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ABSTRACT The project Carbon-Free Island Jeju by 2030 promoted by the Republic of Korea aims to
expand the renewable energy sources centered on wind power in Jeju Island and supply electric vehicles for
eco-friendly mobility. However, the increased penetration rate of electric vehicles and expansion of variable
renewable energy sources can accelerate the power demand and uncertainty in the power generation output.
In this paper, power system analysis is performed through electric vehicle charging demand and wind power
outputs prediction, and an electric vehicle charging decentralization algorithm is proposed to mitigate system
congestion. In order to predict electric vehicle charging demand, the measurement data were analyzed,
and random sampling was performed by applying the weight of charging frequency for each season and
time. In addition, wind power outputs prediction was performed using the ARIMAX model. Input variables
are wind power measurement data and additional explanatory variables (wind speed). Wind power outputs
prediction error (absolute average error) is about 9.6%, which means that the prediction accuracy of the
proposed algorithm is high. A practical power system analysis was performed for the scenario in which
electric vehicle charging is expected to be higher than the wind power generation due to the concentration of
electric vehicle charging. The proposed algorithm can be used to analyze power system problems that may
occur due to the concentration of electric vehicle charging demand in the future, and to prepare a method for
decentralizing electric vehicle charging demand to establish a stable power system operation plan.

INDEX TERMS Electric vehicle, charging station, wind generating resources, charging demand, wind power
forecasting, security analysis.

I. INTRODUCTION
The United Nations Framework Convention on Climate
Change (UNFCCC) aims to reduce global warming caused by
greenhouse gases (GHGs), such as carbon dioxide. To reduce
GHG emissions, several countries are increasing the pro-
portion of renewable and clean sources, such as wind and
solar powers, in energy generation to minimize the exist-
ing fossil fuel-based power generation [1]–[3]. Additionally,
eco-friendlymobility (e.g., electric vehicles (EVs) and hydro-
gen vehicles) and improvement of related infrastructure are
being promoted to reduce the use of carbon in the trans-
portation sector. The large-scale penetration of renewable
energy and expansion of EV supply will affect the operation
of future power systems significantly. The establishment of
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a flexible and decentralized power system operational plan
that accounts for renewable energy generation output and
EV charging demand is essential [4], [5]. The Republic of
Korea aims to expand the supply of renewable energy and
eco-friendly mobility through various projects, such as the
Korean version of the Green New Deal [6], [7], Renew-
able Energy 3020 Implementation Plan [8], and Carbon-Free
Island Jeju by 2030 [9]. Particularly, the Carbon-Free Island
Jeju by 2030 project is leading the supply of renewable
energy in Korea that comprises a 4,085 MW of renewable
energy generation facilities. They intend to supply 100% of
the electricity demand in the province as a renewable energy
source to replace 3,770,000 vehicles with EVs.

