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ABSTRACT For a high-speed train, the braking system plays an essential role in safe transportation.
Efficient state monitoring and anomaly detection may provide useful information for real-time decisions.
With large amount of monitoring data, data-driven methods, especially deep learning methods are widely
adopted for anomaly detection in various industrial applications. Although deep learning methods have
advantages in discovering non-linear relations among complex and high-dimensional data, the large amount
of hyperparameters can be hardly well tuned with a high computational burden for onboard computers.
Therefore, in this work an efficient online anomaly detection model based on Broad Learning System (BLS)
is established for detecting anomalies in the braking system. Furthermore, considering the intrinsic imbal-
anced data size on anomaly and normal states, the cost-sensitive learning method is integrated in the BLS
model, for the first time. The proposed model is evaluated on real data collected from a high-speed train
operating for one year, with respect to two performance metrics, i.e. G-mean and F1-score. Comparisons
with benchmark neural networks and the combinations of sampling methods and BLS are also considered
in this work.

INDEX TERMS Anomaly detection, braking system, broad learning system, cost-sensitive learning, deep
learning, high-speed train, highly imbalanced data.

I. INTRODUCTION
The braking system ensures the effective deceleration of high-
speed trains during emergencies and regular stops. With the
development of transportation technology, the train speed
increases continuously, and the safety of the braking system
is becoming an ultimate important issue [1]. Fault diagnosis,
which includes anomaly detection, fault location and fault
identification, is a key technology for ensuring the system
safety. Furthermore, anomaly detection is considered as a
primary task in fault diagnosis [2].

According to the braking mechanism, the braking sys-
tem can be divided into 3 categories: air braking, vacuum
braking, electro-pneumatic braking, etc. The braking sys-
tem adopted in most high-speed trains is electro-pneumatic,
which integrates the air braking and the electric braking, for
routine and emergent braking (a simplified schematic dia-
gram is shown in Figure 1). The air brake converts the digital
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commands into the air pressure in the brake cylinder, and the
electric brake (E-P brake in DK-1 electro-pneumatic braking
system) converts the traction motor into a generator. In an
electro-pneumatic braking, electric brake is given priority
producing most braking force.

There are many factors affecting the safety of a braking
system, such as equipment aging, miss-operation, alternative
exchange of environment, etc. By analyzing these factors and
assessing the health status, proper maintenance can reduce
the life-cycle cost by improving the safety and availability of
a braking system. However, accurate and efficient anomaly
detection is progressively difficult with the large amount of
data increasing.

In the published work, various methods have been pro-
posed for anomaly detection, and these methods can be
categorized into simulation-aided methods [3], [4], expert
systems [5], [6] physics-of-failure models [7], [8], and data-
driven models [9], [10]. The braking system is designed
based on the fault-oriented safety principle, resulting in a
complex structure [11]. It is quite difficult to analyze the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 63825

https://orcid.org/0000-0002-4286-4902
https://orcid.org/0000-0003-0895-7598
https://orcid.org/0000-0002-4499-492X


C. Wang, J. Liu: Efficient Anomaly Detection for High-Speed Train Braking System Using BLS

FIGURE 1. The structure of a DK-1 electro-pneumatic braking system
(single line represents circuits, double line represents pipeline and
double dotted line represents air level control pipeline).

operating mechanism using traditional algorithms, such as
simulation-aided methods, expert systems and physics-of-
failure models for online anomaly detection. In practice,
numerous sensors are integrated in the braking system. The
implemented sensors make it possible to collect enough
data related to the system working conditions and, thus, the
data-driven models that are independent of prior knowledge
on the target system can be adopted.

Recently, data-driven methods, especially the Multi-
Variant Analysis (MVA) and machine learning methods,
receive intensive attention in high-speed train anomaly detec-
tion [12]. The MVA-based methods, such as PCA [13] and
multi-mode kernel PCA [14], are used for extracting the
hidden information. Machine learning methods, especially
supervised learning are widely adopted for fault detection.
These methods include random forest [15], Support Vector
Machine (SVM) [16], [17], Bayesian-Networks [18]–[20],
deep learning methods [21], etc.

