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ABSTRACT The contradiction between transport capacity and passenger demand in urban rail transit
is usually prominent during peak hours in some megacities of China, and some passenger flow control
measures have been adopted to alleviate passenger congestion. To better save passengers’ travel time
when taking passenger flow control measures, this paper proposes an integrated optimization method
of bus route adjustment with network-level passenger flow control for urban rail transit, in which the
controlled passengers can freely choose to shift to bus or to retain in urban rail transit for pursuing a lower
travel cost. With the objectives of minimizing average additional travel time for all affected passengers
and maximizing the operating revenue of urban rail transit, an integer non-linear programming model is
formulated to determine the inbound passenger volumes and bus adjustment schemes. To solve this proposed
model effectively, a multi-objective particle swarm optimization based on dual-population co-evolution is
designed. Finally, three sets of numerical experiments, including an integrated optimization experiment and
two independent optimization experiments of passenger flow control, are implemented to demonstrate the
feasibility and benefits of the proposed method.

INDEX TERMS Urban rail transit, passenger flow control, bus route adjustment, integrated optimization,
dual-population co-evolution.

I. INTRODUCTION
Urban rail transit is a rapid, efficient, punctual and green
transportationmode, and plays a significant role in alleviating
the traffic pressure. In recent years, it has been in great devel-
opment, and its scale has been unceasingly expanding, espe-
cially in some megacities. With the urban rail transit stepping
into network operation, its passenger demand has increased
dramatically, but its transport capacity cannot efficientlymeet
its huge passenger demand, especially during peak hours.
In large cities, such as Beijing, Shanghai and Guangzhou,
passenger congestion in urban rail stations during peak hours
is out of the ordinary serious, which poses a great threat to
the operational safety of the urban rail system.

Facing passenger congestion in rail stations, an intuitive
solution is to enhance the transport capacity. However, due to
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the limitation of the maximum transport capacity and the long
period for infrastructure construction, enhancing the capacity
is a challenging task [1]. As an alternative, implementing
some operational measures is a common way. In general,
the available measures to release passenger congestion can
be classified into two categories. One concentrates on opti-
mizing operation plans, such as train timetables and stops,
while the other focuses on passenger demand management,
including passenger flow control and fare strategies.

In recent years, some researchers [2]–[5] investigated the
service-oriented train timetabling problem under crowded
situations to improve the service quality of urban rail tran-
sit. Although service-oriented train timetabling indeed short-
ens the passengers’ waiting time, passenger congestion on
platforms remains difficult to relieve. A large amount of
passengers gathering on the platforms easily brings high
risks. Moreover, several researchers tried to study fare strate-
gies to alleviate congestion in rail stations. For example,
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Wang et al. [6] proposed an additional fare strategy to shift
a few passengers of a congested station to board/alight at its
neighboring uncongested stations. Yang et al. [7] put forward
a fare-reward scheme to incentivize a shift in departure time to
relieve peak-hour congestion at rail stations. These strategies
can alleviate passenger congestion to some extent, but it is
difficult to determine a reasonable fare strategy in reality.

Passenger flow control (PFC) is a popular measure to
alleviate passenger congestion inside rail stations. It makes
redundant passengers retain at station halls or outside sta-
tions, thus passenger congestion on platforms can be signifi-
cantly cut down. In practice, some megacities in China have
adopted some PFC measures during morning and evening
peak hours to ensure the operational safety of rail stations.
Specific measures include limiting the passengers’ walking
speed by setting railings, controlling the inbound passenger
volume by closing some gates or ticket machines, and even
closing some heavily congested stations. However, these PFC
measures are implemented mostly according to operators’
subjective experiences, and lack of precise methods [8].
Nowadays, some researchers have noticed this problem and
conducted some studies on improving the effectiveness of
PFC measures. These studies can be divided into three levels,
i.e., station-level, line-level and network-level PFC.

As to station-level PFC, the adopted control measures are
usually implemented in various stations respectively, and they
are not coordinated among stations. Li and Zhou [9] proposed
a dynamic passenger flow analysis algorithm to get refined
data of passengers, which can optimize the PFC strategy
in a transfer station. Xu et al. [10] developed a queuing
analytical model to calculate the station service capacity
and guide the PFC for a single station during peak hours.
Xu et al. [8] focused on the PFC inside a station under
uncertain demand and proposed a detailed procedure of PFC
under various demand scenarios. Moreover, Zhang et al. [11],
Baee et al. [12] and Seriani et al. [13] devoted to simulating
passengers’ boarding and alighting behavior to optimize the
PFC strategy inside a station.

Since station-level PFC is prone to neglect the impact of
inbound passengers at upstream stations to that in down-
stream stations, its effect of relieving congestion is relatively
limited on a rail line with multiple crowded stations. Hence,
plenty of researchers [1], [14]–[19] turned to line-level PFC,
which synergistically imposes PFC measures at multiple rail
stations. For example, Wang et al. [14] studied the joint
PFC problem between stations on a rail line to minimize the
average passenger delay. By considering the dynamic propa-
gation features of passenger flow, Jiang et al. [15] developed
a dynamic PFC model on a metro line for maximizing the
comprehensive profit of both boarding passengers and limited
passengers. Shi et al. [17] proposed a method for collabo-
ratively optimizing the origin-destination PFC strategies of
multiple stations. Jiang et al. [1] designed an optimization
scheme to solve the coordinated control problem of passenger
inflow for a rail line. Furthermore, Jiang et al. [18] combined
skip-stopping and PFC on a single line, and put forward a

novel Q-learning approach to solve the combined optimiza-
tion problem.

Compared with station-level PFC, line-level PFC has
achieved great progress in alleviating congestion among mul-
tiple stations, but it overlooks the interactions between sev-
eral lines at transfer stations. Thus, it is hard for line-level
PFC to relieve congestion of transfer stations [20]. With
the network operation of urban rail transit, many transfer
stations are under great pressure as the increase of transfer
passengers. Therefore, network-level PFC is urgently needed,
and through taking coordinated PFC measures to multiple
stations in the network simultaneously, the congestion in the
whole network can be better alleviated. Up to now, several
researchers have concerned on this problem. For instances,
Zeng et al. [21], Kong and Zhang [22] developed some
methods from the view of network controllability, to identify
critical stations for carrying out PFC on an urban rail network.
Xu et al. [20] formulated a bi-level programming model to
address the PFC problem in a metro network, and tried to
simultaneously control the inbound and transfer passengers
at transfer stations. Shi et al. [23] derived a cooperative PFC
method for a metro network by considering the dynamic
characteristics and transfer behaviors of passengers.

Network-level PFC can effectively reduce passenger accu-
mulation on platforms, nevertheless, it inevitably causes some
passengers to lose the access to travel in time as they are
prohibited from entering the station instantly. Since a major-
ity of passengers during peak hours are for commuting pur-
poses and willing to wait at station halls, plenty of waiting
passengers and long waiting time are prone to riots. To save
passengers’ waiting time, the evacuation of controlled pas-
sengers is as important as PFC. Generally, bus bridging is
recognized as an excellent way to evacuate passengers under
such circumstances, and some researchers have researched
the problem of bus bridging service design for crowded com-
muting urban rail lines or under the disruption of an urban
rail system. Tomitigate overcrowded situation for commuting
metro lines, Yang et al. [24] proposed a two-stage mathe-
matical model, firstly determined the stations and periods
for taking PFC strategy in stage 1, and specially exploited
inter-line and parallel bus-bridging services to transport these
commuters affected by PFC in stage 2. Incorporating the
uncertainty of bus travel time, Liang et al. [25] developed
a robust approach to bus bridging service design under the
disruption of an urban rail system. Jin et al. [26] proposed a
measure of enhancing the capacity of bus services, so as to
improve the connectivity of an integrated metro-bus network
and enhance the resilience of a metro network. Jin et al. [27]
presented a bus bridging service design approach to respond
the disruption of an urban rail network. For providing bus-
bridging services, most researches considered organizing new
bus routes, which will result in high costs. This paper con-
siders to service the controlled passengers by adjusting some
existing bus routes to stop at these bus stations near the con-
trolled rail stations. In this way, the controlled passengers can
expediently shift to the bus system with a relatively low cost.
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In summary, the combination of bus route adjustment (BRA)
with PFC of urban rail cannot only effectively reduce the
accumulation of passengers and ensure the safe operation
of rail stations, but also enhance the travel efficiency of
controlled passengers.

This paper devotes to integrating BRA with network-level
PFC of urban rail transit during peak hours, and aims to
achieve their integrated optimization. Network-level PFC is
adopted to alleviate the operational pressure in a crowded
urban rail network, while BRA, as a supplementary mea-
sure, is to minimize the negative effect of PFC. Compared
with the existing research, we try to provide the following
contributions.

(1) BRA strategy is first integrated with the urban rail
network-level PFC problem. The combination of BRA with
PFC cannot only effectively strengthen the operational safety
at rail stations, but also quickly evacuate some controlled
passengers with relatively short travel time.