The progress in EV supply generates large-scale power
demand in terms of EV charging, and if EVs are penetrated to
the grid, which can affect the power system adversely through
an increase in the peak load or causing a line overload [10].
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To improve these limitations, grid expansion or new compo-
nent is required. However, since this method is not economi-
cally feasible, a Vehicle to Grid (V2G) study was conducted
to design a charger in a way that enables bidirectional power
flow between the system and the Energy Storage System
(ESS) [11]. Additionally, the existing fossil fuel and nuclear
power system operations utilize dispatchable energy sources
that can be dispatched on demand. If an imbalance occurs in
the power supply and demand, a controllable power genera-
tion facility is used to reinstate balance. However, renewable
energy sources have large variability and uncertainty due to
reliance on meteorological variables, such as solar irradi-
ance, wind speed, and wind direction. As the proportion of
renewable energy generation facilities penetrating the power
system increases, output variability is expected to occur in
both demand and supply. A large-scale transmission and sub-
station investment plan must be established based on the eval-
uation of power system stability, considering the uncertainty
of the system element and the stability of renewable energy as
a power source. Therefore, prediction modeling of the renew-
able energy generation output is essential to establish a charge
distribution plan through EV charging demand prediction.
Moreover, the uncertainty of the grid connection owing to
the intermittency and output constraints of variable renewable
energy sources must be controlled [12]. There exist many lit-
eratures that are focusing on EVs charging station integration
with wind power penetration, energy management for intelli-
gent secured framework considering EVs [13]–[15]. The pre-
vious study [15] designed the optimal charging facility for EV
charging station. For optimization of the proposed algorithm,
variables such as charging time of EVs, charging station
capacity and harvested power from wind energy are used.
The seasonal power profile of wind turbine was calculated
and used for optimization, but it is difficult to know how the
wind power output was predicted because the profile process
was not clearly described. In this paper, wind power outputs
prediction was performed using the ARIMAX model, and
the error of the prediction algorithm was analyzed through
comparison with measured data. It can be seen that wind
power generation prediction was performedmore clearly than
previous studies. In the previous study [16], the average
charging demand for one EV was calculated and the EVs
charging demand was estimated by using data on the number
of future EVs and the average mileage per vehicle. The aver-
age mileage per vehicle is the calculated mileage based on
the number of gasoline vehicles and gasoline consumption.
Therefore, this is calculated without considering the charac-
teristics of EVs such as charging time and frequency, so the
data for EV charging demand prediction may be distorted.
In this paper, the EV charging demand was predicted by ana-
lyzing the charging frequency and demand (in MW) for each
time period considering the start and end times of charging in
all charging data along with the charging time and demand of
EVs. The annual EV charging demand was predicted for the
year 2030 based on the number of EVs supplied in 2018. The
main contribution of this study can be summarized as follows:

• Improved EV charging data analysis than previous stud-
ies: fitting the charging frequency and demand curve for
each time period, and predicting EV charging demand
considering charging frequency weighting

• Through the proposed algorithm, it is possible to analyze
the instability of the power system in advance due to
the increase in wind power generation capacity and EV
charging demand, and can be used to devise a plan to
decentralize EV charging demand.

• It can be used to establish a stable power system opera-
tion plan by applying wind power output data estimated
using the ARIMAX model and predicting EV charging
demand to the real-time market.

This paper analyzes the effect of the increase in EV charging
demand and in the proportion of wind power generation on
the power system. In addition, an algorithm for predicting
EV charging demand and wind power output is proposed
to establish a reliable and stable power system operation
plan through decentralization of EV charging demand. The
correlation between the EV charging time is analyzed, charg-
ing frequency, and charging demand by season and time.
Additionally, the EV charging frequencyweight for each hour
was calculated based on EV charging demand measured data.

The remainder of this paper is organized as follows.
In Section 2, the probabilistic charging frequency data are
calculated using random sampling, based on the weight cal-
culated by analyzing the EV charging frequency to predict
the EV charging demand in 2030. Section 3 presents the
wind power output prediction performed using the ARIMAX
model by aggregating the data of past wind speed (m/s)
and measured wind power outputs in MW for each wind
farm on four buses. The power output forecasting of each
bus was converted to the capacity factor of the bus, and the
outputs of the new wind farms scheduled to be built in Jeju
Island by 2030 were predicted by utilizing the associated
capacity output of each bus and the installation capacity of
each new wind farm. In Section 4, we discuss the system
analysis by combining the EV charging demand predicted
using stochastic random sampling in Section 2 with the wind
power outputs predicted using the data obtained in Section 3.
Finally, Section 5 presents the conclusions.

II. PREDICTION OF ELECTRIC VEHICLE (EV) CHARGING
DEMAND
As the supply of eco-friendly mobility increases to imple-
ment the carbon reduction policies, the need to analyze EV
charging demand arises to serve new EV charging stations in
the future. The increase in EV charging demand can affect
the power system adversely by increasing the peak load or
generating a line overload.

A. EV CHARGING DEMAND DATA
To predict the EV charging demand, it is necessary to analyze
the measured data from EV charging stations. To analyze
EV charging demand, data on the charging station names,
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TABLE 1. Overview of electric vehicle charging station data.

TABLE 2. Samples of electric vehicle charging data from Jeju island.

charging power (MW), charging time (minutes), and charge
start and end date data are used. An overview of EV charging
station data is shown in Table 1. Table 2 summarizes an
example of EV charging data.

