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ABSTRACT To understand high-order intrinsic key patterns in high-dimensional data, tensor decomposition
is a more versatile tool for data analysis than standard flat-view matrix models. Several existing tensor
models aim to achieve rapid computation of high-order principal components based on the tensor power
method. However, since a tensor power method does not enforce orthogonality in subsequently calculated
decomposition components, it causes far more challenges on principal component analysis of high-order
tensors. To address this problem, several tensor power method variant algorithms incorporating sparsity into
decomposition factors have been proposed. However, because these variant algorithms require additional
procedures based on data-driven hyper-parameter optimization algorithms, a trade-off between computa-
tional cost and convergence exists. In this paper, a novel tensor power method called the fast circulant
tensor power method is proposed. The proposed algorithm combines tensor-train decomposition and the
power method. Tensor-train decomposition is a high-order tensor decomposition method based on auxiliary
unfolding matrix decomposition. Thus, the power method can be embedded into our methodology without
any additional processes. Notably, a simple combination of these two methods may cause a local optima
problem because the power method only guarantees convergence on each unfolding matrix in tensor-train
decomposition. To solve this problem, the circulant updating method is proposed, which globally optimizes
all factor vectors by reordering some steps of the factor vector updates. It is experimentally demonstrated that,
compared to state-of-the-art tensor power method variant methodologies, the proposed algorithm achieves
the lowest computational complexity and quantitatively good performance in various applications including
large-scale color image decomposition and convolutional neural network compression.

INDEX TERMS High-order principal component analysis, tensor decomposition, tensor power method,
tensor-train decomposition.

I. INTRODUCTION
The recent development of multi-sensor techniques and the
emergence of deep neural networks based on large scale
high-order datasets have highlighted the importance of ten-
sor decomposition. Because tensor decomposition benefits
from the power of multi-linear algebra, data analysis based
on tensor decomposition extracts more general dominant
components than flat-view matrix decomposition. There-
fore, high-order principal component analysis based on ten-
sor decomposition is useful and widespread in numerous
applications including signal/image processing, computer
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vision, and many other application areas. Further details
on tensor decomposition and its recent emerging applica-
tions are presented in various books [17]–[22] and tutorial
papers [6], [12], [23]–[28].

The most common tensor model is the canonical
polyadic decomposition (CPD), which was indepen-
dently introduced under the names of canonical decom-
position (CANDECOMP) [2] and parallel factor model
(PARAFAC) [3]. CPD aims to represent high-order tensors
as a linear combination of R rank-1 tensors, where R is the
rank of CPD. Because the calculation of CPD is intrinsi-
cally multi-linear, the solution can be obtained based on
a sequence of linear sub-problems similar to the alternat-
ing least squares (ALS) optimization algorithm [12], [24].
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Therefore, ALS-based CPD optimizes single factor matrices,
while keeping other factor matrices, fixed [3], [5]. Although
ALS achieves satisfactory performance, it inevitably inherits
the problem of alternating optimization techniques and is not
guaranteed to converge to a stationary solution. To address
these issues, Chen et al. developed a rectifying algorithm
on ALS [5]. However, this resulted increasing the com-
putational cost by N times per iteration, where N is the
number of dimensions of the input tensor. Despite the ade-
quate performance, the feasibility of achieving fast and effi-
cient computation using ALS-based CPD is significantly
limited [5], [6], [15], [16].

To reduce the computational cost of ALS-based CPD,
numerous methodologies have been developed including line
search extrapolation methods [34]–[38], compression [39],
and fast dampedGauss-Newtonmethods [40]–[43]. Although
these methods can reduce computational complexity, they
are based on the product of unfolding matrices and Khatri-
Rao products of all factor matrices except one. This pro-
cedure becomes computationally intensive in CPD [32]. To
reduce the computation cost in ALS via tensor decomposi-
tion, Zniyed et al. developed trains of coupled third order CPD
algorithms capable of dimensionality reduction on an input
tensor before performing an ALS-based CPD procedure [31].
However, such an algorithm is based on the singular value
decomposition (SVD) of unfolding matrices, which can lead
to significant computational complexity when decompos-
ing high-dimensional large-scale input tensors. Additionally,
there are several works pointing out the instability problem of
ALS-based CPD in practical high-order principal component
analysis [46]–[48].

To reduce the computational costs of low-rank tensor
approximation without ALS and SVD, a tensor power
method (TPM) is introduced [4]. It can be considered as a
generalization of the power method (PM) in matrix decom-
position [7], [8]. Similar to the PM, the TPM approximates
the N th-order rank-1 tensor as a singular value and N fac-
tor vectors, where N is the number of dimensions of the
input tensor. The multi-rank CPD problem can be solved by
sequentially applying the TPM to the residuals remaining
after subtracting the previously computed factors. Unlike the
PM, theoretical understanding of the TPM is limited. The
TPM can be viewed as a gradient descent step, corresponding
to the problem of finding the optimal rank-1 tensor of an input
tensor [10]. This optimization problem is non-convex. More-
over, the number of stationary points of this optimization
problem is exponential in the dimensions of the input tensor.
This makes the analysis of the TPM far more challenging
[9]–[11]. In particular, the TPM suffers from the curse-of-
dimensionality problem.

Despite the above challenges, several algorithms have been
developed to enhance the robustness of TPMby incorporating
sparsity into the original TPM. Allen et al. [1] proposed the
sparse tensor power method (STPM), which directly added
an L1-norm penalty to the decomposition factor vectors in
the rank-1 tensor approximation problem and solved it via

alternative soft threshold updating. Sun et al. [13] devel-
oped the tensor truncated power method (TTPM), which
incorporates the amount of truncation selection into the esti-
mation of decomposition factors to encourage sparsity of
each decomposition component. Both STPM and TTPM can
enhance the performance of TPM. However, these algorithms
require enormous computational cost to adaptively control
the amount of sparsity; this control is based on data-driven
hyperparameter optimization using the Bayesian information
criterion (BIC) [14]. This hyperparameter optimization is per-
formed by solving the combinatorial optimization problem,
which identifies the best combination of hyperparameters
by searching all possible combinations. Therefore, the com-
putational costs are inevitably high. These computational
complexities are proportional to the number of dimensions
and entries of an input tensor. The enhanced versions of the
TPM experience a trade-off between efficient processing and
precise approximation.