(2) An integrated optimizing model of BRA with PFC
for urban rail transit is formulated to minimize the average
additional travel time of all affected passengers based on the
effective utilization of train capacity.

(3) Amulti-objective particle swarm optimization based on
dual-population co-evolution (DPCMOPSO) is designed to
solve the proposed model. It introduces a hybrid constraint
processing method of feasible and infeasible population con-
current evolution, as well as infeasible solutions repair, and
this method can better ensure the convergence speed and
improve the global search ability of the algorithm.

The rest of this paper is organized as follows. In Section II,
we describe the integrated optimization problem of BRA
with urban rail PFC in detail. In Section III, the choices
of shift and retention behavior for controlled passengers are
analyzed. In Section IV, the additional travel time of shifted
passengers, retained passengers and original bus passengers
are analyzed respectively. In Section V, the studied problem
is formulated as an integer non-linear programming model.
In Section VI, a multi-objective particle swarm optimiza-
tion based on dual-population co-evolution (DPCMOPSO)
is proposed to solve the model. In Section VII, numerical
and comparative experiments are conducted, and Section VIII
summarizes this research and discusses further studies.

II. PROBLEM DESCRIPTION
This section firstly details the direction-based PFC problem
in the urban rail network and its corresponding BRA prob-
lem. Then the integrated optimization problem of BRA with
network-level PFC is described.

A. DIRECTION-BASED PFC IN URBAN RAIL NETWORK
Passenger flow control (PFC) of urban rail transit is to control
the inbound or transfer passengers by utilizing the gates,
escalators and other facilities. When the remaining capacity
of arriving trains is far frommeeting passenger demand, oper-
ators needs to take PFC measures, which can avoid accident
risks caused by passenger accumulation on platforms, such

as trampling, falling into the track. PFC can not only relieve
passenger congestion inside rail stations but also guarantee
the travel safety for passengers. According to the refinement
degree of PFC at rail stations, there are usually the following
three types of PFC.

(1) Total-volume-based PFC, which aims to control the
total volume of inbound passengers without distinguishing
their directions and destinations.

(2) Direction-based PFC, which is to carry out PFC for the
up and down directions at a station, respectively.

(3) Origin-destination-based PFC, which is to control the
inbound passenger volume separately for each destination.

As shown in Fig. 1, a bidirectional rail line contains A, B,
C, D and E five stations, in which station C is a PFC station.
Three types of PFC are illustrated in Fig. 1(a), Fig. 1(b) and
Fig. 1(c), respectively.

FIGURE 1. Illustration of three types of PFC. (a) Total-volume-based PFC.
(b) Direction-based PFC. (c) Origin-destination-based PFC.

At each rail station, the numbers of arriving passengers
in the up and down directions are often unbalanced, and
the remaining capacities of approaching trains from two
directions are also unbalanced. Total-volume-based PFC is
inclined to cause capacity waste in the direction with fewer
passengers but large remaining capacity. Origin-destination-
based PFC can achieve accurate control and ensure the effec-
tive utilization of train capacity in theory. However, it is
hard to implement in practice because of the large number
of passengers’ terminal stations. As a synthesis of the above
two ways, direction-based PFC takes both advantages into
account, and it cannot onlymake better use of the capacity but
also be conducted potentially after making some adjustments
to station facilities and organization methods.

To alleviate the congestion of multiple stations in an urban
rail network, a coordinated PFC is necessary [28]. This paper
focuses on the multi-station direction-based coordinated PFC
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in an urban rail network, in which passenger congestion
arises in lots of stations during peak hours. It is committed
to optimizing an appropriate inbound passenger volume for
each station in the up and down directions by considering
the interrelationship among stations. The ultimate goal is to
reduce the travel time of passengers caused by PFC on the
premise of safe operation. Assume that the studied urban rail
network consists of a set of stations and a set of sections,
denoted by S and D, respectively. The set of PFC stations is
denoted by S̃, S̃ ∈ S. Each transfer station is distinguished as
two or more different stations according to the number of its
connected lines; each transfer channel is regarded as a transfer
section. As the arriving passenger volume of a station varies
with time, we discretize peak hours into several PFC periods
of equal length, and denote the set of PFC periods as T .

B. BRA FOR PFC OF URBAN RAIL TRANSIT
PFC of urban rail transit plays an important role in avoiding
passenger congestion inside rail stations during peak hours,
nevertheless, it also brings the problem that some passengers
are unable to enter the station and travel in time. During peak
hours, most passengers are commuters, they tend not to give
up their travel or adjust travel time even though they are
controlled in origin stations. Controlled passengers usually
have two choices, one is to retain in station halls until they are
permitted to enter platforms for boarding trains, and the other
is to shift and travel by bus promptly. The first choice will not
only lead to a prolongedwaiting time but also cause numerous
passengers to gather in station halls, which may seriously
threaten the operational order and safety of the urban rail
system. Thus, it is better to induce more passengers to shift
to the bus system. To provide more convenient bus travel
for controlled passengers, some existing bus routes can be
selected and adjusted to pass through the adjacent bus stations
of the PFC stations. Once adjusted, controlled passengers can
expediently take this adjusted bus route to shift to the bus
system to finish their travel.

For each PFC station, we can pick out some existing bus
routes as its candidate adjustable bus routes in advance, and
determine the corresponding bus adjustment schemes based
on four principles, which are listed below.

(1) To facilitate the scheduling and management of bus
depots, the origin and terminal stations of each bus route
should be consistent before and after the BRA.

(2) To weaken the impact on original bus passengers,
the orientation and stopping stations of each bus adjustment
scheme should overlap with the original route as much as
possible.

(3) To effectively serve the shifting passengers from the
urban rail system, the candidate adjustable bus routes should
have a certain surplus capacity.

(4) To ensure that the adjusted bus routes could attract
controlled passengers, the bus adjustment schemes must pass
through the bus stations near two or more PFC stations, and
the distance between rail stations and bus stations should be
as short as possible.

We define Lr as the set of candidate adjustable bus routes
for PFC station r ∈ S̃. For any candidate adjustable bus route
l ∈ Lr , it does not pass through any bus station near PFC
station r before adjustment, however, it will pass through
a nearby bus station of station r once adjusted. The bus
adjustment schemes of bus route l for PFC station r , denoted
by l̄r , must stop at least one bus station near station r . Note
that for different PFC stations, a particular existing bus route
corresponds to various bus adjustment schemes.

With the set of candidate adjustable bus routes Lr for PFC
station r ∈ S̃ and the pre-determined adjustment scheme l̄r of
bus route l ∈ Lr , the problem of bus route adjustment (BRA)
for PFC is defined as selecting some candidate adjustable
bus routes to adjust, so as to provide outstanding services
for controlled passengers in PFC stations. We define a binary
variable Y rl to indicate whether the candidate adjustable bus
route l ∈ Lr for station r is selected to adjust, if selected,
Y rl = 1, indicating that bus route l will be adjusted to
bus route l̄r ; otherwise, Y rl = 0, and bus route l remains
unchanged.

To better explain the problem of BRA for PFC, a simple
example is shown in Fig. 2. An urban rail line contains 7 sta-
tions, of which stations B andD are identified as PFC stations.
Bus routes 1 and 3 are candidate adjustable bus routes for PFC
station D, and bus routes 2 and 4 serve as candidate adjustable
bus routes for PFC station B. If bus routes 1 and 3 are
confirmed to adjust for station D, they will be adjusted to bus
routes 5 and 6, passing through bus stations u and w severally.
Similarly, to evacuate the controlled passengers in station B,
bus routes 2 and 4 can be adjusted to bus routes 7 and 8, both
passing through bus station q. Moreover, it is also viable to
adjust bus route 1 to bus route 9, stopping at bus station p,
and serve station B.

FIGURE 2. A simple example of BRA for PFC of urban rail transit.

C. INTEGRATED OPTIMIZATION OF BRA WITH PFC
The PFC strategy of urban rail transit determines the num-
ber of controlled passengers at rail stations, and the BRA
strategy makes some controlled passengers attracted by the
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TABLE 1. Symbols and definitions of the input parameters.

bus system. The BRA strategy directly affects the retained
passenger volumes of the subsequent PFC periods, which
affects the PFC strategy in the urban rail network in reverse.
Hence, the problems of optimizing PFC and BRA strategies
are mutually interdependent. This paper is devoted to the inte-
grated optimization of BRA with PFC for urban rail transit,
aiming to shorten travel time for passengers while relieving
the passenger congestion of urban rail transit during peak
hours.

To simplify the integrated optimization problem, we make
the following assumptions throughout this paper.

(1) The urban rail passengers can quickly leave platforms
after getting off trains, and their occupation of platforms is
negligible.

(2) The bus schedule is known and fixed, and the departure
interval is consistent before and after the BRA.

(3) The urban rail passengers abandoning travel is not
considered, and the retained passengers will not change their
travel paths. The unaffected bus passengers of BRAwill insist
on their original bus paths, while the affected bus passengers
will still travel by bus instead of shifting to the urban rail
system.

