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ABSTRACT Recent discriminative trackers especially based on Correlation Filters (CFs) have shown
dominant performance for visual tracking. This kind of trackers benefit from multi-resolution deep features
a lot, taking the expressive power of deep Convolutional Neural Networks (CNN). However, distractors in
complex scenarios, such as similar targets, occlusion, and deformation, lead to model drift. Meanwhile,
learning deep features results in feature redundancy that the increasing number of learning parameters
introduces the risk of over-fitting. In this paper, we propose a discriminative CFs based visual tracking
method, called dimension adaption correlation filters (DACF). First, the framework adopts the multi-channel
deep CNN features to obtain a discriminative sample appearance model, resisting the background clutters.
Moreover, a dimension adaption operation is introduced to reduce relatively irrelevant parameters as possible,
which tackles the issue of over-fitting and promotes the model effectively adapting to different tracking
scenes. Furthermore, the DACF formulation optimization can be efficiently performed on the basis of
implementing the alternating direction method of multipliers (ADMM). Extensive evaluations are conducted
on benchmarks, including OTB2013, OTB2015, VOT2016, and UAV123. The experiments results show that
our tracker gains remarkable performance. Especially, DACF obtains an AUC score of 0.698 on OTB2015.

INDEX TERMS Correlation filters, multi-channel feature learning, object tracking.

I. INTRODUCTION
Visual tracking is one of the fundamental computer vision
tasks that has received much attention [1]–[3]. It is a task
aiming to continually detect a target in a video sequence only
its initial position is given. It has numerous real-world appli-
cations, including vehicle tracking [4], automatic surveillance
[5], and pedestrian tracking [6], [7]. However, it is suffering
from some challenging visual attributes, such as background
clutters, occlusions [8], motion changes, and size changes.
Therefore, an ideal tracker is designed to be robust and
efficient.

Most tracking methods observation models are based on
either generative or discriminative models. Generative meth-
ods aim to find the best-matching candidate of the object.
Meanwhile, discriminative trackers distinguish the object
from the surrounding background by training a discriminator.

The associate editor coordinating the review of this manuscript and
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These methods concern more about the difference between
object and surrounding while generative models care about
the exact similarity between the candidates and the tar-
get. Overall, discriminative trackers are more accurate than
generative trackers. Recently, Discriminative Correlation Fil-
ters (DCFs) based tracking algorithms have achieved more
advancing performance [9]–[11] than traditional discrimina-
tive approaches. Two advantages contribute to the advance-
ment of DCF approaches. First, the DCF approaches can
make use of a large number of samples benefiting from
the circulant structure for training and prediction. Second,
the DCF based trackers learn models quickly in the frequency
domain. The convolution operation in the time domain corre-
sponds to the element-wise product in the frequency domain
that makes the calculationmore efficient. This transformation
from the time domain to the Fourier domain can be imple-
mented through the Fast Fourier Transform (FFT). More-
over, it contributes to the combination of multiple features
such as Histogram of Oriented Gradient (HOG) [12], Color
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FIGURE 1. Tracking results with confidence score maps of sequence
Football where there are similar targets. (a) Similar targets in the
searching region disturb the observation model of the tracker employing
shallow features presentation. (b) Our method with multi-channel deep
features has great discriminative power and detects the right target.

Names [13], and deep convolution features learned from
VGGnet [14].

However, the DCF approach still has some inherent defi-
ciencies to address. The circulant structure produces suffi-
cient samples through circular shifting from a base search
area that includes the object. Setting an appropriate search
area size is significant in standard DCF for producing suffi-
cient samples. If the search area is small, objects with fast
motion may easily move to or even outside the research
boundary that usually results in inaccurate detection. To deal
with this problem, an extension of the image patch is intro-
duced that the base sample patch is bigger than the true
boundary box of the original object. But in this way, extra
background information is included in samples, which would
cut down the tracking performance of the learned model. The
observation model is often distracted by wrong information
of the background like similar targets or background clutters
in the search area. As shown in Fig. 1, the tracker cannot
discriminate the right target among multi similar targets,
leading to inferior tracking results.