In this paper, we propose a novel tensor power method,
called the fast circulant tensor power method (FCTPM). The
FCTPM is based on a combination of tensor-train decom-
position (TTD) [29] and the PM [7], [8]. TTD is a novel
type of tensor decomposition and represents high-order ten-
sors as consecutively connected 3rd-order core tensors [29].
By utilizing TTD, the proposed algorithm can stably decom-
pose high-order tensors via low-rank matrix decomposition
of auxiliary unfolding matrices [29]. In addition, the circulant
updatingmethod is proposed to obtain the global convergence
of decomposition factors. The FCTPM approximates the
most dominant rank-1 tensor of input tensor via rank-1 TTD.
Each unfolding matrix is also decomposed by rank-1 matrix
decomposition. This property makes each unfolding matrix
ignore the connectivity between other unfolding matrices.
Therefore, the circulant updating method is developed to con-
sider the connectivity between unfolding matrices by merely
changing the order of updating steps of the right singular vec-
tor after the computations for all the left singular vectors. The
FCTPM utilizes PM in auxiliary unfolding matrix decom-
position, which is better understood than the TPM in terms
of dynamics and convergence [7], [8]. Therefore, the PM
guarantees the convergence of decomposition factors and the
circulant updatingmethod enhances the connectivity between
decomposition factors. In conclusion, the FCTPM aims to
decompose input high order tensors via the linear combina-
tion of R rank-1 tensors, similar to the procedure followed
by CPD, rank-1 TTD, and other rank-1 tensor decomposition
algorithms. However, the primary purpose of the proposed
algorithm is to reduce the computational costs associatedwith
the decomposition process. As such, the proposed algorithm
does not involve the use of ALS or SVD,which are usually the
basic procedures used in conventional tensor decomposition
algorithms and entail enormous computational costs. In this
context, the TPM and its variants are our desired methods
because they have the same purpose as our algorithm.

In summary, the main contributions of this study are as
follows:
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• This work provides a novel fast rank-1 tensor approxi-
mation based on a suitable combination of rank-1 TTD
and the PM via the proposed circulant updating algo-
rithm. Thus, the proposed algorithm can inherit the
advantages of both TTD and the PM simultaneously.

• The proposed methodology is based on TTD. Thus, this
method can stably decompose high-order tensors via
low-rank decomposition on auxiliary unfoldingmatrices
of the high-order input tensor. This property helps the
FCTPM avoid the curse-of-dimensionality problem.

• Because the proposed algorithm utilizes the PM, a the-
oretically well-known matrix decomposition algorithm,
the convergence of each unfolding matrix decompo-
sition is guaranteed. The proposed circulant updating
method enhances the connectivity between each unfold-
ing matrix decomposition factor from the PM

• Unlike TPM variant algorithms, the proposed tensor
model does not require the data-driven hyperparameter
optimization procedures that increase the computational
complexity. This property emphasizes the computational
efficiency of the proposed algorithm.

• To evaluate the generalization peculiarity of the pro-
posed algorithm, we report experimental results from
various applications including numerical simulations,
large-scale color image reconstruction, and convolu-
tional neural network (CNN) compression.

The remainder of the paper organized as follows. Section II
briefly introduces the notations of tensor algebraic operations
and two representative tensor models, namely CPD and TTD.
Section III explains existing tensor power method algorithms,
namely TPM, STPM, and TTPM. In Section IV, the proposed
algorithm is explained with theoretical analysis. The obtained
experimental results are presented and analyzed in Section V.
Finally, this work is summarized in Section VI.

II. PRELIMINARIES
This section gives simple descriptions of the notations and
definitions in tensor algebra and brief explanations of two
representative tensor decomposition algorithms, namely CPD
and TTD. Specifically, the existing TPM and its variants are
based on rank-1 CPD. The proposed tensor model, FCTPM,
follows the same approach to decomposition as rank-1 TTD.

A. NOTATION AND DEFINITIONS
In this paper, the mathematical notation follows the one used
in [12]. The order of a tensor is the number of dimensions,
also called ways or modes. Vectors (first-order tensor) are
denoted by lowercase boldface such as a; matrices (second-
order tensor) are denoted by uppercase boldface such as A;
and tensors are denoted by calligraphic uppercase boldface
such as A. The element (i1, . . . , iN ) of an N th-order tensor
A ∈ RI1×...×IN is denoted by Ai1,...,iN . The transpose of
matrix A ∈ RI1×I2 is denoted by AT , which has a size of
I1 × I2. Mode-n unfolding is the process that transforms the
N -way tensor A ∈ RI1×...×IN into the second-order tensor
A(n) ∈ RIn×I1...In−1In+1...IN by reordering the elements of

the input tensor A. The n-mode product of a tensor A ∈
RI1×I2×...×IN with a 2-mode tensor B ∈ RJ×In is represented
byA×nB and is of size I1×. . .×In−1×J×In+1×. . .×IN . The
rank-1 tensor is the N th-order tensor A ∈ RI1×...×IN which
is computed from the outer product of N vectors, i.e., A =
a(1) ◦ . . . ◦ a(N ) where ◦ is the vector outer product operation
and a(n) is an nth factor vector of size In. The diagonal tensor
is the tensor A ∈ RI1×...×IN if Ai1,...,iN is not zero only if
i1 = . . . = iN . The norm of a tensor A ∈ RI1×...×IN is
denoted by ||A||, which is the square root of the sum of the
squares of all elements of tensorA, i.e.,

||X || =

√√√√ I1∑
i1

. . .

IN∑
iN

A2
i1,...,iN

.

B. CANONICAL POLYADIC DECOMPOSITION (CPD)
The CPD represents an N th-order tensor X ∈ RI1×...×IN

as the linear combination of a finite number of rank-1
tensors [12]. It is given by

X =
R∑
r=1

Dr,r,rU(1)
:,r ◦ . . . ◦ U

(N )
:.r , (1)

or coequally,

X = D ×1 U(1) . . .×N U(N ), (2)

where Dr,r,r is the r th non-zero diagonal element of the
N th-order diagonal core tensor D ∈ RR×...×R. The U(n)

∈

RIn×R denotes an nth factor matrix composed of a concate-
nation of R factor vectors u(n), which have a size of In.
In (1), the N -dimensional tensorX is represented by a linear
combination of R rank-1 tensors. Thus, R denotes CPD-rank.
If R is fixed as 1, it is referred to as rank-1 CPD; it computes
N factor vectors (singular vectors) and one singular value,
where N is the number of dimensions of the input tensor.
The ALS method is a representative CPD computation

algorithm. The cost function of rank-R CPD can be expressed
as follows:

min
D,U(1),...,U(N )

||X −D ×1 U(1) . . .×N U(N )
||
2. (3)

The ALS approach optimizes the target factor matrix
while keeping the remaining factor matrices fixed. For
example, when ALS solves U(1), the other factor matrices
U(2), . . . ,U(N ) are fixed. This procedure in ALS performed
multiple times until the prespecified convergence criterion is
satisfied such as the maximum number of iterations, mini-
mum reconstruction error. Although the ALS methodology
is simple to understand and implement, it can take numer-
ous iterations to converge [5], [6], [15], [16]. Therefore, the
TPM-based algorithms are developed to efficiently compute
the rank-1 tensor. The TPM and its variant algorithms are
presented and explained in Section III.
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C. TENSOR-TRAIN DECOMPOSITION (TTD)
TTD is a numerically reliable tensor decomposition approach
to tackle the curse-of-dimensionality problem. The TTD rep-
resents an N th-order tensor X ∈ RI1×...×IN as N consec-
utive connected 3rd-order core tensors G [29]. TTD of an
N -dimensional tensor X can be represented as follows:

X =
R1∑
r1=1

. . .