The input parameters of this research mainly include
four parts, i.e., PFC period parameters, urban rail network

parameters, passenger flow parameters and bus network
parameters. Their symbols and definitions are listed
in Table 1.

The PFC strategy of urban rail transit needs to optimize the
permitted inbound passenger volume for each PFC period.
To avoid repeated adjustments of bus routes, the BRA strat-
egy only needs to decide whether to implement the bus
adjustment schemes throughout peak hours, rather than for
each PFC period. In brief, if a bus route is selected to be
adjusted, the whole peak hours will apply the adjusted route.
The detailed decision variables are listed in Table 2.

III. THE BUS-SHIFT OR RETENTION CHOICES OF
CONTROLLED PASSENGERS
Due to the implementation of PFC measures at rail stations,
some passengers are controlled and not permitted to enter
platforms during their arrival periods. The controlled passen-
gers can choose to wait in the urban rail system or to shift
to the bus system. This section will explain in detail how to
determine the number of controlled passengers shifting to the
bus system and retaining in the urban rail system.

The controlled passenger volume is the difference between
the demand volume and the permitted inbound passenger vol-
ume. In the first PFC period, the demand volume of inbound
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TABLE 2. Symbols and definitions of the decision variables.

passengers is the newly arriving passenger volume, and in the
subsequent periods, it includes the newly arriving passenger
volume and the retained passenger volume of the previous
periods. Hence, the controlled passenger volume in direction
f of PFC station r during period τ , denoted by C f

r (τ ), can be
described as Eq. (1).

C f
r (τ ) =


Pfr (τ )− X

f
r (τ ) τ = 1

Pfr (τ )+ S
f
r (τ − 1)

−X fr (τ ) τ = 2, 3, · · · , |T |

,

∀r ∈ S̃,∀f ∈ F (1)

where S fr (τ − 1) is the retained passenger volume in direc-
tion f of station r during period (τ − 1). As we do not con-
sider the passenger retention before peak hours, i.e., S fr (0) =
0, the Eq. (1) can be simplified as Eq. (2).

C f
r (τ ) = Pfr (τ )+ S

f
r (τ − 1)− X fr (τ ) ,

∀τ ∈ T , ∀r ∈ S̃,∀f ∈ F (2)

PFC rate is define as the ratio of the controlled passengers
to the total inbound passenger demand volume. Thus the PFC
rate of direction f at station r during period τ , denoted by
µ
f
r (τ ), can be calculated as Eq. (3).

µfr (τ ) =
C f
r (τ )

Pfr (τ )+ S
f
r (τ−1)

, ∀τ ∈ T , ∀r ∈ S̃,∀f ∈ F (3)

This paper takes a direction-based PFC at each rail station,
without distinguishing passengers’ destinations in the same
direction, the PFC rate of different terminals in a direction
can be simplified as the same. Combining the PFC rate with
the demand volume of inbound passengers between an origin
station and a destination station (hereinafter abbreviated as
OD), the controlled passenger volume of this OD can be
obtained. Thus, the controlled passenger volume of OD (r, s)
during period τ , denoted by Crs (τ ), can be characterized as
Eq. (4).

Crs (τ ) = µfr (τ )× [Prs (τ )+ Srs (τ − 1)] ,

∀τ ∈ T ,∀r ∈ S̃,∀s ∈ S,∀ (r, s) ∈ f (4)

where (r, s) ∈ f indicates that passengers of OD (r, s) choose
the trains of direction f to travel.
The controlled passengers of each OD face two options of

retaining to travel by urban rail transit or shifting to travel by
bus. Generally, passengers’ travel choice depends on many
factors, of which travel time and travel fare are two main
ones [29]. Thus we consider these two factors to form two

generalized costs for retaining and shifting, respectively, and
adopt them to determine the retained and shifted passenger
volume.

A. THE GENERALIZED COST FOR RETAINING IN THE
URBAN RAIL SYSTEM
When the controlled passengers choose to retain in the station
halls, and wait to travel by trains, they have to bear not only
the in-vehicle travel time and fare but also the additional
waiting time at the station halls (also known as the retention
time). Compared with the newly arriving passengers, retained
passengers have priority in entering the platforms, so the
retention time mainly depends on the number of retained
passengers and the available capacity of arrival trains. Thus,
the average retention time of the retained passengers in direc-
tion f of PFC station r during period τ , denoted by tr,fre (τ ),
can be calculated as Eq. (5).

tr,fre (τ ) =
S fr (τ − 1)

CAPfr (τ )
×1τ, ∀τ ∈ T , ∀r ∈ S̃, ∀f ∈ F (5)

whereCAPfr (τ ) is the total available capacity of arrival trains
in direction f of rail station r during PFC period τ . On this
basis, the generalized travel cost for the controlled passengers
of OD (r, s) choosing retention during period τ , denoted by
curtrs (τ ), can be characterized as Eq. (6).

curtrs (τ ) = λ×
(
ťurtrs (τ )+ t

r,f
re (τ )

)
+ murtrs ,

∀τ ∈ T ,∀r ∈ S̃,∀s ∈ S,∀f ∈ F (6)

where ťurtrs (τ ) is the travel time of OD (r, s) by urban rail
transit during period τ when passengers can directly enter the
platform without waiting,murtrs is the urban rail transit fare for
OD (r, s), and λ is the unit time cost.

B. THE GENERALIZED COST FOR SHIFTING
TO THE BUS SYSTEM
When the controlled passengers choose to shift and travel by
bus, the generalized travel cost also includes travel time and
bus fare, in which travel time consists of the walking time
from PFC stations to bus stations, bus waiting time, in-bus
time, transfer time and walking time from bus stations to
destinations. There are many feasible bus paths for controlled
passengers. As this paper only takes BRA once for the whole
peak hours, the feasible shifting path are same throughout the
peak hours.

To determine the feasible shifting paths for controlled pas-
sengers, a travel network for shifted passengers is constructed
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FIGURE 3. Travel network for shifted passengers.

as Fig. 3. When the walking time between a PFC station
and a bus station is less than a certain threshold, the two
are connected by a shift walking arc. Bus stations can be
connected by bus ride arcs and bus transfer arcs. When there
are bus routes passing and stopping between two bus stations,
the two stations are connected by a bus ride arc. When the
walking time between two bus stations is less than a certain
threshold, they are connected by a bus transfer arc. Controlled
passengers could shift to the bus network through shift walk-
ing arcs, then travel by bus ride arcs and bus transfer arcs in
the bus network, and finally reach their destination via shift
walking arcs.

In the travel network for shifted passengers, we first
adopt a depth first search algorithm (DFS) to search for
all feasible shifting paths for passengers of each urban rail
OD. Obviously, these paths only include walking time from
rail stations to bus stations, in-bus time, transfer time and
walking time, while bus waiting time and bus fares are not
included. To determine the bus waiting time and fare of a
path, we should search for its available bus routes. Through
the above two steps, we can obtain the travel time and bus
fare of all feasible shifting paths. We use Irs to denote the set
of feasible shifting path of OD (r, s), i ∈ Irs, tbus,irs and cbus,irs
to denote the travel time and generalized travel cost for path
i of OD (r, s), and they can be characterized as follows.

tbus,irs = tbus,irs,walk + t
bus,i
rs,on + t

bus,i
rs,wait ,

∀τ ∈ T ,∀r ∈ S̃,∀s ∈ S,∀i ∈ Irs (7)

cbus,irs = λ× tbus,irs + mbus,irs ,∀τ ∈ T ,∀r ∈ S̃,

∀s ∈ S,∀i ∈ Irs (8)

where tbus,irs,walk , t
bus,i
rs,in and tbus,irs,wait are the walking time, in-bus

time and waiting time for path i of OD (r, s), respectively,
in which the walking time includes the shift walking time and
the transfer walking time, mbus,irs is the bus fare by path i.
Only when the generalized cost for a shifting path is less

than that of retention, will the controlled passengers choose
this path to shift, and this path is called an effective shifting
path. By comparing the generalized cost of retention with that
of all feasible shifting paths, the set of effective shifting paths
of an OD during a PFC period can be obtained. After that,

the passenger flow assignment is conducted for the controlled
passengers to determine their shifted and retained volumes.

Obviously, controlled passengers prefer to choose the shift-
ing paths with the lowest cost. However, since the original
bus passengers have occupied some capacity, the residual
capacity of each shifting path is limited. Hence, we take
the residual capacity of each effective shifting path into
account, and assign the controlled passengers into effective
shifting paths according to ascending order of generalized
cost. Specifically, we first assign the controlled passengers to
the shortest effective shifting path until its capacity is fully
used, then assign the controlled passengers to the second
shortest effective shifting path under the capacity limit, and
so on. Only when all controlled passengers are assigned to the
bus network or there is no effective shifting path with residual
capacity, will we terminate the passenger flow assignment.
The controlled passengers assigned to the effective shifting
paths are shifted passengers, and the other passengers are
retained passengers.