Advanced DCF based trackers benefit a lot from rich fea-
tures representations and perplexing learning formulations.
The deep features will provide a robust appearance model
to deal with severe appearance variations. Meanwhile, DCF
based trackers obtain discriminative power from learning
deep features to resist distractors in complex scenarios. More
attention has been shifted from handcraft features towards
deeper features learned from deep Convolutional Neural
Networks (CNN) networks to capture multi-level informa-
tion. However, most present DCF based trackers use only
relatively shallow pretrained CNN networks like VGGnet.
Using deeper networks (e.g., ResNet [15], DenseNet [16],
and SE-ResNet [17]) to learn convolutional features is not
completely researched.

Nevertheless, most of the DCF based trackers fuse all the
multi-resolution deep features directly, introducing severe
data redundancy. This comes at the high cost of numerous
parameters learning and frequent online updating. Limited
samples and increasing training parameters raise the harm
of over-fitting. This issue is tackled in ECO, under a fac-
torized convolution approach. But in ECO, filter channels
are reduced to fixed dimensions for different objects, which
cannot fully take advantage of the diversity information of
different objects tracking scenes.

In this work, we develop a robust and efficient tracker
called dimension adaption correlation filters (DACF) for
making full use of multi-level deep CNN features and address
the problems of over-fitting. The framework of this proposed
method is depicted in Fig. 2.

In the feature representation stage, we utilizemulti-channel
deep convolutional features for visual object tracking with
the aim of alleviating model drift caused by complex scenes.
We investigate the multi-channel deep convolutional features
to exploit the great power of it. DACF tracker only makes use
of deep features to obtain sample appearance model, without
any handcraft features such as HOG or Color Names.

Moreover, we propose a dimension adaption component
to adaptively adopt part effective multi-level features during
different tracking scenarios. Benefiting from this dimension
adaption method, our DACF reduces the number of param-
eters without excessive information loss, which simultane-
ously remits the problems of over-fitting.

In optimization process, we solve the problem efficiently
by alternating direction method of multipliers (ADMM)
within very few iterations.

We perform extensive experiments on OTB2013 [19],
OTB2015 [20], VOT2016 [40], and UAV123 [41] bench-
marks. The experiments results demonstrate that our DACF
tracker achieves notable performance in comparison to the
state-of-the-art trackers. Our approach outperforms the base-
line STRCF both in accuracy and robustness onOTB2013 and
OTB2015 benchmarks.

II. RELATED WORK
CNNs [14] have been widely employed in computer vision
tasks. Visual tracking tasks with CNNs perform excellently
in recent years. Many tracking methods design deep architec-
tures to learn end-to-end trackers that need to provide a large
amount of training data. MDNet [21] combines multi-domain
networks to differentiate between the target and background.
Some methods train a Siamese net to distinguish whether
objects in two images are the same or not. SiamRPN [22]
introduces Siamese subnetwork for feature extraction and
specialized subnetwork including two branches of classifi-
cation and regression to generate region proposal. Based
on SiamRPN, DaSiamRPN [23] designs a distractor-aware
module to improve the discriminant ability. SiamRPN++
[24] applies deep benchmark networks such as ResNet [15]
and Inception [25] into tracking networks based on Siamese
Network.

The DCFs for visual tracking have been popularized in
recent years and many discriminative trackers have been
proposed. The earliest proposed CF tracker is learned by
minimizing the output sum of squared error (MOSSE) [26].
MOSSE uses only gray-scale samples to train the filter at
high speed. CSK [27] drives a circulant structure for dense
sampling and uses the kernel matrix in ridge regression. The
circulant structure produces sufficient samples and simpli-
fies the ridge regression problem. Only providing the initial
position of the object limits obtaining positive samples in
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FIGURE 2. Overview of the framework of our tracking method. The whole architecture includes multi-channel features selection and the dimension
adaption operation. The framework extracts multi-channel deep convolution features with discriminating power. Through the dimension adaption
operation, the features dimensions are drastically reduced, adapting to various scenario. The green arrows indicate the process of object detection. The
blue arrows indicate the process of module updating that learns the filter of current frame t using the filter learned in previous frame t − 1.