RN−1∑
rN−1=1

G(1)
r0,:,r1 ◦ G

(2)
r1,:,r2 ◦ . . . ◦ G

(N )
rN−1,:,rN , (4)

or correspondingly,

X = G(1)
×1 G(2) . . .×1 G(N ), (5)

where G(n)
∈ RRn−1×In×Rn is the nth core tensor and

G(n)
rn−1,:,rn ∈ RIn denotes a fiber vector of the nth core tensor.
In TTD, the entries of tensor Xi1,i2,...,iN are computed

by the product of slice matrices of each core tensor, so the
boundary condition R0 = RD = 1 must be imposed.

Xi1,i2,...,iN = G(1)
:,i1,:

G(2)
:.i2,:

. . .G(N )
:,iN ,:, (6)

whereG(n)
:,in,: ∈ RRn−1×Rn is the inth slicematrix of the nth core

tensor. Therefore the ranks of tensorX in TTD are defined as
[1,R1, . . . ,RN−1, 1], which is called TT-rank. Similar to the
rank-1 CPD, if all elements in the rank of the TTD are set to 1,
it is called rank-1 TTD. In other words, all the 3rd-order core
tensors in rank-1 TTD can be considered as factor vectors in
rank-1 CPD.

The core tensor G(n) computation in TTD is based on
the low-rank approximation of auxiliary matrices of the
N -dimensional input tensor X ∈ RI1×...×IN , which is as
follow:

U(1)V(1)T
= svd(X(1),R1),

G(1)
= reshape(U(1), [1, I1,R1]),

X(2)
= reshape(V(1)T , [R1 I2, I3 . . . IN ])

U(2)V(2)T
= svd(X(2),R2),

G(2)
= reshape(U(2), [R1, I2,R2]),
...

G(N )
= reshape(V(N−1)T , [RN−1, IN , 1]), (7)

where svd(A,Rn) denotes the rank-Rn singular value decom-
position (SVD) on the matrixA;U(n) is a left singular matrix,
V(n) is a right singular matrix, and Rn is the rank of SVD.
reshape(A, [I1, I2, I3]) denotes reshaping of the matrix A to
a size of I1 × I2 × I3.

Equation (7) shows that each core tensor in TTD is
calculated via low-rank matrix decomposition. This charac-
teristic of TTD makes it stable and lets it avoid the curse-
of-dimensionality problem. Therefore, the proposed tensor
model adopts TTD to inherit these advantages. The details of
TTD in the proposed algorithm are described in Section IV.

Algorithm 1 Basic Pseudo-Code for Tensor Power Method
(TPM)

Require: A N th-order tensor X ∈ RI1×I2×...×IN , number of
iterations K , and rank R.

Output: The N th-order diagonal tensor D ∈ RR×R×...×R,
and N factor matrices U(1)

∈ RI1×R,U(2)
∈

RI2×R, . . . ,U(N )
∈ RIN×R.

while r = 1 to R do
Initialize N random unit vectors u(1) ∈ RI1 , u(2) ∈
RI2 , . . . ,u(N )

∈ RIN .
while k = 1 to K do
while n = 1 to N do
u(n)←− u(n) in Eq. (10)

end while
end while
Dr,r,r ←− X ×1 u(1)

T
×2 u(2)

T
. . .×N u(N )T .

U(1)
:,r ←− u(1), U(2)

:,r ←− u(2), . . . ,U(N )
:,r ←− u(N ).

X ←− X −Dr,r,ru(1) ◦ u(2) ◦ . . . ◦ u(N ).
end while

III. RELATED WORKS
This section provides explanations of the TPM, STPM,
and TTPM, which are developed to approximate the best
rank-1 tensor of an input tensor. Subsequently, the problem
is defined. Both STPM and TTPM aim to enforce sparsity
in subsequently computed components in TPM. All these
related methods are summarized in Algorithms 1, 2, and 3,
respectively. For clarity, these algorithms are described for
rank-R CPD on a N th-order tensor.

A. TENSOR POWER METHOD (TPM)
The rank-1 CPD optimization problem on the N th-order ten-
sor X ∈ RI1×...×IN can be defined as follows:

min
d,u(1),...,u(N )

||X − du(1) ◦ . . . ◦ u(N )
||
2

subject to d>0 and u(n)
T
u(n) = 1 for n = 1, 2, . . . ,N ,

(8)

where u(n) ∈ RIn is the nth factor vector. Because the optimal

solution of (8) must satisfy d = X×1u(1)
T
. . .×N u(N )T [12],

the above rank-1 CPD optimization problem can be rewritten
as follows:

max
u(1),...,u(N )

||X ×1 u(1)
T
. . .×N u(N )T

||
2

subject to u(n)
T
u(n) = 1 for n = 1, 2, . . . ,N . (9)

In the TPM, the solution of factor vector u(n) in (8) is
simply calculated by (10), as shown at the bottom of the page,
where ||.||2 is the L2-norm operator.

u(n) =
X ×1 u(1)

T
. . .×n−1 u(n−1)

T
×n+1 u(n+1)

T
. . .×N u(N )T

||X ×1 u(1)
T
. . .×n−1 u(n−1)

T
×n+1 u(n+1)

T
. . .×N u(N )T ||2

, (10)
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Algorithm 2 Basic Pseudo-Code for Sparse Tensor Power
Method (STPM)

Require: A N th-order tensor X ∈ RI1×I2×...×IN , number of
iterations K , rank R, and N sets of bandwidth parameters
3(1),3(2), . . . , 3(N ).

Output: The N th-order diagonal tensor D ∈ RR×R×...×R,
and N factor matrices U(1)

∈ RI1×R,U(2)
∈

RI2×R, . . . ,U(N )
∈ RIN×R.

while r = 1 to R do
Initialize N random unit vectors u(1) ∈ RI1 , u(2) ∈
RI2 , . . . ,u(N )

∈ RIN .
while k = 1 to K do

while n = 1 to N do
u(n)←− u(n) in Eq. (10)
Compute λ(n) in Eq. (13).
u(n)←− Soft(u(n), λ(n)).

u(n)←−

{
u(n)/||u(n)||2 ||u(n)||2 > 0
0 otherwise.

end while
end while
Dr,r,r ←− X ×1 u(1)

T
×2 u(2)

T
. . .×N u(N )T .

U(1)
:,r ←− u(1), U(2)

:,r ←− u(2), . . . ,U(N )
:,r ←− u(N ).

X ←− X −Dr,r,ru(1) ◦ u(2) ◦ . . . ◦ u(N ).
end while

Hence, the TPM iteratively updates randomly initialized
factor vectors u(n) based on the above equation until it
converges to the solution. In a rank-R CPD optimization
problem, the TPM can be applied to the residual tensor
left after removing a previously calculated rank-1 tensor.
However, this method only converges to a local optimum
of (9) [12] and does not enforce orthogonality in subse-
quently computed components [1]. The overall process of
TPM-based N th-order tensor decomposition is summarized
in Algorithm 1.