We use J trs to denote the set of effective shifting path of
OD (r, s) during PFC period τ , j ∈ J τrs; T

j
rs (τ ) to denote the

number of shifted passengers assigned to path j. The shifted
and retained passenger volumes of OD (r, s) during PFC
period τ , denoted by Trs (τ ) and Srs (τ ) respectively, can be
calculated as Eq. (9) and Eq. (10).

Trs (τ ) =
∑
j∈J τrs

T jrs (τ ) (9)

Srs (τ ) = Crs (τ )− Trs (τ ) (10)

The shifted and retained passenger volumes for direction f
of PFC station r during period τ , denoted by T fr (τ ) and S

f
r (τ )

respectively, can be calculated as Eq. (11) and (12).

T fr (τ ) =
∑

s∈S,(r,s)∈f

Trs (τ ), ∀τ ∈ T ,∀r ∈ S̃,∀f ∈ F (11)

S fr (τ ) =
∑

s∈S,(r,s)∈f

Srs (τ ), ∀τ ∈ T ,∀r ∈ S̃,∀f ∈ F (12)

IV. ADDITIONAL TRAVEL TIME FOR PASSENGERS
For controlled passengers, they may take some additional
travel time, such as waiting time when choosing to retain and
walking time when shifting to the bus system. Furthermore,
the BRA strategy will affect the original bus passengers and
extend their travel time. For better evaluating the influence
of obtained PFC and BRA strategies on passengers, this
section will analyze the additional travel time for the retained
passengers, shifted passengers and original bus passengers,
respectively.

The additional travel time for retained passengers is
reflected as an extra retention time at station halls. Thus
the total additional travel time for all retained passengers,
denoted by T adds , can be calculated as Eq. (13).

T adds =

∑
τ∈T

∑
r∈S̃

∑
f εF

(
S fr (τ )× t

r,f
re (τ )

)
(13)
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As for shifted passengers, they originally expect to travel
by urban rail transit, however, PFC measures are taken in
their origin stations, and they must wait for a long time before
entering the platforms. As a consequence, they chose to shift
to the bus system instead of traveling by urban rail transit.
Hence, their additional travel time can be expressed as the
difference between the actual bus travel time and the expected
urban rail travel time.

The actual bus travel time for shifted passengers is the
travel time on their shifting paths. The total actual bus travel
time for all shifted passengers, denoted by T ′t , can be calcu-
lated as Eq. (14).

T ′t =
∑
τ∈T

∑
r∈S̃

∑
s∈S

∑
j∈J τrs

(
T jrs (τ )× t

bus,j
rs

)
(14)

The expected time is the travel time with sufficient urban
rail capacity and without PFC measures. ťurtrs (τ ), mentioned
in Section III, is the expected travel time of OD (r, s) during
period τ . The expected urban rail travel time for all shifted
passengers, denoted by T 0

t , can be calculated as Eq. (15).

T 0
t =

∑
τ∈T

∑
r∈S̃

∑
s∈S

(
Trs (τ )× ťurtrs (τ )

)
(15)

As a summary, the total additional travel time for all shifted
passengers, denoted by T addt , can be calculated as Eq. (16).

T addt = T ′t − T
0
t (16)

The BRA strategy for PFC will bring inconveniences to
some original bus passengers while facilitating the travel of
controlled passengers. The BRA strategy tends to detour to
these bus stations near the PFC stations, and may cross some
bus stations, which causes some original bus passengers to
extend their travel time or fail to reach their destinations.
Fig. 4 explains the passengers affected by the BRA strategy.
For PFC station B, bus routes 1 and 4 have an adjustment
scheme severally, which are bus routes 5 and 8 respectively.
The crossed segments of route 1 and route 4 are (u, v) and
(w, z), respectively, excluding endpoints u, v, w and z. For
the passengers on bus route 1, if their origin stations stand

FIGURE 4. Explanatory of the passengers affected by the BRA strategy.

before crossed segment (u, v) and destination stations stand
after crossed segment (u, v), i.e., passengers from station a
or b to station d, e, f or g, their travel time will increase
significantly; if their origin or destination stations are located
on crossed segment (u, v), i.e., station c, passengers will be
unable to travel by their original routes. Similarly, when bus
route 4 is adjusted to bus route 8, the travel time of these
passengers whose origin stations are h or i and destination
stations are j, k, m or n will be remarkably enhanced. Since
there is no bus station on crossed segment (w, z), adjusting
bus route 4 to bus route 8 will not result in passengers being
incapable of traveling. In summary, if a bus route is adjusted,
these passengers whose origin stations stand before or on the
crossed segment and destination stations stand after or on the
crossed segment will be affected.

With a given BRA strategy, we can obtain the adjusted
bus network and find out the affected bus OD during peak
hours, whose affected passenger volume can also be counted.
According to assumption (3), the affected bus passengers
will reselect their travel paths in the adjusted bus network.
DFS algorithm is also adopted here to search for feasible
paths for the affected bus passengers of each bus OD, and
the passenger flow assignment is carried out in ascending
order of generalized cost. It is worth noting that the affected
bus passengers are prior to the controlled passengers, i.e., the
affected passengers should be assigned before the shifting
of controlled passengers is taken into account. If there are
remaining affected passengers unassigned when the passen-
ger flow assignment is terminated, the travel time of these
passengers is set to a big value.

We use P (v,w) to denote the affected passenger volume
of OD (v,w), t̂ (v,w) and t̄ (v,w) to denote the average travel
time for affected passengers of OD (v,w) before and after
the BRA, respectively. Hence, the additional travel time for
original bus passengers, denoted by T addb , can be calculated
as Eq. (17).

T addb =

∑
(v,w)

[
P (v,w)×

(
t̄ (v,w)− t̂ (v,w)

)]
(17)

V. MATHEMATICAL MODELING
This section first defines a spatio-temporal propagation coef-
ficient of passenger flow in urban rail transit, which can be
applied to determine the passenger throughput of sections.
After that, an integrated optimization model of BRA with
PFC for urban rail transit is formulated, with the objective
functions and constraints are introduced.

A. THE SPATIO-TEMPORAL PROPAGATION COEFFCIENT
OF URBAN RAIL TRANSIT
In the urban rail system, passengers board at origin stations to
enter the network, then move dynamically between sections,
and finally get off at destination stations to leave the net-
work. Passengers spend most of their travel time on sections,
and the root cause of urban rail passenger congestion lies
in the insufficient capacity of sections, which in turn leads
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to passengers gathering at stations. Thus, to facilitate the
modeling, it is necessary to master the dynamic movement
process of passengers in sections of the urban rail network.
We define a spatio-temporal propagation coefficient of pas-
senger flow, denoted by Qfr,d

(
τ 0, τ

)
. Qfr,d

(
τ 0, τ

)
represents

the probability that passengers who depart from direction f of
rail station r during period τ 0 pass through section d at period
τ (τ 0 ≤ τ ), it is related to the composition of passengers’
travel OD at origin stations, the travel paths of passengers,
and the passing rate of paths to section, briefly, it can be
calculated as Eq. (18).

Qfr,d
(
τ 0, τ

)
=

∑
s∈S,(r,s)∈f

brs (τ 0)× ∑
u∈U f

rs

(
qurs
(
τ 0
)
× pud

(
τ 0, τ

)) ,
∀r ∈ S,∀d ∈ D,∀f ∈ F,∀τ ∈ T , τ 0 ≤ τ (18)

where brs
(
τ 0
)
is the selection ratio of terminal station s,

specifically, the ratio that newly arriving passengers in rail
station r during period τ 0 toward for station s, which is the
quotient of Prs

(
τ 0
)
and Pfr

(
τ 0
)
; qurs

(
τ 0
)
is the selection pro-

portion of path u, specifically, the proportion that passengers
of OD (r, s) during period τ 0 select path u, and we adopt
a Logit model to calculate it; pud

(
τ 0, τ

)
is the passing rate

of path u to section d , specifically, it is the probability that
passengers who depart in period τ 0 with path u pass through
section d at PFC period τ , it can be estimated from the
running time of sections on path u; U f

rs is the set of effective
paths for OD (r, s) in direction f .
Once the spatio-temporal propagation coefficient of pas-

senger flow is predetermined, the passenger throughput of
each section during each period can be extrapolated.

B. OBJECTIVE FUNCTIONS
The integrated optimization of BRA with PFC for urban rail
transit aims to reduce the average additional travel time for
all affected passengers. Meanwhile, urban rail operators hope
more retained passengers wait for the upcoming trains to
guarantee their interests. Therefore, we consider two objec-
tives in optimizing the combined strategies of urban rail PFC
and BRA, detailed as below.

1) OBJECTIVE FUNCTION 1: MINIMIZE THE AVERAGE
ADDITIONAL TRAVEL TIME OF AFFECTED PASSENGERS
As the number of affected passengers varies with the different
combined strategies of PFC and BRA, wemeasure the benefit
of all affected passengers by their average additional travel
time.