EV charging stations data were mapped to the Jeju system
bus to evaluate the system impact caused by EV charging
demand. The EV charging stations were linked to the bus
based on the minimum distance calculated. Fig. 1 depicts
the locations of the 154 kV buses and EV charging stations
marked in blue and red, respectively.

B. EV CHARGING DEMAND AND CHARGING FREQUENCY
ANALYSIS
To decentralize the EV charging demand, the EV charging
data were analyzed by dividing the time zones into low,

FIGURE 1. Locations of 154-kV buses and electric vehicle charging
stations in Jeju Island.

FIGURE 2. Comparison of seasonal electric vehicle charging demand and
charging frequency.

intermediate, and peak loads based on the grid load classi-
fication criteria. Table 3 presents the criteria for classifying
the system load times in different seasons [17].

As the Jeju island is a tourist destination, the EV charging
demand pattern varies based on the season. The seasonal
EV charging demand and charging frequency were analyzed
based on the load time classification in Table 3, considering
the number of days (153, 92, and 119 days in spring/fall, sum-
mer, and winter, respectively) in each season. Fig. 2 graph-
ically illustrates the comparison of seasonal EV charging
demand and charging frequency where it can be seen that
the charging demand and frequency patterns are similar in
all seasons.

Fig. 3 illustrates the results of analyzing the EV charging
frequency by season based on time, considering the number
of days in each season. As Jeju Island is a tourist island,
EV charging frequency is high inwinter and summer owing to
the inflow of numerous tourists. Particularly, the EV charging
frequency is high between 10:00 and 17:00 h.

Subsequently, the weights of each season and time were
calculated by analyzing the EV charging demand and fre-
quency comparisons (Fig. 2) and the seasonal EV charging
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FIGURE 3. Comparison of electric vehicle charging frequency by season.

FIGURE 4. Sampling of electric vehicle charging frequency by season and
time based on the weighted application.

TABLE 3. Classification of seasonal demands.

frequency comparisons (Fig. 3). The EV charging frequency
by season and time was extracted based on the random sam-
pling of predicted data for 2030 using the calculated weights.
Fig. 4 illustrates the sampling data of the EV charging fre-
quency by season and time considering the weight for each
time period.

The extracted sampling data are applied to predict the EV
charging demand for each season in 2030 in Section 2.C.

C. PREDICTION OF EV CHARGING DEMAND IN JEJU
ISLAND
In this section, the EV charging demand is predicted for
the year 2030 using the 2018 data of charging demand

TABLE 4. Electric vehicle charging demand for 2018 and 2030.

TABLE 5. Prediction of electric vehicle charging demand for 2030.

and number of EVs. In 2018, the number of EVs supplied
was 15,549 [18], and the charging demand for EVs was
4011.1 MW. Considering that the number of EVs is expected
to be 3,770,000 [9] in 2030, the charging demand for EVs
is predicted based on the number of EVs supplied and the
demand for EVs in 2018. The charging demand for EVs in
2030 is predicted using (1).

EV charging demand2030

= EV charging demand2018 ×
The number of EV2030
The number of EV2018

(1)

The predicted EV charging demand for the year 2030 is
approximately 97,253.8 MW. Table 4 lists the annual and
seasonal EV charging demand in 2018 and 2030. The sea-
sonal charging demand ratio was calculated based on the total
EV charging demand in 2018, whereas the seasonal charging
demand for 2030 was predicted using the calculated ratio and
the predicted annual EV charging demand.

As a result, EV charging frequency sampling data was used
to predict EV charging demand during low, intermediate,
and peak load times (Fig. 4) and the EV charging demand
forecasting in 2030 (Table 4 ), extracted by considering the
weights based on time. Table 5 summarizes the predicted
EV charging demand in 2030, calculated by applying the
proposed EV charging demand prediction algorithm.

The annual and seasonal EV charging demand in 2030 was
predicted using the measured data of EV charging in 2018,
the number of EVs, and the estimated number of EVs
in 2030. Furthermore, the predicted EV charging demand
in 2030 based on the grid load time classification was

63908 VOLUME 9, 2021



G. Kim, J. Hur: Methodology for Security Analysis of Grid-Connected EV Charging Station

TABLE 6. Results of monthly wind power output prediction error (MAE).

TABLE 7. Wind power capacity factor (MW).