B. SPARSE TENSOR POWER METHOD (STPM)
To encourage sparsity in the TPM, the STPM reformulates (9)
by directly adding L1-norm penalties to each of the factor
vectors u(n) [1]. The reformulated objective function in the
STPM is as follows:

max
u(1),...,u(N )

X ×1 u(1)
T
. . .×N u(N )T

−

N∑
n=1

λ(n)||u(n)||1

subject to u(n)
T
u(n) ≤ 1 for n = 1, 2, . . . ,N , (11)

where ||.||1 is the L1-norm operator and λ(n) is the non-
negative bandwidth parameter, which controls the amount
of sparsity in the factor vectors u(n). Because the STPM
has relaxed the equality constraints in (9) into inequality
constraints in (11), the analytical solution of factor vector
u(n) in STPM can be obtained by a soft-threshold operation
given by

u(n)i =sign(u
(n)
i ) max(|u(n)i | − λ

(n), 0) for i=1, . . . , In. (12)

Algorithm 3Basic Pseudo-Code for Tensor Truncated Power
Method (TTPM)

Require: A N th-order tensor X ∈ RI1×I2×...×IN , num-
ber of iterations K , rank R, and set of cardinality values
S(1), S(2), . . . , S(N ).

Output: The N th-order diagonal tensor D ∈ RR×R×...×R,
and N factor matrices U(1)

∈ RI1×R,U(2)
∈

RI2×R, . . . ,U(N )
∈ RIN×R.

while r = 1 to R do
Initialize N random unit vectors u(1) ∈ RI1 , u(2) ∈
RI2 , . . . ,u(N )

∈ RIN .
while k = 1 to K do

while n = 1 to N do
Compute s(1), s(2), . . . ,s(N ) in Eq. (16).
u(n)←− u(n) in Eq. (10)
u(n)←− Truncate(u(n), supp(u(n), s(n))).

u(n)←−
u(n)

||u(n)||2
.

end while
end while
Dr,r,r ←− X ×1 u(1)

T
×2 u(2)

T
. . .×N u(N )T .

U(1)
:,r ←− u(1), U(2)

:,r ←− u(2), . . . ,U(N )
:,r ←− u(N ).

X ←− X −Dr,r,ru(1) ◦ u(2) ◦ . . . ◦ u(N ).
end while

Hereinafter, the soft-threshold operation on u(n) with band-
width parameter λ(n) is denoted as Soft(u(n), λ(n)).

To select the bandwidth parameters, the STPM, which is
a data-driven algorithm, utilizes the Bayesian information
criterion (BIC) [14] in every optimization iteration:

λ(n) = argmin
λ(n)∈3(n)

BICSTPM(3(n)), (13)

where λ(n) is one of the elements of the pre-specified set of
bandwidth parameters 3(n) [1], and BICSTPM(3(n)) is

log
(
||X − du(1) ◦ . . . ◦ u(N )

||
2

I1 . . . IN

)
+
log(I1 . . . IN )
I1 . . . IN

||u(n)||0,

(14)

where ||u(n)||0 is the L0-norm of u(n), which returns the
number of non-zero elements of the factor vector u(n), and
d denotes the singular value of the approximated rank-1
tensor. The procedure for using STPM with N rd-order tensor
decomposition is described in Algorithm 2.

C. TENSOR TRUNCATED POWER METHOD (TTPM)
The TTPM encourages sparsity in each decomposition com-
ponent by embedding the truncation procedure into the
TPM [13]. Specifically, after updating the factor vectors u(n)

using TPM, the TTPM truncates its elements to preserve the
entries of s(n) largest magnitudes. In this paper, we denote the
truncation step in TTPM according to the notation in [13]:

Truncate(u(n), supp(u(n), s(n))), (15)
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where supp(u(n), s(n)) denotes the set of indices of u(n) cor-
responding to its largest s(n) absolute values, and s(n) is the
cardinality parameter that controls the sparsity in TTPM.
Therefore, the TTPM imposes a desirable sparsity for the
decomposition components [13]. The detailed TTPM proce-
dure is shown in Algorithm 3.

Similar to the STPM, the BIC-type criterion is utilized
in TTPM to estimate cardinality parameters. Thus, the best
combination of cardinality parameters is obtained by solving
the following optimization problem:

s(1), .., s(N )
= argmin

s(1)∈S(1),..,s(N )∈S(N )
BICTTPM(S(1), . . . , S(N )),

(16)

where S(n) is a set of cardinality parameters which include the
s(n) and BICTTPM(S(1), . . . , S(N )) defined as follows:

log
(
||X − du(1) ◦ . . . ◦ u(N )

||
2

I1 . . . IN

)
+

log(I1 . . . IN )
I1 . . . IN

N∑
n=1

||u(n)||0, (17)

where d denotes the singular value of approximated rank-1
tensor, and u(n) denotes the factor vector.

D. PROBLEM DEFINITION
The TPM can be considered as a gradient descent step with
infinite step size, corresponding to the problem of obtaining
the best rank-1 approximation of the input tensor, which is
non-convex optimization problem [9], [10]. Unlike the PM,
where the isolated stationary points are at most the number of
dimensions, the number of stationary points for the TPM is
exponential in the input dimension [11]. Moreover, the TPM
does not enforce orthogonality subsequently in calculated
decomposition factors [1], [4], [13]. These problems, defined
as the curse-of-dimensionality problem, complicate the anal-
ysis of TPM far more challenging.

Despite the above challenges, both STPM and TTPM are
developed to enhance the performance of the TPM by incor-
porating sparsity in the decomposition factors. Because the
primary purpose of embedding to enforce orthogonality in
TPM, the methods exhibit enhanced performance based on
a well-defined theoretical analysis [1], [13]. However, both
methods control the amount of sparsity via the combinato-
rial optimization process, which based on data-driven BIC
method [14]. Because the combinatorial optimization prob-
lem is based on the calculation of all possible combinations
of variables, the computational cost is significantly higher
than TPM. Furthermore, the data-driven BIC generates more
complex TPM variants in large-scale high dimensional tensor
decomposition. Therefore, both of them do not meet the set
requirements for the TPM, such as ensuring efficiency for
rank-1 tensor estimation.

IV. PROPOSED METHOD
In this section, a novel tensor power method called the
FCTPM is proposed. The FCTPM is based on a proper

Algorithm 4 Basic Pseudo-Code for Fast Circulant Tensor
Power Method (FCTPM)

Require: A N th-order tensor X ∈ RI1×I2×...×IN , number of
iterations K , rank R.

Output: The N th-order diagonal tensor D ∈ RR×R×...×R,
and N factor matrices U(1)

∈ RI1×R,U(2)
∈

RI2×R, . . . ,U(N )
∈ RIN×R.

while r = 1 to R do
Initialize N − 1 random unit vectors g(1) ∈ RI1 , g(2) ∈
RI2 , . . . , g(N−1) ∈ RIN−1 .
X(1)
←− X(1)

while k = 1 to K do
while n = 1 to N − 2 do

v(n)←−
X(n)T g(n)

||X(n)T g(n)||2
.

X(n+1)
←− reshape(v(n), [In+1,

∏N
j=n+2 Ij]).

end while

g(N )
←−

X(N−1)T g(N−1)

||X(N−1)T g(N−1)||2
.

v(N−1)←− reshape(g(N ), [IN ])
while n = N − 1 to 2 do

g(n)←−
X(n)v(n)

||X(n)v(n)||2
.

v(n−1)←− reshape(g(n)v(n)T , [
∏N

j=n Ij])
end while

g(1)←−
X(1)v(1)

||X(1)v(1)||2
.

end while
Dr,r,r ←− X ×1 g(1)

T
×2 g(2)

T
. . .×N g(N )T .

