroid nodule. The outer annular area of the segmented
nodule in Section II is extracted by morphological expansion.
The process of membrane extraction in the annular area is as
follows:

1) The bright area is extracted by the intensity threshold
determined by the maximum entropy algorithm and its max-
imum connected region is selected as the rough region of the
membrane.

2) The improved region growing algorithm is used to
get the accurate suspected membrane region. First the pixel
with the maximum intensity in the rough region is selected
as the initial seed point, and then eight neighborhoods of
the seed point are traversed to decide whether each traversal
pixel belongs to the suspected membrane. If so, it is assigned
as the new seed, and the above step is repeated until no
suspected membrane pixels can be found. Formula (10) gives
the criteria. ∣∣xp − Xaver ∣∣ ≤ T (10)

where xp is the intensity of the traversed pixel, Xaver is the
mean intensity of the current suspected membrane. T is the
region growing threshold and is determined by:

T =

√
1
m

∑m

j=1
(xj − E(x))2 (11)

where E (x) = 1
m

m∑
j=1

xj is the average intensity of the rough

region, m is the number of total pixels in the rough region, xj
is the intensity of the pixel in the rough membrane region.

FIGURE 6. Membrane extraction (a) the extracted membrane of the
parathyroid nodule (b) the extracted bright region of the thyroid nodule.

Figure 6 gives the extracted annular of the suspected
parathyroid nodules dotted by the green curves. The white
region in the annular is the extracted suspected membrane,
the red rectangle is the enlarged view of the extracted sus-
pectedmembrane. Themembrane length in Fig.6(a) is shorter
than that of the thyroid nodule in Fig.6(b) because there is
no membrane between the thyroid nodule and the thyroid.
Therefore the length feature of the membrane is used to
recognize parathyroid nodules. The membrane is above the
parathyroid nodule because the parathyroid gland is generally
behind the thyroid gland. So the relative position between the
extracted suspected membrane and the suspected nodule is
also used to distinguish parathyroid nodules. The membrane
features are described as follows:

(1) Length Len is the distance between the two end points of
the membrane along the horizon direction as shown in Fig.7.
If Len is short, the suspected area is the membrane.
(2) Relative position is described by θ,, which is the angle

from the horizon line passing the nodule centroid to the line
connecting the suspected membrane centroid to the nodule
centroid along counterclockwise. If there is the membrane,
sinθ > 0, or sinθ < 0. The centroids of the nodules and the
suspected membranes are calculated by formula 12.

xc =

∑
m
xi

m

yc =

∑
m
yi

m

(12)

where m is the number of total pixels of the segmented
nodule or the suspectedmembrane. xi , yi are the coordinate of
the pixel in the segmented nodule or the suspectedmembrane.

C. THE RELATIVE POSITION FEATURES BETWEEN THE
NODULE AND THE THYROID
Only part thyroid tissues are outside the parathyroid nodule
while thyroid tissues nearly surround the thyroid nodule. The
thyroid tissue in ultrasound images is bright and its texture is
homogenous as shown in Fig.5. So texture homogeneity and
brightness are used to distinguish whether the tissue outside
the segmented nodule is thyroid.

Lacunarity is used to quantify the texture homogeneity.
First the minimum enclosing rectangle of the outer annular
in Section III-B is obtained, which its two sides are along

VOLUME 9, 2021 69631



Y. Wang et al.: Automatic Recognition of Parathyroid Nodules in Ultrasound Images

FIGURE 7. The length and the relative position features of the membrane
(a) the parathyroid nodule and (b) the thyroid nodule.

FIGURE 8. Relative position features between the nodule and the thyroid
tissue (a) the parathyroid nodule (b) the thyroid nodule.

the horizontal and vertical direction respectively. Then this
rectangle is divided into several small squares, for example
each of which is 16× 16 pixels. Box Column Mean(LBCM)
method [18] is used to calculate lacunarity in order to estimate
the intensity homogeneity of each small square. The lacunar-
ity calculation details are as follows:

(1) A boxwith the size of r×r is used to traverse each small
square. The average intensity of the area covered by the box
is defined as mass M . nM is the number of boxes with the
mass M . N is the total sliding number of the box within the
small square.

(2) The probability of the sliding boxes with the massM is
q(M ) = nM

N . The first moment and the second moment of the
probability distributions are calculated as follows:

Z1 =
∑

Mq(M ) (13)

Z2 =
∑

M2q(M ) (14)

(3) The lacunarity value 3 of each small square is calcu-
lated as follows:

3 =
Z2

(Z1)2
(15)

A is the mean intensity of the small square, the average
intensity threshold is Ath = 70. The lacunarity threshold
3th = 1.0121,3th is determined by Mann-Whitney U test
of lacunarity of all small squares. If 3 and average intensity
A demand 3 ≤ 3th and A ≥ Ath, the small square is consid-
ered as the thyroid tissue. However some small squares are
probably misjudged as the non-thyroid tissue due to noises
in ultrasound images. Aiming to this status, if the two sides
of the no-thyroid small square are thyroid tissues, this small
square is redetermined as the thyroid tissue.

FIGURE 9. The recognition result of bar graph with different fusion
features.