visual tracking. It will be useful to utilize more samples.
The DCF based trackers can make use of more samples than
conventional discriminative approaches, profiting from the
circulant structure. KCF [28] adopts a linear kernel in a fast
multi-channel extension of linear CFs, thereby improving the
precision and robustness. More discriminative features are
used for incorporating multi-channel features in the Fourier
domain, such as HOG [12], color names [13], and deep
CNN features. C-COT [29] learns filters from a integration
of multi-resolution deep future maps in a continuous-domain.
DeepSRDCF extracts pre-trained CNN features for superior
performance. ECO [18] tracker improves both speed and
performance on the basis of C-COT by way of alleviating
over-fitting and enhancing compactness of the generative
model. CFWCR [30] upgrades ECO by normalizing every
independent feature extracted from different CNN layers and
getting the weighted sum of convolution responses for all
layers to generate the final confidence score. To deal with the
boundary effects, SRDCF [31] presents a spatial regulariza-
tion component to penalize filters coefficients on boundary
and solves the formulations by the Gauss-Seidel algorithm.
BACF [32] trains the tracker from real negative training
examples instead of negative examples in prior CFs which
are limited to circularly shifted samples. This work learns the
filter on multi-channel features using ADMM. STRCF [33]
introduces a temporal regularization into correlation filters
for obtaining a more robust appearance model in comparison
with SRDCF.

III. PROPOSED METHOD
A. BASELINE APPROACH
STRCF : Usually, the model updating happens in each frame
that only utilizes information of the current frame, ignoring
the information of the previous frames. The lack of previous
memory information degrades the robustness of the trackers,

leading to model drift over time. Some trackers take a unique
strategy that updates the model every few frames [18]. This
updating scheme results in advanced tracking performance
but slows down the model convergence speed. To merge
historical information, other DCF trackers update the model
via interpolating current frame model with previous model
parameters, using a learning rate to control the updating
degree. Thus usage of historic information could mitigate
the effect of model drift. STRCF [33] introduces a temporal
regularization component to avoid model drift over time,
leading to a more robust and discriminative model.

We first review the STRCF [33] model. Each training sam-
ple xt =

{
xdt
}
d=1:D contains D channels feature maps with

size ofM×N and y is the Gaussian response label. In STRCF
model, a multi-channel correlation filter f =

(
f 1 · · · f D

)
can

be trained through the minimization of the following as,

argmin
f

1
2

∥∥∥∥∑D

d=1
xdt ∗ f

d
− y

∥∥∥∥2 + 1
2

∑D

d=1

∥∥∥w · f d∥∥∥2
+
µ

2
‖f − ft−1‖2 , (1)

where
∑D

d=1

∥∥w · f d∥∥2 denotes the introduced spatial reg-
ularization term, ‖f − ft−1‖2 is a temporal regularization
termmotivated by Passive-Aggressive (PA) [34], ft−1 denotes
the correlation filters obtained in the (t − 1)-th frame and
µ denotes the regularization parameter. For predicting the
detection scores of the target, filter f is trained as,

Sf (x) = x ∗ f =
D∑
d=1

xd ∗ f d . (2)

ECO: The ECO [18] method introduces a factorized con-
volution approach aiming at the reduction of parameters
number. The construction of the d-th channel filter f d is
indicated as a linear combination f d =

∑C
c=1 pd,cf

c using
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FIGURE 3. Visualization of the learned filters to Res3d layer extracted from SE-ResNet50. (a) and (c) are all the 512 filters learned from Res3d layer of
two videos while (b) and (d) demonstrate the reduced filters of 512 filters obtained by dimension adaption operation. Most of the baseline filters contain
negligible energy, indicating irrelevant information in the corresponding feature layers. Our dimension adaption operation learns filters with significant
energy.

a basis filters set f 1 · · · f C , where C < D. A D × C matrix
P =

(
pd,c

)
is introduced to represent the learned coefficients

pd,c compactly. The factorized convolution operator can be
shown as,

Sf (x) = x ∗ Pf =
∑
c,d

xd ∗ pd,cf c = P>x ∗ f . (3)

The dimension of feature map x is reduced from D to C as
it is multiplied with the matrix P>, which seems like reducing
the linear dimensionality. Usually, the size (dimension) of
matrix P> is identical for different objects that cannot fully
adapt to tracking scenes variation. Thus, it is reasonable
to introduce an adaptive factorized convolution into the CF
model.

B. DIMENSION ADAPTION OPERATION
Motivated by above discussion, we introduce a dimension
adaption operation to reduce the number of parameters adapt-
ing to different tracking videos. Many filters learned from
high-dimensional deep features contain negligible energy,
as shown in Fig. 3.