Among them, deep learning methods are becoming quite
popular in anomaly detection and have achieved break-
through success in many applications. In [21], a Deep Neural
Network (DNN) for bogie fault diagnosis of high-speed train
based on vibration signal was proposed. Moreover, a Con-
volutional Neural Network (CNN)-based cascade model was
proposed in [22] for defect detection and location in insu-
lators. Reference [13] verified the effectiveness of a fault
diagnosis deep belief network (DBN) for high-speed train
onboard equipment. In [23], a Neuro-adaptive fault-tolerant
control model under traction-braking failures using self-
structuring neural networks was established. Reference [24]
designed an intelligent fault diagnosis model based on deep
neural network (DNN) for high-speed train bogies.Most deep
learning methods are powerful in tackling complex structures
of high-dimensional data [25], [26]. However, for reaching
high accuracy with a deep learning model, a large number

of hyperparameters need to be tuned in the training process,
making the training process time-consuming [31] This makes
it difficult to implement real-time training anomaly detection
based on deep learning. In fact, most of the current anomaly
detection systems are in the form of discrete training and
online diagnosis, which are difficult to update in an online
manner.

Therefore, some variations in hierarchical struc-
ture [27], [28] or ensembles [29], [30] are proposed to
improve the model training efficiency. Among them, Broad
Learning System (BLS) is proposed based on the concep-
tion of Random Vector Functional Link Neural Network
(RVFLNN), and it can be updated effectively and efficiently
in many applications [31], [32]. A fault diagnosis model
based on BLS and principal component analysis was estab-
lished in [33] for a rotor system. For the fault diagnosis of
aeroengine wear, an ensemble of BLSmodels was considered
in [34]. In [35], a fault diagnosis method was designed for
rolling bearings by integrating variational mode decomposi-
tion and Hilbert transform in the BLS. Similar strategy was
considered in [36] with the feature incremental broad learning
and singular value decomposition.

Taking into account the requirements on timely response
to the environment change and on the reduction of com-
putation cost, BLS is adopted for anomaly detection in a
braking system in this work. The high reliability of the
high-speed train brings the fact that most of the monitoring
data concern the normal condition, i.e. the collected dataset is
highly imbalanced. The decision hyperplanes of data-driven
methods may be biased to the majority class, causing a
low anomaly detection rate. Thus, class-imbalance problem
should be properly tackled in the BLS framework. Different
from assigning the same cost to different classification errors
in state-of-art references on BLS which lead to the overfitting
on the normal state, this work, for the first time, combines
the cost-sensitive learning with BLS to establish an effec-
tive and efficient anomaly detection model. In combination
with BLS, the other strategies for tackling imbalanced data
are also considered as benchmark methods, along with dif-
ferent neural networks.

The remainder of this paper is organized as follows. The
proposed anomaly detection model for high-speed train brak-
ing system is described in Section 2. And, Section 3 is the
application results in real monitoring data of a high-speed
train. Conclusions and some further research directions are
drawn in Section 4.

II. BLS FOR ANOMALY DETECTION WITH
IMBLANCED DATA
BLS is a single-layer incremental neural network based on
RVFLNN and Single-Layer Feedforward Neural Network
(SLFNN). BLS maps the input data to a series of random
feature spaces and determines the output weights through
an optimized least squares method. Moreover, the model is
optimized through incremental learning without iterative cal-
culations, which greatly reduces the computation time [31].
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A. BLS WITHOUT INCREMENTAL LEARNING
BLS without incremental learning is very similar to a
RVFLNN, and its structure is shown in Figure 2.

FIGURE 2. The basic structure of BLS [31].

Assume that training data is (X ,Y ) ∈ RK×(P+Q), where
K is the number of data rows, P and Q are the dimensions
of X and Y respectively. According to (1), a series of random
feature spaces Z1,Z2, · · · ,Zn(Zn , {Z1,Z2, · · · ,Zn}) can be
calculated with the input data X .