Min z1 =
T adds + T addt + T addb

Ppc + Pba
(19)

where T adds , T addt and T addb have been detailed in Section IV;
Ppc and Pba are the numbers of passengers affected by urban

rail PFC and BRA, respectively. The methods of calculating
them will be detailed below.

In the first PFC period, the number of passengers affected
by PFC is exactly the controlled passenger volume. In the
subsequent periods, as the retained passengers must be sat-
isfied at first according to the principle of FCFS (first-come-
first-service), if the inbound passenger volume in a period is
less than the retained passenger volume of the previous peri-
ods, all newly arriving passengers of this period are affected;
otherwise, only the controlled passengers are affected. Hence,
Ppc can be calculated as Eq. (20).

Ppc =
∑
τ∈T

∑
r∈S̃

∑
f εF

(
Pfr (τ )

−max
{
0,X fr (τ )− S

f
r (τ − 1)

})
(20)

Pba can be calculated by summing the affected passenger
volume of all bus ODs, shown below.

Pba =
∑
(v,w)

P (v,w) (21)

2) OBJECTIVE FUNCTION 2: MAXIMIZE THE OPERATING
REVENUE OF URBAN RAIL TRANSIT

max z2 =
∑
τ∈T

∑
r∈S̃

∑
f εF

(
Xrs (τ )× murtrs

)
(22)

where murtrs is the urban rail fare for OD (r, s), Xrs (τ ) is
inbound passenger volume of OD (r, s) during PFC period τ ,
which can be calculated as follows.

Xrs (τ ) =
(
1− µfr (τ )

)
× [Prs (τ )+ Srs (τ − 1)] ,

∀τ ∈ T ,∀r ∈ S̃,∀s ∈ S,∀ (r, s) ∈ f (23)

C. CONSTRAINTS
1) CONSTRAINTS OF PFC FOR URBAN RAIL TRANSIT
(1) Passenger demand constraints
For any PFC station, its inbound passenger volume in up

and down directions during each PFC period must not exceed
its passenger demand volume, and should be non-negative.

0 ≤ X fr (τ ) ≤ Pfr (τ )+ S
f
r (τ − 1) ,∀τ ∈ T ,∀r ∈ S̃,∀f ∈ F

(24)

(2) Passing capacity constraints of entry gates
This constraint ensures that all permitted inbound pas-

sengers can smoothly pass through the entry gates at PFC
stations. For any station, its sum of the inbound passenger
volume in up and down directions during each period should
not be greater than its passing capacity of all entry gates.∑

f ∈F

X fr (τ )≤Gr , ∀τ ∈ T , ∀r ∈ S̃ (25)

(3) Constraints of transport capacity in rail sections
The passengers traveling in any rail section during each

period should not exceed its transport capacity, shown
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as Eq. (26).∑
r∈S

∑
f εF

τ∑
τ 0=1

[
X fr
(
τ 0
)
× Qfr,d

(
τ 0, τ

)]
≤ Rd (τ ) ,∀τ ∈ T ,∀d ∈ D̄ (26)

The left part of the less-than-equal sign in Eq. (26) is the
passenger throughput of rail section d during PFC period τ .
(4) Passing capacity constraints in transfer channels
This constraint ensures that the passenger volume assigned

to any transfer channel during each PFC period does not
exceed its maximum capacity.

If transfer channel d is unidirectional, its pass capacity
constraint is shown as Eq. (27).∑
r∈S

∑
f εF

τ∑
τ 0=1

(
X fr
(
τ 0
)
× Qfr,d

(
τ 0, τ

))
≤ UTCd ,

∀τ ∈ T ,∀d ∈ D\D̄ (27)

For a bidirectional transfer channel, its passengers in both
directions should be uniformly constrained. Thus, the transfer
channel passing capacity constraint for each bidirectional
transfer channels is shown as Eq. (28).∑
r∈S

∑
f εF

τ∑
τ 0=1

(
X fr
(
τ 0
)
×

(
Qfr,d

(
τ 0, τ

)
+ Qfr,d ′

(
τ 0, τ

)))
≤ BTCd−d ′ ,∀τ ∈ T ,∀d, d

′
∈ DD̄ (28)

where transfer channels d ′ and d are opposite in the index of
origin and terminal station.

With the same length and width, the passing capacity of a
bidirectional channel is often smaller than that of a unidirec-
tional one due to the interference of opposite passengers.

(5) Platform capacity constraints
As the capacity of a platform area is limited, the total num-

ber of passengers waiting on a platform should not exceed
its capacity. There are only inbound passengers waiting on
platforms in non-transfer stations, while in transfer stations,
there are both inbound and transfer passengers. Note that
outbound passengers of PFC stations are assumed to not
occupy platform capacity according to assumption (1), the
platform capacity constraint can be shown as follows.∑
f ∈F

X fr (τ )+ TI r (τ ) ≤ Pr ×

∑
f ∈F h

f
r (τ )

2
,∀τ ∈ T ,∀r ∈ S

(29)

where TI r (τ ) denotes the number of passengers transferred
into station r during period τ , and it can be calculated as
Eq. (30).

TI r (τ ) =
∑

d∈D\D̄

βd,r ×∑
k∈S

∑
f εF

τ∑
τ 0=1

(
X fk
(
τ 0
)

× Qfk,d
(
τ 0, τ

) ,∀τ ∈ T ,∀r ∈ S (30)

where βd,r is a binary parameter, when station r is the termi-
nal of section d , βd,r = 1; otherwise, βd,r = 0.
• Constraints of BRA

(1) Value constraints of BRA decision variables
The value of decision variable Y rl can be either 0 or 1.

Y rl =

{
1 If bus route l is adjusted to l̄r
0 Otherwise

,∀r ∈ S̃,∀l ∈ Lr

(31)

(2) Constraints that each bus route is allowed to be adjusted
once at most

For a candidate adjustable bus route, at most one of its
adjustment schemes can be executed during peak hours.∑

r∈S̃

Y rl ≤ 1, ∀l ∈Lr (32)

(3) Maximum number constraints of adjustable bus routes
The BRA will not only affect the travel of some original

bus passengers, but also bring difficulties in operation and
management. It is not appropriate to adjust too many bus
routes during peak hours.∑

l∈Lr

Y rl ≤ nmax (33)

(4) Stopping capacity constraints of bus stations
A long queue of vehicles at a bus station will reduce

road capacity and affect the efficiency of bus operations.
To prevent the bus fleet from lining up, the number of stop-
ping routes at any bus station should not exceed its stopping
capacity, detailed as follows.

m0
v +

∑
r∈S̃

∑
l∈Lr

[
Y rl × ε

(
l̄r , v

)]
≤ mmaxv , ∀v ∈ V (34)

where ε
(
l̄r , v

)
is a ternary parameter, it indicates the rela-

tionship among bus station v, original bus route l and its
corresponding adjustment scheme l̄r , if bus route l̄r stops at
bus station v and bus route l does not stop at bus station v,
ε
(
l̄r , v

)
= 1; if route l stops at station v and route l̄r does not

stop at station v, ε
(
l̄r , v

)
= −1; otherwise, ε

(
l̄r , v

)
= 0.

2) CONSISTENCY CONSTRAINT BETWEEN PFC AND BRA
If a PFC station controls no passengers during the whole
peak hours, there is no need to adjust any bus route to serve
the controlled passengers there; otherwise, some bus routes
can be adjusted for these passengers. Hence, the consistency
constraint between PFC and BRA is given as follows.

0 ≤
∑
l∈Lr

Y rl ≤ |Lr | ×
∑
τ∈T

∑
f ∈F

C f
r (τ ), ∀r ∈ S̃ (35)

where |Lr | is the number of candidate adjustable bus routes
for PFC station r . Specifically, if station r controls no passen-
gers, i.e.,

∑
τ∈T

∑
f ∈F C

f
r (τ ) = 0, there is no need to adjust

any bus route for station r ,
∑

l∈Lr Y
r
l = 0. Conversely, if sta-

tion r controls some passengers, i.e.,
∑
τ∈T

∑
f ∈F C

f
r (τ ) >

0, some bus routes can be adjusted for station r , and it is also
feasible to not adjust any bus route, i.e.,

∑
l∈Lr Y

r
l ≥ 0.
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VI. SOLUTION ALGORITHM
The above model contains two objectives, numerous deci-
sion variables and constraints. It is a constrained bi-objective
optimization problem, and difficult to solve via exact algo-
rithms. This section designs a multi-objective particle swarm
optimization based on dual-population co-evolution (DPC-
MOPSO) to solve it.

DPCMOPSO is an extension and improvement of par-
ticle swarm optimization (PSO) [30]. Initially, PSO is
just designed to solve single-objective problems. In 2004,
Coello et al. [31] combined PSO with Pareto dominance,
proposed a multi-objective particle swarm optimization
(MOPSO), and they introduced an external archive to store
non-inferior solutions during the evolution.