U(1)
:,r ←− u(1), U(2)

:,r ←− u(2), . . . ,U(N )
:,r ←− u(N ).

X ←− X −Dr,r,rg(1) ◦ g(2) ◦ . . . ◦ g(N ).
end while

combination of TTD and the PM via the proposed circulant
updating method. The proposed tensor model inherits stabil-
ity from TTD and low computational cost from the PM. The
proposed algorithm is summarized in Algorithm 4 and Fig. 1.

A. FAST CIRCULANT TENSOR POWER METHOD (FCTPM)
The FCTPM consists of two major components: rank-1
TTD for approximating rank-1 tensors through low-rank
decomposition of auxiliary unfolding matrices, and the PM
for determining right and left singular vectors from randomly
initialized vectors.

1) DEFINITION OF RANK-1 TTD
In FCTPM, the rank-1 tensor approximation of a high-
dimensional input tensor is performed using rank-1 TTD.
To comprehend rank-1 TTD, let us assume an N -dimensional
input tensorX of size I1× I2× . . .× IN . The TTD represents
the input tensor X as N sequentially connected core tensors
G(n)
∈ RRn−1×In×Rn , as defined in (4). As previously stated,

rank-1 TTD utilizes TT-rank, which only comprises 1; in that
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FIGURE 1. The overall procedures of the proposed algorithm in a 3rd-order tensor decomposition example.

case, (4) can be rewritten as follows:

X = G(1)
1,:,1 ◦ G

(2)
1,:,1 ◦ . . . ◦ G

(N )
1,:,1, (18)

where G(n) denotes the core tensor of rank-1 TTD of size
1 × In × 1. Because all the elements of TT-rank are 1,
the summation operation in (4) can be discarded in the
aforementioned equation. Furthermore, if the dimensions
of the core tensor G(n) in the above equation is squeezed,
the core tensors can be considered as the vector data g(n).
Therefore, (18) can be rewritten as follows:

X = g(1) ◦ g(2) ◦ . . . ◦ g(N ), (19)

where g(n) ∈ RIn is the 1st-order tensor of the core tensor
G(n) in (18). The above equation proves that the definition
of rank-1 TTD is exactly the same as that of rank-1 CPD.
In other words, the core tensors of rank-1 TTD are the same
as the factor vectors of rank-1 CPD.

2) COMPUTATION OF RANK-1 TTD IN FCTPM
By utilizing rank-1 TTD in (19), the proposed objective func-
tion is defined as follows:

min
g(1),...,g(N )

||X − dg(1) ◦ . . . ◦ g(N )
||
2

subject to d > 0 and g(n)
T
g(n) = 1 for n = 1, 2, . . . ,N ,

(20)

whereX ∈ RI1×...×IN denotes the input tensor, d denotes the
most dominant singular value of the approximated rank-1 ten-
sor, d denotes the approximated singular value, and g(n) ∈ RIn

denotes the factor vector from the core tensor of rank-1 TTD.
As stated previously in Section II, the TTD decomposes

the high-order tensor via the low-rank decomposition of
the auxiliary unfolding matrices of the input tensor. There-
fore, the proposed FCTPM, which follows the decomposition
approach of TTD, solves the objective function, as shown
in (20). Hence, the computation of the first component vector

g(1) in (20) is as follows:

min
g(1),v
||X(1) − d (1)g(1)v(1)

T
||
2
F

subject to d (1) > 0, g(1)
T
g(1) = 1, and v(1)

T
v(1) = 1,

(21)

where ||X||F denotes the Frobenius norm of matrix X,
X(1) denotes the mode-1 unfolding matrix of
size I1 × I2 . . . IN , d (1) represents the largest singular value
of X(1), g(1) represents the first factor vector of size I1,
v(1) ∈ RI2...IN is the left singular vector of X(1), and d (1)

denotes the calculated singular value of X(1).
As shown in the above optimization problem, the first-

factor vector g(1) is obtained by rank-1 matrix decomposition
of the mode-1 unfoldingX(1). This characteristic implies that
the proposed tensor model can be incorporated with the theo-
retically well-understoodmatrix decomposition algorithm for
the overall computation of factor vectors.

After solving the above matrix decomposition problem,
v(1) is reshaped into a matrix X(2) of size I2 ×

∏N
j=3 Ij, for

the calculation of the second factor vector g(2):

X(2)
= reshape

v(1), [I2,
N∏
j=3

Ij]

 . (22)

After reshaping the right singular vector v(1) in (21),
the rank-1 matrix decomposition on X(2) is performed
as follows:

min
g(2),v(2)

||X(2)
− d (2)g(2)v(2)

T
||
2
F

subject to d (2)>0, g(2)
T
g(2)=1, and v(2)

T
v(2) = 1, (23)

where d (2) is the most dominant singular value of X(2), and
g(2) is the second factor vector of the rank-1 TTD.
After optimizing (23), v(2) is reshaped, and the third-factor

vector g(3) is computed. This sequential process is repeatedly
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performed until the right singular vector of the matrix decom-
position procedure is the last factor vector g(N )

∈ RIN , which
is represented as follows:

min
g(N−1),g(N )

||X(N−1)
− d (N−1)g(N−1)g(N )T

||
2
F

subject to d > 0, g(N−1)
T
g(N−1)=1, and g(N )T g(N )

=1,

(24)

where X(N−1) is expressed as reshape(v(N−2), [IN−1, IN ]),
d (N−1) is the dominant singular value of the reshaped matrix
X(N−1), and g(N−1) and g(N ) are the N − 1th and N th factor
vectors, respectively.

From (21) to (24), the N core vectors g(n) of rank-1 TTD
can be computed; they are considered as the factor vectors
in the approximated rank-1 tensor. The singular value of the
rank-1 tensor can be computed as follows:

d =
N−1∏
i=1

d (i), (25)

where d (i) is a computed singular value of the ith auxiliary
unfolding matrix decomposition.

3) POWER METHOD (PM) IN FCTPM
In FCTPM, the component vector g(n) is computed via the
rank-1 matrix decomposition on auxiliary unfolding matri-
ces, because the proposed tensor model utilizes the rank-1
TTD. In other words, the proposed method can utilize matrix
decomposition methodologies, enabling the FCTPM to avoid
the curse-of-dimensionality problem. During the factor vec-
tor calculation of the FCTPM, the algorithm requires only the
most dominant singular value and its associated right and left
singular vectors. Therefore, the proposed algorithm operates
in combination with the PM which is a simple and powerful
matrix decomposition algorithm.