We employ PCA at the beginning of each frame for purpose
of gaining D principal components P1 · · ·PD sorted accord-
ing to their corresponding eigenvalues in descending order.
For each track sequence, we select top C principal compo-
nents which contain nth = 99% of the total information to
form the matrix P> =

(
P1 · · ·PC

)
. The dimension number C

can be obtained by (4):∑i=C
i=1 λi∑i=D
i=1 λi

≥ nth, (4)

where λimeans the eigenvalue corresponding to the eigenvec-
tor Pi. The numberC varies adaptively over different tracking
scenes and is constant during the tracking process.

We use a dimension adaption operation in our track frame-
work to reduce feature parameters number. The dimension
numbers of three layers Conv1x, Res3d, and Res4f extracted
from SE-ResNet50 are 64, 512, and 1024, respectively. The
reduced dimensions of Res3d and Res4f layers in each track-
ing sequence of OTB2015 are visualized in Fig. 4. Appar-
ently, dimension reducing adapts well to different videos.

In addition, Fig. 5 demonstrates a per-video comparison,
comparing our methodwith STRCF in terms of overlap score.
Obviously, our method performsmore favorably than STRCF
in major videos.
Our Objective Function: According to the above discus-

sion, we propose to learn DACF filters by minimizing the
following objective,

argmin
f

1
2

∥∥∥P>x ∗ f − y∥∥∥2 + 1
2

∑C

c=1

∥∥w · f c∥∥2
+
µ

2
‖f − ft−1‖2 , (5)

where the sample model x is replaced with theC-dimensional
projected feature map P>x.

C. OPTIMIZATION ALGORITHM
To solve (5), We convert it into the equality constrained
optimization form by introducing an auxiliary variable g:

argmin
f

1
2

∥∥∥P>x ∗ f − y∥∥∥2 + 1
2

∑C

c=1

∥∥w · gc∥∥2
+
µ

2
‖f − ft−1‖2

s.t. f = g. (6)

Equation (6) can be solved alternately using the ADMM
technique. The Augmented Lagrangian form of (6) can be
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FIGURE 4. Dimension reducing results of Res3d and Res4f layers on OTB2015 dataset for 100 videos.

FIGURE 5. Overlap score results on OTB2015 dataset for 100 videos, comparing our proposed method and STRCF.

formulated as:

L (f , g, h) =
1
2

∥∥∥P>x ∗ f − y∥∥∥2 + 1
2

∑C

c=1

∥∥w · gc∥∥2
+

∑C

c=1

(
f c − gc

)> hc+ γ
2

∑C

c=1

∥∥f c − gc∥∥2
+
µ

2
‖f − ft−1‖2 , (7)

where h and γ are the Lagrange multiplier and the penalty
factor, respectively. Equation (7) can be reformulated as:

L (f , g, h) =
1
2

∥∥∥P>x ∗ f − y∥∥∥2 + 1
2

C∑
c=1

∥∥w · gc∥∥2
+
γ

2

C∑
c=1

∥∥∥∥f c − gc + 1
γ
hc
∥∥∥∥2 + µ2 ‖f − ft−1‖2 . (8)

The closed-form solutions of (8) can be obtained via alter-
natingly solving the following subproblems:

f (i+1) = argmin
f

∥∥P>x ∗ f − y∥∥2 + γ ∥∥∥f − g+ 1
γ
h
∥∥∥2

+µ ‖f − ft−1‖2

g(i+1) = argmin
g

∑C

c=1

∥∥w · gc∥∥2 + γ ∥∥∥∥f − g+ 1
γ
h

∥∥∥∥2
h(i+1) = h(i) + γ

(
f (i+1) − g(i+1)

)
.