To solve our proposed model via DPCMOPSO, this paper
firstly relaxes some constraints and generates some feasi-
ble solutions as an initial particle swarm. Based on these
initial particles, an iterative optimization is performed by
updating their velocity and position. During the evolu-
tion, a hybrid constraint processing method based on dual-
population co-evolution and repairing infeasible solutions is
designed to deal with constraints. Meanwhile, a dynamic
distributed method based on crowding distance is adopted to
maintain the external archive.

A. INITIAL SOLUTION GENERATION
As PSO is a population-based evolutionary algorithm,
we need to generate a set of initial solutions for the first
evolution. Our proposed model contains PFC variables and
BRA variables, and BRA variables is oriented to PFC vari-
ables. Hence, we first generate PFC variables based on PFC
constraints, then generate BRA variables according to con-
sistency constraints and BRA constraints.

In our proposed model, many constraints are related to
multi-dimensional variables, and it is difficult to limit the
value range of a single variable, such as PFC constraints (24),
(26)–(29), and consistency constraint (35). To generate initial
feasible solutions, we design an initial solution generation
strategy based on relaxing constraints. Firstly, we relax some
constraints to better limit the value range of variables; then
utilize the relaxed constraints to generate initial solutions;
finally, we check the feasibility of the generated solutions and
eliminate the infeasible solutions.

Obviously, for a PFC station, the retained passenger vol-
ume is no greater than the controlled passenger volume, i.e.,
S fr (τ ) ≤ C

f
r (τ ), and the controlled passenger volume during

a PFC period is not greater than the difference between the
cumulative arriving passenger volume and the cumulative
inbound passenger volume, i.e., C f

r (τ ) ≤
∑τ

1 P
f
r (τ ) −∑τ

1 X
f
r (τ ). As S

f
r (τ ) ≤ C

f
r (τ ) ≤

∑τ
1 P

f
r (τ )−

∑τ
1 X

f
r (τ ) is

satisfied, constraints (24) and (35) can be relaxed as follows.

0 ≤
τ∑
1

X fr (τ ) ≤
τ∑
1

Pfr (τ ), ∀τ ∈ T ,

∀r ∈ S̃,∀f ∈ F (36)

∑
l∈Lr

Y rl ≤ |Lr | ×
∑
τ∈T

∑
f ∈F

(
τ∑
1

Pfr (τ )−
τ∑
1

X fr (τ )

)
,

∀r ∈ S̃ (37)

Moreover, due to the non-negativity of the transferred pas-
senger volume TI r (τ ), we can relax the constraint (29) as
follows.∑
f ∈F

X fr (τ ) ≤ Pr ×

∑
f ∈F h

f
r (τ )

2
, ∀τ ∈ T , ∀r ∈ S (38)

After relaxing the above constraints, we can generate a set
of initial feasible solutions as shown in Algorithm 1.

Algorithm 1 The Generation of Initial Solutions
Step 1: Set the initial solution index n = 0, the initial

population IP = ∅, the size of initial population Np;
Step 2: Based on constraints (25), (36) and (38), randomly

generate a set of X fr (τ ) ,∀τ ∈ T ,∀r ∈ S̃,∀f ∈ F ;
Step 3: Check whether all X fr (τ ) satisfy constraints (26)-

(29), if true, go to Step 4; otherwise, return to Step 2;
Step 4: According to the value of X fr (τ ), randomly generate
a set of Y rl ,∀r ∈ S̃,∀l ∈ Lr that satisfy constraints (31)-(33)
and (37). X fr (τ ) and Y rl form a complete set of solutions SI ,n;
Step 5: Check whether all Y rl satisfy constraint (34), if true,
go to Step 6; otherwise, return to Step 2;
Step 6: Calculate the controlled passenger volumes and con-
duct passenger flow assignment in the order of PFC periods,
and adjust X fr (τ + 1) after the passenger flow assignment of
period τ to satisfy constraint (24);
Step 7: Check whether all Y rl and C f

r (τ ) satisfy constraint
(35), if true, let n = n+ 1, insert SI ,n into IP, and go to Step
8; otherwise, return to Step 2;
Step 8: Compare n with N , if n ≥ N , output IP and stop

iteration; otherwise, return to Step 2 and continue to generate
new initial solutions.

B. A HYBRID CONSTRAINT PROCESSING METHOD
PSO is a random search algorithm, it lacks a clear con-
straint processing method, and can only solve unconstrained
optimization problems. To deal with the constraints in our
model and ensure the convergence speed of the algorithm,
we propose a hybrid constraint processing method based on
dual-population co-evolution [32] and repairing infeasible
solutions.

During the optimization, we divide particles into feasible
and infeasible particles according to whether they meet all
constraints. Accordingly, we set two populations, one is fea-
sible population, and the other is infeasible population. The
particles in the feasible population evolve in the objective
space, constantly looking for the optimal Pareto frontier, and
the particles in the infeasible population are optimized with
the goal of minimizing constraint violations.

By expressing the constraints with the inequality and
equality forms, i.e., gj (x) ≤ 0 and hj (x) = 0, the constraint
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violation degree of a particle can be calculated as follows.

Gj (Ex) =

{
max

{
0,gj (Ex)

}
1 ≤ j ≤ p

max
{
0,
∣∣hj (Ex)∣∣− δ} p+ 1 ≤ j ≤ q

(39)

G (Ex) =
q∑
j=1

Gj (Ex) (40)

where q is the total number of constraints; p is the number
of inequality constraints; δ is the tolerance level for equality
constraints; gj (Ex) and hj (Ex) are the value of particle Ex in
inequality constraint gj and equality constraint hj, respec-
tively; Gj (Ex) is the violation degree of particle Ex to con-
straint j, and G (Ex) is the total constraint violation degree of
particle Ex. The smaller G (Ex) is, the closer particle Ex is to the
feasible region. If G (Ex) = 0, it indicates that particle Ex meets
all constraints and it is a feasible particle, otherwise, particle
Ex is an infeasible particle.
The dual-population co-evolution strategy can guide the

infeasible solutions to evolve in a feasible direction by opti-
mizing their constraint violation degrees. However, the evo-
lution of PSO is random and prone to produce numerous
infeasible solutions which may cause the algorithm hard to
converge. Hence, we also adopt an infeasible solution repair-
ing strategy to reduce the proportion of infeasible solutions,
which is shown in Algorithm 2. For each infeasible particle,
we first try to repair them with tractable constraints. If repair-
ing successfully, add them into the feasible population; oth-
erwise, put them into the infeasible population.

Through this hybrid constraint processing strategy, we can-
not only increase the proportion of feasible particles but
also extract information from the evolution process of the
infeasible particles, so that the global search ability of the
algorithm can be improved.

C. PATICLES’ UPDATING
1) PARTICLES’ VELOCITY AND POSITION UPDATING
The velocity and position of each particle in PSO are
expressed as a vector, whose dimension depends on the num-
ber of decision variables. We use N and M to denote the
size of the population and the number of decision variables
respectively. The velocity and position vector of the particle
i, denoted by X i and V i, can be characterized as follows.

V i = (vi1, vi2, · · · , viM ) , i = 1, 2, · · · ,N (41)

X i = (xi1, xi2, · · · , xiM ) =
([
X1
1 (1)

]
i
,[

X2
1 (1)

]
i
, · · · ,

[
X fr (τ )

]
i
, · · · ,

(
Y 1
1

)
i
,(

Y 1
2

)
i
, · · · ,

(
Y rl
)
i
, · · ·

)
,

i = 1, 2, · · · ,N (42)

The particles’ velocity and position updating are the ran-
dom search process of the algorithm. The particles’ velocity is
composed of inertia, personal cognition and social cognition

Algorithm 2 The Repairing of an Infeasible Particle

Step 1: Check whether all X fr (τ ) of the particle are non-
negative, if true, go to Step 2; otherwise, set the negative
X fr (τ ) to 0 and go to Step 2;
Step 2: Check whether all X fr (τ ) of the particle satisfy

constraints (25) and (38), if true, go to Step 3; otherwise, pull
X fr (τ ) back to the boundary and go to Step 3;
Step 3: Check whether all X fr (τ ) and Y rl of the particle

satisfy constraint (37), if true, go to Step 4; otherwise, adjust
the value of Y rl and go to Step 4;
Step 4: Checkwhether all Y rl of the particle satisfy constraint
(32), if true, go to Step 5; otherwise, for

∑
r∈S̃ Y

r
l > 1, l ∈ Lr ,

randomly pick one Y rl from Y rl = 1, r ∈ S̃ to take the
value of 1, and others take 0, make

∑
r∈S̃ Y

r
l ≤ 1,∀l ∈ Lr

established, go to Step 5;
Step 5: Checkwhether all Y rl of the particle satisfy constraint
(33), if true, go to Step 6; otherwise, randomly pick nmaxY rl
from Y rl = 1, l ∈ Lr to take 1, all others take 0, make∑

l∈Lr Y
r
l ≤ nmax established, go to Step 6;

Step 6: Calculate the controlled passenger volume of the
particle and conduct passenger flow assignment in the order
of PFC periods, and adjust X fr (τ + 1) after the passenger
flow assignment of period τ to satisfy constraint (24);
Step 7: Check whether all X fr (τ ), C

f
r (τ ) and Y rl of the

particle satisfy the constraints (26)-(29), (34) and (35), if true,
the repair is successful, and the particle is classified into the
feasible population; otherwise, the particle is classified into
the infeasible population.

three parts, and it updates as Eq. (43).

v(t+1)ij = w · vtij + c1r1
[
pbest tij − x

t
ij

]
+ c2r2

[
gbest tij − x

t
ij

]
,

i = 1, 2, · · · ,N ; j = 1, 2, · · · ,M (43)

where t is the number of iterations,w is the inertial parameter;
c1 and c2 are personal and social learning factors respectively;
pbest tij and gbest

t
ij denote the personal and global best posi-

tion of variable j in particle i after t iterations. In MOPSO,
the selection of personal best position (pbest) and global best
position (gbest) is very crucial, we will introduce them in
detail later.