In the 1st factor vector calculation problem in (21), the PM
initializes g(1) as a random unit vector, i.e., ||g(1)||2 = 1. Sub-
sequently, the PM iteratively performs vector-matrix opera-
tions until the pre-specific termination condition is satisfied,
as follows:

v(1) =
X T

(1)g
(1)

||X T
(1)g

(1)||2
∈ R

∏N
j=2 Ij ,

g(1) =
X(1)v(1)

||X(1)v(1)||2
∈ RI1 , (26)

where X(1) ∈ RI1×I2...IN is the mode-1 unfolding matrix of
X ∈ RI1×...×IN , and g(1) and v(1) are the left and right singular
vectors ofX(1), respectively. The singular value d (1), which is
associated with the left and right singular vectors in the above
equation, are as follows:

d (1) = g(1)
TX(1)v(1). (27)

For the convergence analysis of the PM in the proposed
algorithm, we assume that there exist orthonormal bases

U ∈ RI1×R and V ∈ RI2...IN×R which satisfy the following
condition:

X(1) =

R∑
j=1

djU:,jVT
:,j, (28)

where d ∈ RR is a vector in which each element indicates the
singular value corresponding to the singular vectors. Accord-
ing to the equations above, after k iterations of (26), g(1) and
v(1) are defined as follows:

g(1) = δg(1)
R∑
j=1

d2kj U:,jUT
:,jg

(1),

v(1) = δv(1)
R∑
j=1

d2k+1j V:,jUT
:,jg

(1), (29)

where δg(1) and δv(1) are the corresponding normalization fac-
tors. Therefore, after k iterations of the PM, ||v(1)||22/||g

(1)
||
2
2

satisfies:

||v(1)||22
||g(1)||22

= 1

= d21

(
δ2v(1)

δ2g(1)

)C +∑R
j=µ+1(

dj
d1
)4k+2||djV:,jUT

:,jg
(1)
||
−2
2

C +
∑R

j=µ+1(
dj
d1
)4k ||djU:,jUT

:,jg
(1)||−22

,
(30)

where µ is the multiplicity of the singular value d1 and C =∑µ
j=1(U

T
:,jg

(1))2. Thus, δv(1)/δg(1) converges to the largest sin-
gular value d1. From this convergence property, ||X T

(1)g
(1)
−

d1v(1)||2 becomes zero as X T
(1)g

(1)
= (δv(1)/δg(1) )v

(1).

4) CIRCULANT UPDATING ALGORITHM IN FCTPM
From the explanation of rank-1 TTD in the previous subsec-
tion, the nth factor vector g(n) depends on the previously com-
puted right singular vector v(n−1), which is obtained from the
n−1th factor vector g(n−1) computation.Moreover, thematrix
decomposition for each factor vector is independently per-
formed. These properties can significantly contribute to the
local optima problem, causing as critical performance loss in
the FCTPM. Therefore, the circulant updating algorithm is
proposed to prevent this problem.

To integrate each unfolding matrix decomposition proce-
dure, the circulant updating algorithm simply changes the
order of the left singular vector computations. In the existing
PM, the left singular vector calculation is performed imme-
diately after the right singular vector computations, defined
as (26). According to the decomposition approach of rank-1
TTD, the right singular vector v(n) is reshaped and utilized for
the computation of the next factor vectors g(n+1) and v(n+1)

after the computation by the PM. This property implies that
the v(n) can be reconstructed by g(n+1) and v(n+1), which is as
follows:

v(n) ≈ v̂(n) = reshape(d (n+1)g(n+1)v(n+1)
T
, [In+1 . . . IN ]),

(31)
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TABLE 1. Comparison of computational complexities.

where v̂(n) is the reconstructed v(n), and d (n+1) denotes the
singular value associated with both g(n+1) and v(n+1). There-
fore, the nth left singular vector g(n) is updated in the FCTPM
by the reconstructed right singular vector v̂(n) as follows:

g(n) =
X(n)v̂(n)

||X(n)v̂(n)||2
. (32)

By utilizing the circulant updating algorithm, the FCTPM
can stably approximate a rank-1 tensor by globally optimiz-
ing each factor vector.

The overall procedure of the proposed algorithm is pre-
sented in Algorithm 4 and Fig. 1. Especially, Fig. 1. shows
the proposed algorithm with a 3rd-order tensor decompo-
sition example to help ease of understanding. The above
Algorithm 4 and Fig. 1. show that the FCTPM is a fast
rank-1 tensor approximation based on a suitable combination
of rank-1 TTD and the PM via the novel circulant updat-
ing algorithm. Thus, the proposed algorithm can inherit the
advantages of both TTD and the PM simultaneously.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
To compare the computational complexity of the FCTPM
with that of the other methods, we assume the decompo-
sition of the N -dimensional tensor X ∈ RI×...×I to R
rank-1 tensors over K iterations. The analysis only takes
into account the dominant term using Big O notation, O(.).
The results of this comparison are summarized in Table.1.
From the results, it is observed that the proposed algo-
rithm has the lowest computational cost compared to the
other algorithms. In TPM, the major computational cost
originates from the vector-by-unfolding matrix multiplica-
tion operation. On the contrary, since the FCTPM is based
on rank-1 TTD, the computational complexity is reduced
because the vector-by-unfolding matrix multiplication is con-
verted to vector-by-auxiliary unfoldingmatrix multiplication.
In addition, the TTD is a well-known tensor decomposition
algorithm that enhances the representation compactness and
numerical estimation performance [31]. The proposed algo-
rithm can inherit the aforementioned advantages and demon-
strate a lower computational complexity. The STPM and

TTPM are developed for enhancing the performance of TPM
via a combinatorial optimization-based sparsity hyperparam-
eter combination selection. It is confirmed that the additional
procedures induce huge computation costs. Although the
enhanced versions of TPM can enforce orthogonality in the
subsequently computed decomposition factors, the associated
computational costs are huge, and therefore, cannot meet the
primary condition of the tensor power method, which is to
decompose high-order tensors with an efficient computation.
Obviously, the FCTPM has a lower computational cost than
the STPM and TTPM.

In the computational complexity analysis, we also included
the computational costs of rank-1 TTD and ALS-based CPD.
The rank-1 TTD means that the CPD computation is per-
formed using the equivalence between CPD and TTD; this
method resembles the proposed algorithm in terms of the
decomposition method used. However, since the TTD is orig-
inally based on the SVD of unfolding auxiliary matrices,
the computational cost is larger than that of the proposed
algorithm. The ALS-based CPD is a representative computa-
tion of CPD, which addresses the decomposition problem by
converting the nonconvex optimization problem into convex
subproblems [12]. Each convex subproblem is then optimized
by a matrix-Khatri-Rao matrix, where the Khatri-Rao matrix
has a size ofR×IN−1. Therefore, this optimization singularity
leads to huge computational costs in ALS-based CPD. Due to
the effective combination between rank-1 TTD and PM via
a novel circulant updating algorithm, the FCTPM achieves
the lowest computational costs compared to conventional
methods.

V. EXPERIMENTS
This section describes both numerical simulations and image
reconstruction experiments that were performed to verify the
computational complexity and rank-1 tensor approximation
performance of the proposed algorithm. The FCTPM and
the algorithms used for comparisons, including the TPM,
STPM, and TTPM, were actualized using TensorLy [44],
Python-based tensor algebra framework. All the experiments
were performed on an Intel core i7 3.0 GHz processor
and 32 GB memory. The STPM and TTPM experiments
required the bandwidth parameter sets 3(n) in (13) and
the cardinality sets S(n) in (16), respectively. These hyper-
parameter sets in STPM and TTPM were composed of
[10−2, 10−1.8, 10−1.6, . . . , 100] ∈ R11.