(9)

The solution to each subproblem is detailed as follows:
Subproblem f :

Using Parseval’s theorem, the first objective function of (9)
can be expressed in the frequency domain as:

argmin
f

∥∥∥∥∑C

c=1
x̂ct · f̂

c
− ŷ

∥∥∥∥2 + γ ∥∥∥∥̂f − ĝ+ 1
γ
ĥ

∥∥∥∥
+µ

∥∥̂f − f̂t−1∥∥2 , (10)

where the symbol ˆ means the discrete Fourier trans-
form (DFT) of a signal. Considering processing on all chan-
nels of each pixel, we decompose (10) intoMN subproblems,
each of which is defined as:

arg min
Vj (̂f )

∥∥∥Vj (x̂t)> Vj(f̂ )− ŷj∥∥∥2
+γ

∥∥∥Vj(f̂ )− Vj(ĝ)+ 1
γ
Vj(ĥ)

∥∥∥2
+µ

∥∥∥Vj(f̂ )− Vj
(
f̂t−1

)∥∥∥2 ,
(11)

where Vj(f̂ ) ∈ RC denotes the vector consisting of all C
channels of f̂ on pixel j. The solution for Vj(f̂ ) is gotten by
setting the derivative of (11) with respect to Vj(f̂ ) equal to
zero:

Vj(f̂ ) =
(
(µ+ γ )I + Vj

(
x̂t
)
Vj
(
x̂t
)>)−1

·

(
Vj
(
x̂t
)
ŷj + γVj(ĝ)− Vj(ĥ)+ µVj

(
f̂t−1

))
. (12)
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FIGURE 6. Success and precision plots on OTB2013 dataset.

Since Vj
(
x̂t
)
Vj
(
x̂t
)> is a rank-one matrix, we can calcu-

late
(
(µ+ γ )I + Vj

(
x̂t
)
Vj
(
x̂t
)>)−1 rapidly according to the

Sherman-Morrison formula [35], stating that
(
A+ uv>

)−1
=

A−1 − A−1uv>A−1

1+v>A−1u
, and we rewrite (12) as:

Vj(f̂ ) =
1

µ+ γ

(
I −

Vj
(
x̂t
)
Vj
(
x̂t
)>

µ+ γ + Vj
(
x̂t
)> Vj (x̂t)

)
·

(
Vj
(
x̂t
)
ŷj + γVj(ĝ)− Vj(ĥ)+ µVj

(
f̂t−1

))
. (13)

We should solve MN subproblems separately over C
channels. Thus, the computing complexity of solving
f̂ is O (CMN ). Taking inverse DFT account, it costs
O (CMN logMN ) to solve f .
Subproblem g:
According to the second row of (9), the closed-form solu-

tion of g can be obtained as:

g =
(
W>W + γ I

)−1
(γ f + h), (14)

where W = diag (w) indicates the diagonal matrix with C
diagonal matrices diag (w) concatenated as elements on the
diagonal.
Lagrangian Multiplier Update:
Lagrangian multiplier is updated using present solutions

f (i+1) and g(i+1) as:

h(i+1) = h(i) + γ
(
f (i+1) − g(i+1)

)
, (15)

where f (i+1) and g(i+1) are the current solutions to the above
two subproblems at iteration (i+ 1). We select penalty factor
γ following a scheme as:

γ (i+1) = min
(
γmax, ργ

(i)
)
, (16)

where γmax and ρ denote the maximum value of γ and the
increment factor, respectively.

Our track model is convex, and it satisfies the
Eckstein-Bertsekas condition [36]. Thus, it can converge to
global optimum and has closed-form solution.

IV. EXPERIMENT
A. EXPERIMENTAL SETUP
We implement our tracker on MATLAB2014b using Mat-
ConvNet and AutoNN toolboxes. We run all the experiments
on a PC machine equipped with an Intel i5 4570 CPU, 16GB
RAM, and a single NVIDIA GTX 1080 GPU. We apply
Conv1x, Res3d, and Res4f three layers of SE-ResNet50 to
extract features for training and prediction. The size of
searching area is set between 200 × 200 to 250 × 250.
For the ADMM optimization, we choose the regularization
parameter as µ = 15 and the number of iterations as 2. The
initial penalty factor is set to γ (0) = 0.1 and updated by
γ (i+1) = min

(
γmax, ργ

(i)
)
, where γmax = 1 and ρ = 10.