TABLE 8. New wind farm information.

estimated using the sampling data of the charging frequency
in time. These are used as input data for the system analysis
in Section 4.

III. WIND POWER OUTPUT FORECASTING
In this section, an autoregressive integrated moving average
with exogenous variables (ARIMAX) model is applied to
predict the wind power output. The power grid was divided
into four groups to predict the hourly wind power output
based on the ARIMAX model. Additionally, the 154 kV bus
in each group was designated as the representative bus of the
corresponding defense.

TABLE 9. Pseudocode of decentralization of electric vehicle charging
demand.

A. ENHANCED ARIMAX MODEL
The ARIMAX model is a multivariate time series prediction
model incorporating external variables in a linear regression
model based on the existing AIRMA model. Unlike the
ARIMA model, which considers only one variable, the ARI-
MAX model predicts using multiple variables [19], [20].
Therefore, in this study, both the historical wind power output
data and the measured wind speed, which had a high corre-
lation with the wind power output, were considered as input
data to predict wind power output using the improved ARI-
MAX model. Fig. 5 depicts the enhanced ARIMAX model
algorithm.

Equation (2) represents the ARIMAXmodel equation. The
first and second terms on the right-hand side of the equation
denote the auto-regressive (AR) and moving average (MA)
components, respectively.

yt =
p∑
i=1

φiyt−i +
q∑
j=1

θjεt−j + αxt , (2)

where, φt , yt−i, θq, εt−j, α, and xt represent the coefficient of
yt−i, output lagged by time step i, coefficient of εt−j, white
noise, coefficient of xt , wind speed at time t .

The ARIMAX prediction model performs data preprocess-
ing using the difference and transformation techniques as the
stationarity verification of the input data necessitates nor-
malization. The input variables used in the ARIMAX model
comprises both endogenous and exogenous variables.

VOLUME 9, 2021 63909



G. Kim, J. Hur: Methodology for Security Analysis of Grid-Connected EV Charging Station

FIGURE 5. The enhanced ARIMAX model algorithm.

In this study, the measured data of past wind power output
and the wind speed constitute the endogenous and exogenous
variables, respectively. Furthermore, a suitable ARIMAX
model must be selected based on the input data. Therefore,
Akaike information criterion (AIC) statistics and residuals
were calculated to verify the significance of the selected
model. The wind power output was predicted using the
enhanced ARIMAX model selected based on the ARIMAX
model establishment, verification process, and the weather
forecast data during the prediction period. Sections 3.B and
3.C describe the prediction method in detail.

B. COMPARISON OF WIND POWER OUTPUT AND WIND
SPEED PATTERN
To predict the wind power output based on the ARIMAX
model, it is necessary to analyze the wind power output and
the measured wind speed data for each bus. In this study,
the data correlation was analyzed using wind power and wind
speed data collected from January 1 to December 31, 2018.
Furthermore, the nearest distance was determined based on
the distances calculated between each of the four 154-kV
representative buses and each wind turbine.

The obtained wind power generation output data for each
bus were grouped by mapping the wind turbine data to the
located bus. Fig. 6 illustrates the comparison pattern of the
wind power output and wind speed data in January 2018.
It was confirmed that fluctuation patterns between the wind
power output and wind speed data were similar for each bus.
This implies that high correlation was observed between the
wind power output and wind speed data. Therefore, the data
of wind speed forecast, past wind power output, and wind
speed can be used as input data for wind power output pre-
diction.

C. PERFORMANCE OF WIND POWER OUTPUT
FORECASITNG
In this section, thewind power output is predicted for each bus
using the ARIMAX prediction model. Hourly wind power

FIGURE 6. Comparison of wind power output and wind speed in January
2018.

output and wind speed data from January 1 to December 31,
2018 were used as input data for the prediction. The data of
the previous 28 days from the time of prediction were set
as the model training data, whereas the hourly wind power
output and wind speed data from January 1 to February 28,
2018, were used as theARIMAXmodel verification data. The
wind power output prediction was performed hourly from
March 1 to December 31, 2018. Fig. 7 illustrates the wind
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FIGURE 7. Comparison of wind power output forecasting with the
measured power outputs in July 2018.

power from July 1 to July 31, 2018, as predicted by themodel;
the figure compares the predicted power outputs with the
measured ones. The black line on the graph represents the
actual wind power outputs, and the red dotted line represents

FIGURE 8. Proposed algorithm for decentralization of electric vehicle (EV)
charging demand.

the predicted data. As a result of comparing the actual and
predicted data, it was analyzed that the prediction was per-
formed well with similar output patterns between the data.