Zi = φi(XWei + βei), i = 1, 2, . . . , n (1)

In (1), Zi is the i th component in Zn, i.e. the i th mapped
feature, and Wei and βei are separately the optimal input
weights matrix calculated by sparse self-encoding and the
corresponding biasesmatrix. The initial values of weights and
the biases matrix are randomly generated, and the number of
nodes in Zi is coherent with the dimensions of the weights and
biases, i.e. the mapped feature Zi has ν nodes for X ∈ RK×P

and Wei ∈ RP×ν .
Furthermore, in order to improve the training speed, the

enhancement nodes are generated by Zn in a manner of group
by group. Among them, the j th enhancement nodes group is:

Ej = ξj(ZnWhj + βhj), j = 1, 2, . . . ,m (2)

with ξj being the non-linear activation function, Whj and
βhj being the random matrix and the deviation matrix of
the j th enhancement nodes group, respectively. The initial
values of these two matrices are also generated randomly.

Represent the outputs of the enhancement layer as Em ,
{E1,E2, . . . ,Em}. Then the matrix H = [Zn |Em ] with the
splicing of matrix Zn and Em becomes the actual input of
the system. Consequently, the final output of a BLS can be
expressed as:

Y = HW = [Zn
∣∣Em ]W (3)

where Y ∈ RK×Q is the output of the model. In a binary
classification task, Y ∈ RK . The matrix W is the output
weights that connects H = [Zn |Em ] to the output layer.
Therefore, it can be optimized by the least square method.

However, the generalization error of the model optimized
with least square estimation is normally large. In order to con-
trol the structural complexity of the network and to improve
its generalization capability, the l2-norm regularization term
is added in the loss function. Then the output weights

matrix W can be optimized with the following ridge regres-
sion problem:

minW f (W ) = min ‖HW − Y‖2F + c ‖W‖
2
F (4)

where c is a trade-off regularization parameter on W .
The closed-form solution of (4) is given with Moore-

Penrose pseudo inverse, as shown in (5) [37]

W =

{
HT (cI + HHT )−1Y , K < L
(cI + HTH )−1HTY , K ≥ L

(5)

where, K is the number of data rows, and L = nν+mη is the
number of hidden-layer nodes.
In a BLS model without incremental learning, after the

training process is completed, the randomly weightsWei,Whj
and the output weights matrixW are fixed. And the prediction
result of a test sample xs is:

ŷs = HsW (6)

where Hs is the splicing feature matrix of xs.

B. INCREMENTAL LEARNING FOR BLS
For BLS, if the network cannot achieve the required accuracy,
additional enhancement nodes can be inserted to improve the
network, following the idea of incremental learning.
Assuming the existent hidden layer is Hm

= [Zn |Em ],
When p additional enhancement nodes are inserted in the
network (as illustrated in Figure 3), p columns will be added
to the matrix Hm and the new hidden layer is defined as:

Hm+1 , [Hm ∣∣ξ (Zn Whm+1 + βhm+1 )] (7)

FIGURE 3. Illustration of incremental learning algorithm [31].

According to the incremental learning strategy of BLS,
the new output weights matrix can be calculated as follow:

Wm+1
=

[
Wm
− DBTY
BTY

]
(8)

with D = (Hm)+ξ (ZnWhm+1 + βhm+1 ),

BT =

{
(C)+, C 6= 0

(1+ DTD)−1DT (Hm)+,C = 0

and C = ξ (ZnWhm+1 + βhm+1 )− H
mD.

During the incremental learning, if additional enhance-
ment nodes are needed, the new output weights matrix
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Wm+1 can be obtained by calculating the pseudo inverse
of the additional enhancement nodes instead of calculations
from scratch. It is unnecessary to retrain the entire network
from the beginning, thus, the training process is accelerated
tremendously [31].