B. QUANTITATIVE EVALUATION
1) COMPARISONS ON OTB BENCHMARKS
a: EVALUATION ON OTB2013
TheOTB2013 dataset [19] is one of themost popular tracking
datasets, which includes 50 fully annotated image sequences
with various challenging attributes, such as occlusion (OCC),
scale variation (SV), and deformation (DEF). We employ the
One Pass Evaluation (OPE) to evaluate different trackers.
In this benchmark, the quantitative analysis is based on two
evaluation metrics: precision rate plot and success rate plot.
The precision plot shows the percentage of frames whose
distance between the estimated location with the ground truth
is within the given range of threshold distance. The overlap
score is defined as the intersection over union (IoU) ratio
of predicted and ground truth bounding boxes. The success
plot shows the ratios of frames whose overlap score is larger
than the thresholds varied from 0 to 1. The Area Under the
Curve (AUC) of success plots is used to rank the trackers.
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FIGURE 7. Success and precision plots on OTB2015 dataset.

FIGURE 8. Success plots of all competing trackers with 6 attributes on OTB2015 dataset.

We compare our DACF with 15 state-of-the-art trackers
including ECO [18], DiMP-18 [42], DiMP-50 [42], ATOM
[43], ASRCF [37], STRCF [33], DeepSTRCF [33], Deep-
SRDCF [31], C-COT [29], SiamRPN [22], DaSiamRPN [23],
SiamRPN++ [24], SiamBAN [44], MDNet [21], and RPCF
[39]. The success plots and precision plots of comparison
are shown in Fig. 6. Overall, our proposed DACF achieves
almost the best performance with a 0.725 AUC score and a
0.941 distance precision rate.

b: EVALUATION ON OTB2015
The OTB2015 benchmark [20] is an extension of OTB2013,
which includes 50 added video sequences. We evaluate the

performance of the proposed DACF on OTB2015 benchmark
and show the results of comparison with top-performing
trackers, i.e., ECO, DiMP-18, DiMP-50, ATOM, ASRCF,
STRCF, DeepSTRCF, DeepSRDCF, C-COT, SiamRPN,
DaSiamRPN, SiamRPN++, SiamBAN, MDNet, and RPCF
(see Fig. 7).

Our DACF ranks the best performance among these
out-standing trackers with an AUC score of 0.698 and a
distance precision rate of 0.914. DACF outperforms STRCF
by a gain of 6.24% and 6.16% respectively in terms of success
and precision.

Fig. 8 illustrates performance evaluation with 6 attributes
on OTB2015. It is apparent that our DACF achieves almost
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FIGURE 9. Experimental report plots on VOT2016. (a) Average expected overlap graph with trackers ranked from right to left. (b) Expected overlap curve.

TABLE 1. Evaluation results on VOT2016 in terms of Expected Average
Overlap (EAO), Accuracy (A), and Robustness (R). The best three are
indicated by red, blue, and green, respectively.

the best results on these attributes. In the case of Illumination
Variation (IV) and Scale Variation (SV), trackers learning
CFs from numerous features layers (e.g., C-COT) suffer from
over-fitting due to large parameters. Our DACF adapts well
to such variations profiting from dimension adaption opera-
tion and obtains 8.2% and 8.1% gains respectively than its
baseline STRCF. Furthermore, DACF is robust to In-plane
Rotation owed to the use of multi-level deep features and is
superior to STRCF by 12%.

2) COMPARISONS ON VOT2016
The Visual Object Tracking (VOT) [40] is a popular per-
formance evaluation toolkit in the research area of visual
tracking. The VOT kit resets the tracker once it fails to track
the target, which is different from OTB benchmark only ini-
tialing the tracker at the first frame. We perform comparisons
on VOT2016 dataset that consists of 60 short-term video
sequences.

In Table 1, we report the tracking results of our method
compared with 12 representative competitors, including
ECO, C-COT, TCNN [45], ECO-HC, SSAT [40], MLDF
[40], Staple [38], DDC [40], SRBT [40], EBT [46],
STAPLE+ [40], and DNT [47]. Our tracker achieves

expected average overlap (EAO) score of 0.354 and robust-
ness (R) score of 0.233, ranking second and just behind ECO
both on these two metrics. Our method achieves accuracy
(A) score of 0.589 that outperforms all the other trackers.

According to Fig. 9(a), our tracker ranks second in terms of
average expected overlap. It can be seen in Fig. 9(b) that our
tracker achieves superior performance against other trackers
in expected overlap curve.