As PFC and BRA variables are integer and binary variables
respectively, their position updating equations are different,
which are shown in Eq. (44) and Eq. (45) respectively.

x(t+1)ia = round
[
x tia + v

(t+1)
ia

]
,

i = 1, 2, · · · ,N ; a = 1, 2, · · · ,M1 (44)

x(t+1)ib =

1 r < 1
1+exp

(
−v(t+1)ib

)
0 otherwise

,

i = 1, 2, · · · ,N ; b = 1, 2, · · · ,M2 (45)

In Eq. (44), round[ ] represents the rounding function; M1 is
the number of PFC variables, M1 = 2 ×

∣∣∣S̃∣∣∣ × |T |, in which
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∣∣∣S̃∣∣∣ and |T | are the number of PFC stations and periods
respectively. In Eq. (45), r is a random number in the range
[0, 1];M2 is the number of BRA variables,M2 =

∑
r∈S̃ |Lr |,

in which |Lr | is the number of bus routes in Lr .

2) SELECTION OF PBEST AND GBEST
The pbest and gbest of all particles need to be determined
before updating their velocity, the pbest refers to the best
position that a particle has explored during the evolution,
reflecting the particle’s memory of its own experience; the
gbest refers to the best position explored by all particles dur-
ing the evolution, reflecting the cooperation between parti-
cles. In single-objective optimization, the quality of a particle
can be directly judged by the objective function. Neverthe-
less, this paper focuses on a bi-objective optimization, and
it is hard to compare the quality of all particles through the
objective function as there aremultiple non-inferior solutions.
Hence, we design some criteria to select the pbest and gbest .

In the first iteration (t = 1), the initial position of a
particle is regarded as its pbest . In the later iterations (t ≥ 2),
the pbest of particle i after t iteration, denoted by pbest ti , can
be selected as follows.

(1) If the position of particle i after t iterations, denoted by
x ti , is infeasible, pbest

t
i = pbest t−1i ;

(2) If x ti is feasible, compare the dominance of x ti with
pbest t−1i in terms of two objectives. When pbest t−1i is supe-
rior to x ti in both two objectives, or superior to x ti in one
and equal to x ti in the other, it can be inferred that pbest t−1i
dominates x ti , pbest

t
i = pbest t−1i ; otherwise, pbest ti = x ti .

This paper adopts a dual-population co-evolution strategy,
and the selection of the gbest for particles in the feasible and
infeasible populations is different.

For the feasible population, we design a priority-based
selection method in three levels to select the gbest for each
particle from the external archive. Before implementing this
method, we need to calculate the crowding distance of all
particles in the external archive and the gravity distance of
the current particles to all particles in the external archive.

For a particle in the external archive, its crowding distance
depends on its adjacent particles, which can calculated as
follows.

Ck
d =
|z1 (xk+1)− z1 (xk−1)|

zmax1 − zmin1

+
|z2 (xk+1)− z2 (xk−1)|

zmax2 − zmin2
(46)

whereCk
d is the crowding distance of particle k in the external

archive; xk+1 and xk−1 are the positions of two adjacent
particles of particle k , respectively; z1 (x) and z2 (x) represent
the two objectives of x respectively; zmax1 and zmin1 are the
maximum and minimum average additional travel time in
the external archive, similarly; zmax2 and zmin2 are the maxi-
mum and minimum operating revenue in the external archive.
In addition, the crowding distance of two extreme particles,
i.e., the first and the last particles in the external archive,
is infinite.

The gravity distance between particle i and particle k ,
denoted by Gi,kd , can calculated as Eq. (47).

Gi,kd =

√√√√(∣∣z1 (x ti )− z1 (xk)∣∣
γ
(
zmax1 − zmin1

) )2

+

(∣∣z2 (x ti )− z2 (xk)∣∣
γ
(
zmax2 − zmin2

) )2

(47)

where γ ranges from 0.1 to 0.2. If the gravity distance
between x ti and xk is smaller than the gravity radius, it indi-
cates that particle k is within the gravity radius of particle i,
and the position of particle k is taken as the candidate gbest
of particle i. The gravity radius is related to the number of
objective functions, the value of the gravity radius is

√
2 in

this paper.
The priority-based selection method in three levels places

the extreme particles in the external archive at the first pri-
ority, the closest Pareto particles at the second priority, and
the particles with the largest crowding distance at the third
priority, the gbest of particle i after each iteration can be
selected as follows.

(1) If an extreme optimal particle is within the grav-
ity radius of particle i, taking this particle as the gbest of
particle i;
(2) When (1) is not satisfied, finding out the particle with

the smallest gravity distance to particle i from the external
archive, and comparing this distance with the gravity radius.
If this distance is smaller, taking this particle as the gbest of
particle i;
(3) When neither (1) nor (2) is satisfied, taking the particle

with the largest crowding distance in the external archive as
the gbest of particle i.

In the feasible population, each particle has a gbest , while
in the infeasible population, all particles share a gbest . After
each evolution, we calculate the constraint violation degree of
all infeasible particles, and select the particle with the small-
est constraint violation degree as the gbest of all particles in
the infeasible population.

3) UPDATING AND MAINTENANCE OF EXTERNAL ARCHIVE
InMOPSO, the external archive is to store the non-dominated
solution. In our algorithm, the gbest of particles in the feasible
population is selected from the external archive. The final
external archive is the set of optimal solutions, also called as
Pareto frontier. Hence, the external archive is crucial, and it
is necessary to update and maintain it during the evolution.

To update the external archive, we should add the non-
dominated particles in the feasible population into it after
each iteration and delete its dominated particles.

The number of non-dominated solutions increases dur-
ing the evolution so that it exceeds the limited size of the
external archive. To maintain the size limit of the external
archive, we adopt a dynamic distributed method based on
crowding distance [33]. Specifically, when the number of
non-dominated solutions exceeds the size of the external
archive, we first calculate the crowding distance of all non-
dominated solutions, then find out the solution with the
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smallest crowding distance, and finally delete it. By repeating
the above steps, we can delete these dense solutions in the
external archive to ensure the diversity of the external archive
and the Pareto frontier.

D. STEPS OF DPCMOPSO
To summarize, the specific steps of the DPCMOPSO are
shown as Algorithm 3.

Algorithm 3 The Steps of the DPCMOPSO
Step 1: Initialize evolution parameters (w, c1, c2), the size

of population Np, the size of external archive NE ; set two
termination conditions: the maximum iterations Tmax and the
maximum consecutive iterations TCmax ;
Step 2: Set the number of iterations t = 0, generateNp initial
feasible particles according to Algorithm 1, and initialize the
velocity of all particles;
Step 3: Calculate z1 and z2 for all initial particles, find

out non-dominated solutions and add them into the external
archive to build an initial external archive, and set the number
of initial consecutive iterations t ′ = 1;
Step 4: Select the pbest and gbest for all particles;
Step 5: Update the velocity and position of all particles, and
set t = t + 1;
Step 6: Judge the feasibility of all particles, and classify

the feasible particles into the feasible population; invoke
Algorithm 2 to repair the infeasible particles and divide them
into corresponding populations;
Step 7: Calculate z1 and z2 for all particles in the feasible

population, update and maintain the external archive;
Step 8: Checkwhether the external archive is updated, if true,
go to Step 9, otherwise, set t ′ = t ′ + 1, go to Step 9;
Step 9: Calculate the constraint violation degree of all

particles in the infeasible population;
Step 10: Judge whether t ≥ Tmax and t ′ ≥ TCmax are

satisfied. If any of them is true, terminate the algorithm and
output the current external archive as the Pareto frontier,
otherwise, go to Step 4.

VII. NUMERICAL EXPERIMENTS
In this section, an urban rail network and a bus network are
constructed, based on them, a series of comparative experi-
ments are implemented to demonstrate the feasibility of the
proposed model and the DPCMOPSO. The DPCMOPSO is
coded in MATLAB, and run on a PC computer with 3.7 GHz
Intel r Xeonr CPU, 128G memory and Windows 10 oper-
ating system.