A. NUMERICAL SIMULATION EXPERIMENT
The primary purpose of the FCTPM is to approximate several
dominant rank-1 tensors from the input tensor. In other words,
the proposed algorithm aims to identify the most dominant
singular values and its associated factor vectors. For numeri-
cal simulation experiments, input tensor X̂ were constructed
as follows:

X̂ = X + αN , (33)

where X is a normalized low-rank tensor, N is a randomly
generated tensor from the ‘‘continuous uniform’’ distribution,
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TABLE 2. Experimental results on numerical simulation experiments.

and α is the coefficient of N . Naturally, the sizes of X and
N are the same for element-wise addition. The three cases of
numerical simulation can be defined as follows:
• Case 1: Decomposition of the 5th-order tensor
X̂ ∈ R30×...×30 with rank R = 15, number of iterations
K = 10, and α = 10−3.

• Case 2: Decomposition of the 5th-order tensor
X̂ ∈ R50×...×50 with rank R = 20, number of iterations
K = 10 and α = 10−5.

• Case 3: Decomposition of the 7th-order tensor
X̂ ∈ R15×...×15 with rank R = 8, number of iterations
K = 15 and α = 10−5.

Two metrics were used in the simulation experiments,
namely the processing time and reconstruction error.
The processing time was used to measure the computational
complexity of each algorithm. The reconstruction error can
be expressed as follows:

Reconstruction error

:=
||X −

∑R
r=1Dr,...,rU

(1)
:,r ◦ . . . ◦ U

(N )
:,r ||2

||X ||2
(34)

where X is a noise free low-rank tensor in (33) and the∑R
r=1Dr,...,rU

(1)
:,r ◦ . . . ◦ U

(N )
:,r in the numerator is the tensor

reconstructed from the noised tensor X̂ in (33).
Throughout these experiments, it was confirmed that the

reconstruction performance on various high dimensional ten-
sors and the processing time vary according to the size of
tensor. Furthermore, the robustness of the model was evalu-
ated by the utilizing noise tensorN . The results are summa-
rized in Table. 2. These three simulations were independently
repeated 50 times. Hence, the entry in Table. 2 is the average
of the 50 results.

Overall, the FCTPM exhibited the shortest processing
time as compared to the other considered algorithms in the
numerical simulation results. Therefore, the FCTPM is the
most efficient algorithm amongst all the other methodolo-
gies. Furthermore, it was observed that the TPM required
the longest processing time for computing the vector via
unfolding matrix multiplication when comparing it to the
proposed algorithm. Unlike the TPM, the FCTPM converted
this multiplication operation to auxiliary unfolding matrix

multiplication because it is based on rank-1 TTD; this sin-
gularity of the proposed algorithm is the major reason behind
its observed computational efficiency.

In simulation case 3, the reconstruction error of TPM is
much larger than in the other simulation cases. As mentioned
in section III, this problem arises because TPM does not
enforce orthogonality in the subsequently computed decom-
position factors. Hence, the STPM and TTPM were devel-
oped to solve this problem by embedding sparsity into the
decomposition components. The selection of the sparsity
control hyperparameters was optimized using combinatorial
optimization, which requires searching through all possi-
ble combinations of hyperparameters. As a result, although
STPM and TTPM enhance the reconstruction performance
of the TPM, they require a high processing time. Even in
simulation cases 1 and 2, the STPM recorded a higher recon-
struction error. In simulation case 3, a moderate improvement
in the reconstruction error was observed. On the contrary,
the TTPM can effectively enhance the approximation perfor-
mance of TPM. However, this method recorded the highest
processing time. In other words, the conventional enhanced
version of TPMcannotmeet the primary purpose of the tensor
power method: the efficient approximation of rank-1 tensors.

From the experimental results, it can be concluded that the
FCTPM incurs the lowest computational costs while ensur-
ing a good reconstruction performance in high dimensional
tensor decomposition when compared to TPM, STPM, and
TTPM.

B. IMAGE RECONSTRUCTION EXPERIMENT
To further understand the performance of the FCTPM, image
reconstruction experiments were performed. A colored image
is a type of representative tensor data, and its size can be
expressed as width × height × color. In our experiment,
the number of color dimensions was kept at 3 since only RGB
colored images were used. Two image of different sizes were
utilized described as follows:
• The ‘‘Lenna’’ image, with a size of 512× 512× 3. This
image is shown at the top of the first column of Fig. 2.

• The ‘‘Frymire’’ image, with a size of 1024× 1024× 3.
The image is shown at the third row of the first column
of Fig. 2.
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FIGURE 2. Experimental results of clean image reconstruction. First row: experimental results on noise free
‘‘Lenna’’ image of size 512 × 512 × 3. Second row: experimental results of noise free ‘‘Frymire’’ image of size
1024 × 1024 × 3. (a) Input images. (b) Images reconstructed via FCTPM. (c) Images reconstructed via TPM.
(d) Images reconstructed via STPM. (e) Images reconstructed via TTPM.

To evaluate the reconstruction performance in a practical
situation, original images were reconstructed from corrupted
ones. For this purpose, noised image were corrupted using
Gaussian noisewith amean of 0 and standard deviation of 0.3.
The noised images are depicted at the first column of first and
third rows in Fig. 3.

Similar to the numerical simulation experiments, the
computational complexity can be determined based on the
processing time, and the reconstruction accuracy can be mea-
sured based on the representative image quality metrics, peak
signal-to-noise ratio (PSNR) and structural similarity index
map (SSIM) [45]. These metrics can be defined as follows:

PSNR := 10 log10

(
1

MSE

)
, (35)

where, MSE denotes the mean square error and is defined as:

MSE :=
width∑
w=1

height∑
h=1

color∑
c=1

(
Xw,h,c −X ∗w,h,c

)
, (36)

where X ∗ denotes the reconstructed image and X means
the input image. Thus, the PSNR represents a measure of
the peak error. Unlike PSNR, the SSIM evaluates the differ-
ences between the target image and reconstructed image as
perceived by a human visual system rather than in terms of

numerical errors. Both these evaluation metrics were actual-
ized by a MATLAB image processing toolbox.

The experiment results help us visually compare the
robustness of the proposed algorithm with competing algo-
rithms. All the image reconstruction experimental results are
summarized in Table. 3 and Figs. 2 and 3. Each of these four
experiments was repeated 50 times. As a result, the entry
in Table. 3 shows the average value of the 50 values obtained
from these repetitions.