3) COMPARISONS ON UAV123
Aerial tracking with unmanned aerial vehicles (UAVs)
[41] has become more and more popular nowadays.
UAV123 dataset is composed of 123 HD video sequences
captured from a low-altitude aerial perspective. We evaluate
the performance of our tracker on UAV123 compared with
8 state-of-the-art methods: SiamRPN++, ECO, ECO-HC,
ATOM, SAMF [48], DSST [49], SiamBAN, and SRDCF.
We display the tracking results in Table 2. It can be seen
that our tracker obtains a success score of 0.545 and a pre-
cision score of 0.764. Our tracker achieves more appealing
performance against DCF based trackers but it falls behind
the networks-based end-to-end methods such as ATOM,
SiamBAN, and SiamRPN++.

C. QUALITATIVE EVALUATION
For better visualizing the tracking performance of the pro-
posed method, we display tracking results of our proposed
tracker compared with 4 trackers, i.e., C-COT, DeepSDRCF,
ECO, and Staple on 6 challenging video sequences on
OTB2015 benchmark in Fig. 10.
Fig. 10 illustrates that our proposed tracker performs

well on all challenging sequences against other trackers.
In CarScale, most trackers do not adapt well to scale variation
during tracking except our tracker and Staple tracker. In the
sequence Freeman4, the man’s face is occluded in frame
#158 but our tracker could capture the target after occlusion
during tracking. Most trackers fail to handle in-plane rota-
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TABLE 2. Success and Precision tracking results of our tracker and compared trackers on UAV123 dataset.

FIGURE 10. Qualitative tracking results of our proposed tracker compared with other 4 trackers, i.e., C-COT, DeepSDRCF, ECO, and Staple on 6 challenging
sequences (Top to down: Carscale, Freeman4, MotorRolling, Skating2-2, Skiing, and Soccer ) in OTB2015.

tion even since frame #14 in MotorRolling, but our tracker
reliably tracks the target in subsequent frames. The target in
Skating2-2 undergoes out-of-plane rotation and deformation
due to the male skater changing his movements. Only our
tracker could deal with these challenges well while other
trackers gradually drift away from the target. In Skiing, our
method and C-COT can track the object with the attribution of
low resolution. Our proposed method performs slightly better
than C-COT in the process of tracking. In Soccer, it can be
seen that most trackers fail to cope with heavy background
clutter, but our tracker perform favorably against others.

D. ABLATION ANALYSES
Module Analyses: We investigate the effectiveness of pro-
posed modules in our tracker and report the results in Fig. 11.
The evaluation is performed on the OTB-2013 dataset in
terms of success criterion. (1) We take STRCF tracker as the
‘Baseline’ that utilizes handcraft features only but does not
make use of deep futures nor any feature reducing operation.
(2) ‘Baseline+VGG-M’ is the DeepSTRCF tracker that uses

FIGURE 11. Ablation Analyses of different modules on OTB2013 dataset.

VGG-M network on the basis of ‘Baseline’ without feature
reducing operations. (3) ‘Baseline+VGG-M+DAO’means
joining our dimension adaption operation into ‘Baseline +
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VGG-M’. (4) ‘Baseline + SE-ResNet50’ denotes replac-
ing VGG-M of ‘Baseline + VGG-M’ with SE-ResNet50 as
the backbone net. (5) ‘Baseline + SE-ResNet50 + FCO’
means introducing factorized convolution operation into the
method. (6) ‘Baseline + SE-ResNet50 + DAO’ is our final
tracker that joins dimension adaption operation. According to
Fig. 11, ‘Baseline+ SE-ResNet50’ is superior to ‘Baseline+
VGG-M’ (DeepSTRCF) by 4.4%, benefiting from multi-
channel deep CNN features extracted from SE-ResNet50 net-
work. ‘Baseline + SE-ResNet50 + DAO’ has an improved
performance than ‘Baseline + SE-ResNet50’ by 1.7% due
to the proposed dimension adaption operation. Overall, our
tracker surpasses the baseline method (STRCF) by 6.3%.
Moreover, our method outperforms ‘Baseline + VGG-M’
(DeepSTRCF) using deep features by a gain of 6.1%.

V. CONCLUSION
In this work, we utilize multi-channel deep features in the
STRCF [33] based framework for visual tracking to obtain
efficient sample representation. Dimension adaption opera-
tion is introduced into the framework to reduce the number of
parameters. Compared with previous works reducing param-
eters into fixed numbers, this dimension adaption operation
could adapt well to varied tracking scenes and counter the
issue of over-fitting.
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