To evaluate the predicted accuracy of wind power output
for each bus, the mean absolute error (MAE) was used as an
error evaluation index. The MAE function equation is

MAE =
1
N

N∑
t=1

|Actual Outputt − Forecast Outputt | (3)

The MAE of the monthly wind power output prediction of
buses A–Dwas calculated using (3), and the obtained data are
presented in Table 6. Based on the prediction error analysis,
it was determined that the MAE of buses A–D in the predic-
tion period were 20 or lower. Additionally, it confirmed that
the ideal wind power output prediction was observed in July,
owing to the lowest monthly average MAE.

The capacity factor of the wind power output for each bus
was calculated based on the grid load time classification using
the predicted wind power outputs. Table 7 summarizes the
capacity factor details calculated using (4).

Capacity Factor [%] =
Actual Power

Installed Capacity
× 100 (4)

Overall, nine newwind farmswith a total installation capacity
of 549.2 MW are planned to be built on Jeju Island by 2030
[21]. Table 8 presents the estimated installation capacities
(MW) and names for each wind farm. These wind farms were
mapped to the nearest bus based on the distance calculated
from the previously selected four buses, A–D.

The estimated wind power output of the new wind farm
that will penetrate the grid in 2030 is calculated using the
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installation capacity provided and the capacity factor calcu-
lated for each bus.

IV. PROPOSED METHODOLOGY FOR SECURITY
ANALYSIS
This section presents the system analysis performed by apply-
ing the EV charging demand predicted using probabilistic
random sampling to the practical Jeju system. In this paper,
six scenarios were selected for EV charging demand and
wind power output prediction. Scenarios are constructed con-
sidering the load times (low load, intermediate load, peak
load) and season (spring/fall, summer, winter). Fig. 8 depicts
the proposed algorithm for decentralizing the EV charging
demand.

The algorithm is performed in three steps, and details of
each step are as follows:

• Step 1: EV charging demand prediction
Seasonal and hourly charging frequency is analyzed
using EV charging data. The parameters required to pre-
dict EV charging demand are EV charging start and end
times, charging time, charging frequency, and charging
power. The analyzed charging frequency is used as a
weight for random sampling of EV charging demand
prediction data for each time.

• Step 2:Wind power output prediction
Wind power output prediction is performed using ARI-
MAX which is a multivariate time series prediction
model. The parameters required for prediction are mea-
sured data (wind power output, wind speed) and wind
speed prediction data.

• Step 3: Power system analysis
Jeju power system analysis (50 bus) is performed using
the data predicted through the Step 1 and 2 algorithms.
Steady-state and N − 1 contingency are performed
for each scenario, and sensitivity analysis is performed
using aggregate contingency overload (ACO) [22], [23]
for the branch flow (%) of N− 1 contingency.
Table 9 shows the decentralization of EV charging
demand proposed in this paper as a pseudocode. The
prediction scenario (EV charging demand and wind
power) created through the proposed algorithmwas used
to analyze the security of power system. This can be
applied to establish a plan for decentralization of charg-
ing according to an increase in EV charging demand in
the future.

The analysis was performed considering the weight of
the charging frequency for each season and the wind
power output forecasting using the enhanced arimax
model. Table 10 summarizes the EV charging demand
and wind power output prediction results discussed in
sections 2 and 3.

The system analysis was performed considering two sce-
narios, namely the intermediate load and peak load times in
summer, during which the EV charging demand is expected
to be higher than the predicted wind power outputs.

FIGURE 9. Results of power system analysis for each scenario.

Fig. 9 depicts the results of the Jeju system analysis for
each scenario. The blue boxes in the figure indicate the bus
in which the line overload occurred or the risk of overload
was identified.

Table 11 shows the branch flow inwhich overload occurred
as a result of N-1 contingency analysis.