Figure 8 gives the detected result shown as green and white
boxes. The small squares in the red rectangles are thyroid
tissues. Only a few small squares in the upper parathyroid
nodule are thyroid tissues as Fig.8(a) shown, while most
small squares around the thyroid nodule are thyroid tissues
as Fig.8(b) shown. Therefore features of the thyroid lengths
Lth around the nodules and the relative positions between
the nodules and the thyroid tissues are used to describe the
relative position. The relative position features are as follows:

(1) The thyroid length Lth is the ratio of the number of small
squares detected as thyroid to the number of all small squares;

(2) Relative position between the nodule and the thyroid:
the horizontal line passes through the nodule centroid, the line
l1 connects the nodule centroid and the center of the first
thyroid small square, the line l2 connects the nodule centroid
and the center of the end thyroid small square, α, β are the
angles from the horizion line to l1 and the horizon line to l2
counterclockwise respectively as shown in Fig.9. If sinα +
sinβ is larger the suspected nodule is the parathyroid nodule.
If sinα+ sinβ is smaller or negative the nodule is the thyroid
nodule.

D. MORPHOLOGY FEATURES AND TEXTURE FEATURES OF
NODULES
Thyroid nodules are generally round or oval and lymph nodes
are generally oblong. Unlike thyroid and lymphmost parathy-
roid nodules are irregular. The more irregular the nodules
are, the more likely the parathyroid nodules are. Because
there are multiple echo modes such as strong echo, iso-
echo or mixed echo for thyroid nodules, the texture of thyroid
nodules is inhomogeneous. Parathyroid nodules are mostly
corresponding to low echoes, their textures are homogeneous
in ultrasound images. Five morphology features including
aspect ratio, compactness, standard deviation of normalized
radial length [19], acutance [20] and edge intensity variation
[12] are used to distinguish the nodules irregularity and clar-
ity of boundaries. Twelve texture features including energy,
entropy, contrast, correlation, deficit moment, variance, sum
average, sum variance, sum entropy, difference average, dif-
ference variance and difference entropy based on gray co-
occurrence matrix are used to clarify the thyroid nodules,
lymph nodes or parathyroid nodules. Principle component
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TABLE 2. Recognition accuracy of four different fused features by SVDD.

analysis (PCA) is used to remove redundant information of
texture features and only two dimensions are reserved by the
95% contribution.

IV. PARATHYROID NODULES RECOGNITION RESULT
BASED ON FUSION FEATURES AND SVDD
Support vector machine is commonly used to recognize two
classes or multiple classes and it is excellent only when the
numbers of various class samples are equivalent. The recog-
nition of parathyroid nodules from thyroid nodules or lymph
nodes is the single classification so the samples of parathy-
roid nodules are much larger than that of non-parathyroid
nodules. The support vector data description (SVDD) [21]
is selected to recognize parathyroid nodules because of its
prominent manifestation in unbalanced samples and single
classification [22].

The recognition accuracy of parathyroid nodules is unsat-
isfied only with morphology and texture features because of
low contrast between nodules and backgrounds, heavy noises
and diverseness of patients in ultrasound images. Mem-
brane features and relative position features describe patho-
logical characteristics of parathyroid nodules different from
other nodules so they are robust to noises and complicated
backgrounds in ultrasound images. Therefore these prior
pathological knowledge features fused with morphology and
texture features are used to recognize parathyroid nodules.

There were 414 training ultrasound images provided by an
interventional ultrasound department of the hospital, which
included 404 images of parathyroid nodules and 10 images
of non-parathyroid nodules. 404 parathyroid nodules images
were divided into 10 groups by 10-fold cross-processing,
9 groups of which were selected as training set of SVDD,
the remaining group and 10 images of non-parathyroid nod-
ules were selected as the test set to construct the optimal
hypersphere model of SVDD. Considering the imbalance
samples of parathyroid and thyroid, accuracy (Acc), sensitiv-
ity (Sen), specificity (Spe) [23] and geometric average accu-
racy (Gaa) [24] were used to evaluate parathyroid nodules
recognition results.

Based on the constructed optimal hypersphere model
of SVDD, another 44 parathyroid ultrasound images and
10 non-parathyroid ultrasound images were verified.We used
four groups of different fusion features to recognize parathy-
roid nodules. The first group was morphology and texture
features, the second group was morphology and prior knowl-
edge features, the third group was texture and prior knowl-
edge features, the fourth group was morphology, texture and
prior knowledge features. The recognition results are shown

in Table 2 and Fig. 9. It can be seen that it has higher
recognition accuracy with the fused three features of prior
knowledge features, morphology features and texture features
than that for only two kinds of features. Also the Sen for the
parathyroid nodules recognition, the Spe for non-parathyroid
nodules recognition and the Gaa for recognition reliability are
higher with the fused three features than that for only two
kinds of features.

V. CONCLUSION
Inhomogeneous intensity, different nodule shapes of diverse
patients and the blurred boundaries between nodules and
backgrounds bring great challenges to automatic segmenta-
tion and recognition of parathyroid nodules by ultrasound
images. To improve the segmentation efficiency and accu-
racy, we proposed the hybrid level set model to segment
nodules in ultrasound images. The global term weight was
adaptively adjusted based on the image local entropy depend-
ing on the intensity distribution around the evolution curve.
In order to avoid large amount of calculation and over-
segmentation, two scales were proposed for the local term
of the hybrid level set. Based on our proposed hybrid level
set model all nodules can be segmented accurately and effi-
ciently. In order to improve the recognition accuracy, we pro-
posed prior pathological knowledge features of membrane
features and relative position features to describe the inherent
characteristic of parathyroid nodules different from other
nodules, which are robust to noises and complicated back-
grounds. The fusion features of morphology features, texture
features and prior knowledge features were used to recognize
parathyroid nodules based on SVDD. We segmented nodules
in the ultrasound images with our hybrid level set model and
recognized the parathyroid nodules with fusion features. The
experiment results show that the recognition accuracy was
increased to 94.44%, which is much higher than that only
with morphology features and texture features.
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