C. COST SENSITIVE LEARNING FOR BLS
The classification hyperplane of the previous BLSmodel may
be biased to the majority class for imbalanced data, causing
a low classification accuracy on minority class. However,
in most situations, the minority class is the one of interest to
the practitioners. Thus, it is quite important to tackle properly
imbalanced data. Currently, there are three main methods to
deal with imbalanced data [38]:

1) Convert the imbalanced data to balanced data by adjust-
ing data distribution or select features that better represent
the unbalanced dataset. Under-sampling majority classes and
over-sampling minority classes are two popular directions.

2) Optimize the structure or parameters of the algorithm.
For example: modify the classification threshold, add cost
sensitive learning, or use fuzzy function to optimize the algo-
rithm [39].

3) Establish a combination classifier by integrated learn-
ing. Among them, cost-sensitive learning is a common
method, which avoids adding virtual samples which may
destroy the prior distributions of variables. It has been suc-
cessfully integrated in may many methods, such as support
vector machines [17], neural networks [40], Bayesian meth-
ods [41], etc.

In this paper, based on an in-depth analysis of BLS, cost-
sensitive learning is integrated in the training process of BLS
and the new method is named as CS-BLS. Cost-sensitive
learning makes abnormal data receive more attention during
model training, i.e. the misclassification cost of an abnor-
mal sample is greater than that of a normal one. More-
over, the weight matrix is adjustable according to different
applications.

When the training data is (X ,Y ) ∈ RK×(P+Q), according
to cost-sensitive learning, a weights matrix 3 that represents
the importance of different classes can be established. Here
3 is a K -dimensional diagonal matrix taking a general form
as follows:

3 =


λ1
λ2
. . .

λK

 (9)

where K is still the number of data rows, λi is the weight for
the i th row, and same weight is set for the same category.

When cost-sensitive learning is integrated in BLS, the
n groups of mapped features Z ′n and m groups of enhance-
ment nodes E ′m are:

Z ′i = φi(3XWei + βei), i = 1, 2, . . . , n (10)

E ′j = ξj(Z
′nWhj + βhj), j = 1, 2, . . . ,m (11)

The actual input of the system is converted to H ′ =
[Z ′n

∣∣E ′m ], and the final output is:

Y = H ′Wm
= [Z ′n

∣∣E ′m ]Wm (12)

The output weights matrix Wm can be obtained by ridge
regression, and the result is as follows:

Wm
=

{
H ′T (cI + H ′H ′T )−1Y , K < L
(cI + H ′TH ′)−1H ′TY , K ≥ L

(13)

hereK is the number of data rows, L = nν+mη is the number
of hidden-layer nodes.

Similarly, when additional enhancement Wm+1 nodes are
inserted to the system, the new weights matrix can also be
obtained:

Wm+1
=

[
Wm
− D′B′TY
B′TY

]
(14)

where D′ = (H ′m)+ξ (Z ′nWhm+1 + βhm+1 ),

B′T =

{
(C ′)+, C ′ 6= 0

(1+ D′TD′)−1D′T (H ′m)+,C ′ = 0

and C ′ = ξ (Z ′nWhm+1 + βhm+1 )− H
′mD.

III. APPLICATION RESULTS
Based on the monitoring dataset of a high-speed train braking
system within one year, a comparative experiment is carried
out in this section to verify the effectiveness of the proposed
method. The key steps of the experiment are as demonstrated
in Figure 4. Conventional neural networks i.e. ANN and CNN
are considered as benchmark methods. All the experiments
are carried out using PYTHON (3.6) on a 1.60 GHz intel(R)
Core(TM) i5-8250U CPU with 7.86 GB RAM.

FIGURE 4. Flow chart of comparative experiment.

The braking system considered in this experiment is an
electronically controlled electro-pneumatic brake system.
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The brake control system adopts composite braking and has
a variety of braking modes and states. In order to com-
prehensively monitor the factors affecting the health status
of braking system, sensors are arranged at the key posi-
tions of the system, and the environment factors are also
recorded. The collected raw data contains 43 variables related
to abnormal conditions of the braking system. These 43 vari-
ables are obtained by combining practical experience and
fault mechanism, and all variables are equally considered
when establishing anomaly detection model. These variables
include train-level conditions, braking system-level condi-
tions and operating environment-level conditions, such as
GPS position, travel speed, operation time, operation mode,
line current, line voltage, battery voltage, external power volt-
age, brake state, achieved braking force, internal temperature,
external temperature, etc. Bound by confidentiality agree-
ments, these variables cannot be exhaustively listed here.