In the image reconstruction experiments on the noise free
‘‘Lenna’’ image, the FCTPM and TTPM showed similar
performances in terms of the image quality metrics. However,
with regard to the processing time, the FCTPMwas the fastest
and requiring a time of less than one second to compute
50 dominant rank-1 tensors of the ‘‘Lenna’’ image, which has
a size of 512× 512× 3. This shows the FCTPM is the fastest
rank-1 tensor approximation algorithm and has better recon-
struction performance than the other algorithms. In the clean
‘‘Frymire’’ image experiment, the FCTPM demonstrated the
lowest processing time and showed the highest reconstruction
performance. Furthermore, it was observed that the FCTPM
achieved a good image reconstruction performance regardless
of the image size. Fig. 2 shows the images reconstructed
by the FCTPM and the other algorithms. It was difficult to
visually identify the differences between the FCTPM and the
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FIGURE 3. Experimental results of noised image reconstruction. First row: experimental results on Gaussian
noised ‘‘Lenna’’ image of size 512 × 512 × 3. Second row: experimental results on Gaussian noised ‘‘Frymire’’
image of size 1024 × 1024 × 3. (a) Input images. (b) Images reconstructed via FCTPM. (c) Images
reconstructed via TPM. (d) Images reconstructed via STPM. (e) Images reconstructed via TTPM.

TABLE 3. Experimental results on image reconstruction experiments.

other algorithms in the noise free ‘‘Lenna’’ image experi-
ments. However, in the clean ‘‘Frymire’’ image experiments,
the FCTPM could effectively reproduce details such as tex-
ture and pattern.

From the results of the image reconstruction experiments
summarized in Table. 3 and Figs. 2 and 3, it can be observed
that the FCTPM has a low reconstruction performance loss

compared to the other algorithms. In other words, the FCTPM
has the highest robustness amongst all the other algorithms
considered for comparison.

This proves that the FCTPM has the lowest computational
cost while having a desirable reconstruction performance in
noised images as compared to the other algorithms that were
considered for comparison.
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TABLE 4. Experimental results on CNN compression experiments.

FIGURE 4. Accuracy of compressed CNN in fine-tuning, The x- and y-axes of all sub-figures are fine-tuning epochs and accuracy, respectively.
(a) VGG13 on CIFAR10, (b) VGG13 on CIFAR100, (c) ResNet18 on CIFAR10, and (d) ResNet18 on CIFAR100.

C. CNN COMPRESSION EXPERIMENT
The FCTPM-based CNN compression experiment was per-
formed to evaluate the proposed method’s performance on
a practical high-order principal component analysis. The
motivation behind tensor decomposition for CNN compres-
sion is to search for a compact convolutional weight ten-
sor, which is close to the original by removing redundant
components [49], [50].

In [46], TPM has been used as a compression tool to
decompose a weight tensor of convolutional layer W ∈

RD×D×S×T into into three components, where D× D means
the spatial window size, S and T are the number of channels
of the input and output, respectively.

The original operation of convolutional layer in CNN can
be represented by a linear mapping that inputsX ∈ RH×W×S

into Y ∈ RH ′×W ′×T as follows:

Yh′,w′,t =

D∑
i=1

D∑
j=1

S∑
s=1

Wi,j,s,tXh,w,s,

h = (h′ − 1)4+ i− P,

w = (w′ − 1)4+ j− P, (37)

where, 4 is the stride and P is the size of the zero-padding.
Therefore, the storage complexity and computational com-
plexity of the original operation of above equation are equiv-
alent to D2ST and D2STW ′H ′, respectively.
From the above equation, the rank-R CPD-based convolu-

tional weight tensorW decomposition is as follows:

Yh′,w′,t=

R∑
r=1

U (2)
1,1,r,t

D∑
i=1

D∑
j=1

Di,j,1,r

S∑
s=1

U (1)
1,1,s,rXh,w,s, (38)

whereD,U (1),U (2) are the three factors of sizeD×D×1×R,
1× 1× S × R, and 1× 1× T × R, respectively. Because the
spatial window size D× D is already small, e.g., 3× 3, they
do not need to be decomposed.
In conclusion, the TPM-based convolutional layer com-

pression changes the original convolutional layer to three
sequentially connected layers which are a 1 × 1 convolu-
tional dimension reduction layer; U (1), a D × D depth-wise
convolutional layer;D, and a 1× 1 convolutional dimension
expansion layer; U (2). The storage complexity and compu-
tational complexity of TPM-based compressed convolutional
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layer are SR+D2R+TR and SRWH +D2RW ′H ′+TRW ′H ′,
respectively.

We obtained the experimental results by replacing the
TPM in [46] with FCTPM, STPM, and TTPM. To fairly
compare the proposed algorithm and the other competing
algorithms, we select the rank R through the variational
Bayesian matrix factorization (VBMF) [51], widely used in
CNN compression methodologies [48], [49], [52], and fine-
tune the compressed CNNs from each algorithm with an
identical learning-rate schedule. The experiments are con-
ducted on two representative image classification datasets,
CIFAR100 [53] and CIFAR10 [53] and two representative
CNN architectures, VGG13 [54] and ResNet18 [55].

Table 4 shows that the proposed algorithm achieved a
lower accuracy degradation (the highest accuracy) than the
other algorithms, include TPM, STPM, and TTPM. Note
that the floating-point operations per second (FLOPS) is the
computational cost. Because the rank selection algorithm
determines the storage and computational complexities in
tensor decomposition-based CNN compression, the com-
pressed neural networks inevitably have the same compres-
sion ratio for the number of parameters and computational
cost. Therefore, the experimental results show that the pro-
posed algorithm has better high-order principal component
analysis performance than the competing algorithms. The
proposed algorithm produces more significant components
than the TPM and its variants in every convolutional layer,
regardless of both the scale of datasets and CNN architec-
ture. Fig. 4 illustrates classification accuracy curves in every
fine-tuning epochs. In almost all overall epochs, the pro-
posed algorithm reached a higher accuracy than the other
algorithms. This peculiarity implies that the FCTPM-based
CNN compression has a faster convergence speed than the
others, resulting from the stable decomposition property of
the proposed algorithm.

VI. CONCLUSION
In this paper, a novel and efficient TPM called FCTPM is
proposed, involving a combination of rank-1 TTD and the
PM via the circulant updating method. The FCTPM inher-
its the advantages of both rank-1 TTD and PM. Therefore,
the computational cost can decrease considerably because
the FCTPM approximates the rank-1 tensor via auxiliary
unfolding matrix decomposition. This property facilitates the
use of the PM, which is a powerful representative matrix
decomposition algorithm. Moreover, the proposed circulant
updating algorithm is a major component in the FCTPM;
it helps the factor vectors to globally converge on the solu-
tion. To show the superior performance of FCTPM, we con-
ducted several experiments, including numerical simulations,
image reconstruction, and CNN compression. In the numer-
ical simulation and image reconstruction, it can be seen that
the FCTPM produces better high-order principal component
analysis performance than the other methods with the lowest
processing times. The 7th-order tensor decomposition in the
numerical simulation and the corrupted image reconstruction

experiment shows that the proposed algorithm is a better
tensor analysis tool than conventional algorithms regardless
of the dimensions of the input tensor and noise corruption.
In CNN compression experiments, the FCTPM produces a
lower accuracy loss than TPM and its variants. From this
experiment, it is verified that our method can be used in prac-
tical tensor analysis applications. In conclusion, we devel-
oped a rank-1 tensor approximation algorithm to understand
high-order intrinsic key patterns in high-dimensional data
with computational costs lower than those of the conventional
TPM and its variants.
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