Based on the system analysis, over 125% of overload was
observed in Line B in both the scenarios and the line load rate
of Line D was approximately 93%. Additionally, the N − 1
contingency performed at each of the two scenarios resulted
in the line overload of Line B at all assumed failures. The
cause of the overload was primarily analyzed considering two
factors, namely the concentration of EV demand on Line B
and nearby buses, and the increase in the power generation
output due to the slack generator of Line B to maintain the
balance of supply and demand of the system. Table 12 shows
the ACO of the line with overload as a result of N − 1
contingency. The ACO (ACOi, (%), ACOTi (%), ACOLjk (%))
was calculated for sensitivity analysis, and the equation for
each ACO is as follows.

ACOi (%) =
∑

Overloaed branches
that contingency i

(Overload (%)− 100),

(5)
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TABLE 10. Electric vehicle charging demand and wind power output
prediction for 2030 in Jeju island.

TABLE 11. Result of overload line (N−1 contingency).

ACOTi (%) =
∑

Contingencies
that scenario

ACOi, (6)

ACOLjk (%) =
∑

Contingencies that
overloaded branch jk

(Overload (%)− 100),

(7)

where, ACOi (%) is the sum of overloaded branches that con-
tingency i, and ACOTi (%) is the sum of ACOi (%) according
to the scenario. ACOLjk (%) represent the aggregate contin-
gency overload of branch jk .
As a result of the sensitivity analysis, the ACOTI (%) of

the summer intermediate load scenario was calculated as
the largest, which means that the system becomes the most
vulnerable in the scenario. Since the most overload occurred
in Line B, if electric vehicle charging demand andwind power

TABLE 12. Line sensitivity analysis (N − 1 contingency).

output increase, it is necessary to temporarily shut down
the operation of the EV charging station near the Line B,
where the overload is expected to occur, to perform charg-
ing decentralization or reinforce the network. In this paper,
two representative scenarios in which supply and demand
imbalance occurred in the power system were selected and
the effects of EVs and wind power generation on the power
system were analyzed. If the EV charging demand modeling
and wind power outputs prediction for 8760 hours as future
work is performed, the system for more scenarios can be
analyzed and the penetration level for optimal charging can
be derived. Based on this, a method for decentralizing EV
charging for a stable power system operation plan will be
proposed.

V. CONCLUSION
With several countries exploring the development of renew-
able energy source-based power generation, the resulting
uncertainty in power demand and supply can significantly
unbalance the power supply and demand. Furthermore,
the increasing rise of EVs in the transportation sector gen-
erates variability in the power demand and power genera-
tion output, due to the increased charging demand and wind
power installation capacity, respectively. To address the sys-
tem uncertainty that may occur in future power systems,
the prediction model to decentralize the EV charging demand
is needed.

In this paper, the practical methodology for security anal-
ysis of grid-connected electric vehicle charging station with
wind generating resources was proposed. The proposed algo-
rithm is based on the EV charging demand prediction using
probabilistic random sampling considering the weight of
the charging frequency for each season. Additionally, wind
power outputs were predicted using the enhanced ARIMAX
model. The proposed model was applied to practical power
system on Jeju Island, Korea. The results obtained verified
that the proposed algorithm can help the establishment of an
EV charging distribution plan. The proposed methodology
will effectively solve the problems of imbalance between
power supply and demand and power system uncertainty that
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may occur due to the enhanced penetration rate of wind power
facilities and EVs. The proposed algorithm has a limitation
in that the prediction accuracy depends on the wind speed.
Wind power output is predicted by using wind power outputs
as endogenous variables and wind speed as and exogenous
variables through the ARIMAXmodel. The reason for choos-
ing wind speed as an exogenous variable is that the correla-
tion coefficient with wind power outputs is high. However,
if there is little correlation between wind speed and wind
power outputs in some periods, the prediction accuracy can
drop sharply. In addition, it is difficult to perform prediction
when wind speed data for the forecast period, wind speed and
wind outputs for the training period are omitted. In order to
improve these limitations and increase the accuracy of wind
power output prediction, as a future work, weather data such
as wind speed of the target point will be predicted based
on spatial modeling, and missing data pre-processing will be
performed.
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