First of all, data cleaning is necessary, for example, the
reconstruction of missing values, data normalization, etc.
Data normalization is performed to balance the dimensional
differences among different numeric variables. Furthermore,
according to the data requirements of the models, some
variables in the raw data need to be converted to numerical
values. After data processing, all 43 variables are converted
to values between [0,1]. The status label represents whether
the braking system is in abnormal state. While the abnormal
state is recorded as 1, the normal state is recorded as 0.

There are 28837 normal state data points and 159 abnormal
state data points. The data is severely imbalanced, and we
focus on the detection accuracy on abnormal state. In this
case, if the overall accuracy is used as the model evaluation
index, the model effect will inevitably depend on the normal
category and is rarely affected by the fault category. In fact,
we only pay attention to whether the prediction result of the
fault category is accurate and complete. Therefore, in this
paper, instead of using the overall accuracy as the model
performance metrics, F1-score and G-mean are adopted.

With TP, TN, FP and FN as the number of true positive,
true negative, fault positive and fault negative, F1-score and
G-mean can be calculated as follows [42]:

F1− score = 2 ∗
precision ∗ recall
precision+ recall

(15)

G− mean =
√
TPR ∗ TNR (16)

where TP is the number of samples correctly predicted to be
positive; TN is the number of samples correctly predicted to
be negative; FP is the number of samples wrongly predicted
to be positive; and FN is the number of samples wrongly
predicted to be negative, then precision = TP/(TP + FP),
recall = TPR = TP/(TP + FN), TNR = TN/(TN + FP).
In order to reduce the influence of random factors, the aver-

age accuracy and running time of 10-fold cross-validation are
listed in this paper. And, to get the approximate local optimal
solution, the network depth, the number of nodes and the cost-
sensitive weight are gradually increased until the accuracy on
the verification dataset is basically unchanged or decreased.

With 10-fold cross-validation, the outputs of a model include
the average training time, the average test time, the average
test F1-score and the average test G-mean. Here, the training
time refers to the total time required to get the final model
under training and optimization, and the test time refers to
the time needed to use the trained model for prediction.

Figure 5 is a two-dimensional projection of the dataset
based on t-distributed Stochastic Neighbor Embedding
(t-SNE), and the red 1.0 represents the projection of abnormal
samples, the gray 0.0 represents the projection of normal
ones. The t-SNE algorithm is one of the most commonly
used and effective techniques in the exploratory analysis of
high-dimensional data. This method, which converts the sim-
ilarity between data points into probabilities, could achieve
the visualization of high-dimensional data by projecting
them into 2-D or 3-D space [43]. When using all the data,
the anomalous samples are totally covered by the normal
ones. Therefore, only 10% of the collected normal samples
are displayed in the figure. After comparisons, the t-SNE
projection distribution of the 10% normal samples used in the
figure is roughly consistent with that of the whole dataset.

FIGURE 5. T-SNE of the dataset.

From Figure 5, onemay see that the data is seriously imbal-
anced. Moreover, the data of normal state and abnormal state
are largely overlapped, which makes it difficult to achieve
both high precision and recall values on the abnormal state at
the same time. Consequently, F1 score and G-mean are inca-
pable to reach the maximum value at the same time. In this
case, by simulating the form of F-score [42], the weighted
harmonic mean (denoted as F-G) of the F1-score and the
G-mean is selected as a comprehensive indicator to evaluate
the generalization accuracy of the algorithm.

F − score =
(1+ β2)precision ∗ recall
(β2 ∗ precision)+ recall

(17)

where β is the adjustment weight. When β = 1, the preci-
sion and the recall are almost equally important. And, when
β > 1, the weight of recall is higher.

In this anomaly detection problem, the precision and the
recall of abnormal state is much more important than those
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of normal state, thus we set the weight of F1-score higher
than that of G-mean.

F − G = 5 ∗
F1− score ∗ G− means

F1− score+ 4 ∗ G− means
(18)

First, we compare the influence of under-sampling, over-
sampling and cost-sensitive learning on BLS (as shown
in Table 1).

TABLE 1. Comparison with different data processing methods.

Here, under-sampling is achieved by random-choice, i.e.
randomly delete some normal state samples in the training
data to make the number of samples of different categories
close. Over-sampling in the experiment refers to the regular
SMOTE-fit [44] which can create synthetic minority class
samples. The size of sampling and interpolation samples are
adjusted adaptively in the training data i (1 ≤ i ≤ 10).
Figure 6 and 7 are respectively two-dimensional t-SNE pro-
jections of the under-sampling dataset and the over-sampling
dataset. The dataset is balanced by these two technologies.
When the under-sampling technique is used, the training
data is insufficient to obtain a high-precision model. And,
the over-sampling technology may lead to more serious class
crossing. Therefore, their generalization effect is worse than
the original BLS.

Considering both accuracy and training time, the results
in Table 1 implied that for BLS, cost-sensitive learning has
a great advantage in reducing the influence of between-class
imbalance problem in the case study.

Then, the results achieved by different algorithms are
shown in Table 2.

It can be inferred from Table 2 that the generalization
accuracies of different methods are comparable, while the
training time of CS-BLS is much shorter than that of the
benchmark methods. It takes only 1.917 seconds to retrain
the BLS model. In practical application, the model may be
updated promptly to ensure the accuracy of prediction all the
time, and the operation and maintenance cost will be greatly
reduced. Therefore, CS-BLS is suitable for complex systems
that may often encounter unexpected situations and require

FIGURE 6. T-SNE of the under-sampled dataset.

FIGURE 7. T-SNE of the over-sampled dataset.

high reliability, such as high-speed rail braking systems in
this paper. When the system reliability requirements are not
particularly high or the structure is relatively simple, in order
to save maintenance costs, it may be better to use traditional
fault diagnosis methods, such as preventive measure, regular
maintenance, offline fault diagnosis, and post-repair. This
experiment infers that the requirements for real-time and
accurate monitoring of the high-speed train braking system
can be achieved by the proposed CS-BLS. Simultaneously,
we can see that, cost-sensitive can significantly optimize the
effect of BLS, but has a small improvement on the ANN and
CNN models.

Moreover, the experiment is only based on the monitoring
data of a high-speed train operated within one year. It may be
predicted that when the amount of data is larger, the high effi-
ciency of the proposed CS-BLSmodel will bemore important
for online anomaly detection.
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TABLE 2. Comparison of different models.

IV. CONCLUSION
The braking system plays a vital role in safe transportation of
high-speed trains. An efficient anomaly monitoring system
may greatly assist the train operation and maintenance as
a health state information source. Based on the BLS, this
paper establishes a real-time anomaly detection model for
the high-speed train braking system. Considering the high
imbalance between the data sizes on normal and abnormal
conditions, the BLS is integrated with adaptive cost-sensitive
learning, i.e. CS-BLS. In comparison with classical neural
networks and the combinations of sampling methods and
BLS, it can be inferred that the method proposed in this
paper achieves comparable accuracy in amuch shorter time in
the case study. CS-BLS can process highly imbalanced data
conveniently and effectively, and can be updated quickly and
timely when necessary. This study provides a new idea for
real-time anomaly detection of high reliability systems.

We also notice that online fault prediction based on BLS
has certain research prospects for the time series data of
high-speed train.Moreover, thorough data preprocessing, e.g.
feature selection can be added to reduce the impact of highly
imbalance data. These thoughts can be further studied in
the future. Similarly, CS-BLS also provides an alternative
method for real-time fault diagnosis and prediction of other
complex systems with imbalanced data.
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