A. NETWORK CONSTRUCTION AND PARAMETER
SETTINGS
As shown in Fig. 5, we construct a regional urban rail net-
work with 5 lines and 21 stations, as well as a bus network
with 57 stations. Among the 21 rail stations, there are 13
non-transfer stations and 8 transfer stations. Non-transfer
and transfer stations are represented by colored hollow dots

FIGURE 5. Regional urban rail network and bus network.

and black dashed boxes, respectively. We have mentioned
in section II that each transfer station is defined as multiple
different stations. Thus in Fig. 5, each transfer station con-
tains multiple different stations, and the 21 rail stations are
regarded as 30 stations. Moreover, we set all 30 stations as
PFC stations.

The urban rail network contains 70 sections, including
50 rail sections and 20 transfer channels. Among the 20 trans-
fer channels, there are 4 pairs of bidirectional transfer chan-
nels and 12 unidirectional channels. As the constructed urban
rail network is a regional network, numerous passengers from
the external network also occupy the section capacity of
this regional network. For simplification, the section capacity
given in this paper is the residual capacity after considering
the occupancy of external passengers. In all experiments,
the peak hours are set from 7 a.m. to 9 a.m. and are discretized
into 8 PFC periods with equal length of 15 minutes. During
each PFC period, the number of trains arriving in each direc-
tion of each rail station is set to 5.

The passing capacity of all entry gates during a PFC period
and the platform capacity of 30 stations are shown in Table 3.
The passing capacity of the transfer channels during a period
is shown in Table 4. The transport capacity of the 50 rail
sections during each period is shown in Appendix. The newly
arriving passenger volume in two directions at 30 rail stations
during each period is also shown in Appendix.

Fig. 5 also shows the bus network, including the locations
of 57 bus stations and the traffic conditions between stations
before the BRA. The bus network contains 35 bus routes,
of which routes 1 to 15 are fixed bus routes, and routes 16 to
35 are candidate adjustable routes. 20 candidate adjustable
routes can be adjusted to bus stations near 14 PFC stations,
and constitute 55 bus adjustment schemes. It is noteworthy
that several stations divided by a rail transfer station are
equivalent here, and they are not repeated when considering
the bus adjustment schemes. 35 original bus routes and 55 bus
adjustment schemes are both shown in Appendix.
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TABLE 3. The passing capacity of entry gates and the platform capacity.

TABLE 4. The passing capacity of transfer channels.

For convenience, we first regard the 35 original bus routes
and 55 bus adjustment schemes as a virtual bus network, and
search all feasible paths for each rail OD and affected bus
OD in the virtual network. After that, we record the required
bus routes for each path and sort them by generalized costs
in ascending order in advance, so that we can determine the
effective paths according to available bus routes promptly.

The values of the DPCMOPSO parameters in the experi-
ments are shown in Table 5.

TABLE 5. The values of the DPCMOPSO parameters in the experiments.

B. PERFORMANCE OF INTEGRATED OPTIMIZATION OF
BRA WITH PFC
To demonstrate the performance of the proposed model and
DPCMOPSO, an experiment is implemented in the con-
structed network. We set nmax as 10, and invoke the DPC-
MOPSO to solve the integrated optimization problem of BRA
with PFC (hereinafter abbreviated PFCBRA). The computa-
tion time is 18627 seconds.

Fig. 6 shows the average of the two objective functions
in the external archive with iterations. The average addi-
tional travel time and operating revenue of the initial external
archive are the highest and the lowest, respectively, indicating
that the quality of initial solutions is poor. The optimization
efficiency of the two objective functions is very high at first
and gradually flattens out. During the evolution, due to the
addition of new extreme solutions to the external archive,

FIGURE 6. The average of the two objective functions in the external
archive with iterations.

FIGURE 7. The pareto frontier and the final feasible population in the
PFCBRA.

the average additional travel time occasionally increases, and
the operating revenue sometimes declines. However, it is
conducive to improving the diversity of the Pareto frontier.
On the whole, the average additional travel time and the
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TABLE 6. 11 indicators of 13 optimal solutions in the PFCBRA.

FIGURE 8. The ratio of passenger demand to transport capacity. (a) Before the integrated optimization. (b) After the
integrated optimization.

operating revenue are declining and increasing, respectively,
and they remain unchanged at last. Thus it can be inferred that
we have obtained the optimal Pareto frontier of the PFCBRA,
and the DPCMOPSO has a good convergence.

The Pareto frontier and the final feasible population in the
PFCBRA are shown in blue and red respectively in Fig. 7. The
Pareto frontier contains 13 optimal solutions, the operating
revenue is from 585473 to 591958 RMB, and the average
additional travel time is from 16.37 to 16.95 minutes. We find
that as the operating revenue increases, the average additional
travel time also increases. It can be inferred that with the
integrated strategy of BRA with PFC, the average additional
travel time increases with the inbound passenger volume, and
it takes more time to travel by urban rail transit than by bus
when the urban rail network is congested.

In Table 6, 11 indicators of 13 optimal solutions in the
PFCBRA are given. Specifically, z1 and z2 are two objectives

respectively; nba is the total number of adjusted bus routes;
Ptotal is the number of all affected passengers; Pba and
Ppc are the numbers of passengers affected by BRA and
urban rail PFC, respectively; Ps and Pt are the total retained
and shifted passenger volumes; T̄ adds , T̄ addt and T̄ addb are
the average additional travel time for retained, shifted and
affected original bus passengers respectively. In all solutions,
the average additional travel time of all retained and shifted
passengers are about 20 and 8 minutes, respectively. The
average additional travel time of shifted passengers is signif-
icantly less than that of retained passengers, demonstrating
that shifting behavior can save a lot of travel time than
retention. Meanwhile, we find that the average additional
travel time of affected original bus passengers is from 0.20 to
2.02 minutes, which indicates that BRA only results in a
slight increase in the travel time for original bus passengers.
In addition, the average number of passengers affected by
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FIGURE 9. The final pareto frontier in the PFCBRA, PFCRS and PFCR.

TABLE 7. The transport capacity of rail sections.

BRA in 13 optimal solutions is 17168, while the average
shifted passenger volume is 39388, the shifted passenger vol-
ume exceeds twice the affected passenger volume. Therefore,
it can be concluded that taking BRAmeasures can effectively
save travel time for controlled passengers, and its advantages
outweigh its disadvantages.

Fig. 8 shows the ratio of passenger demand to transport
capacity in 50 rail sections before and after the integrated
optimization (taking solution 7 as an example). Before the
integrated optimization, no measures are taken, the average
ratio of passenger demand to transport capacity of 50 rail
sections is 99.10%, however, the ratio in many rail sections
exceeds 100%, and some even exceeds 120%, the contra-
diction between passenger demand and transport capacity is
prominent. After the integrated optimization, PFC and BRA
measures are adopted, the ratio of demand to capacity in

each rail section, also known as the load factor, is not greater
than 100%, and the average load factor of 50 rail sections
is 92.13%. Hence, it can be concluded that our integrated
optimization can effectively alleviate passenger congestion
on the basis of making good use of transport capacity.

C. THE BENEFITS OF INTEGRATED OPTIMIZATION
OF BRA WITH PFC
To further demonstrate the benefits of the integrated opti-
mization of BRA with PFC (PFCBRA), we set two groups
of comparative optimization experiments with independent
PFC, one is that passengers voluntarily choose to retain and
shift (hereinafter abbreviated PFCRS), the other assumes
that all passengers choose to retain (hereinafter abbreviated
PFCR). After removing the BRA decision variables and con-
straints (31)-(35), the DPCMOPSO can solve the PFCRS and
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TABLE 8. The newly arriving passenger volume at rail stations.

TABLE 9. Original bus routes.

the PFCR. The Pareto frontier of the PFCBRA, the PFCRS
and the PFCR are compared in Fig. 9.

In the PFCRS, the operating revenue is from 596987 to
599230 RMB, and the average additional travel time is from

19.67 to 19.81 minutes. In the PFCR, the two objectives are
from 618081 to 621817 RMB and 22.45 to 22.69 minutes.
We find that the PFCBRA can effectively shorten passengers’
average additional travel time, it can save about 3 minutes
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TABLE 10. Bus adjustment schemes.

compared to the PFCRS, and 6 minutes compared to the
PFCR. Meanwhile, as more passengers retain at rail stations
and they will occupy these rail sections with surplus capacity
in the subsequent periods, the operating revenue in the PFCR
and PFCRS is a bit higher. In general, compared with the
PFCR, the operating revenue in the PFCBRA has dropped
by about 5%, while the average additional travel time has
dropped by about 25%; compared with the PFCRS, the

operating revenue in the PFCBRA has dropped by about 2%,
while the average additional travel time has dropped by about
15%. Besides, in the PFCBRA, the total additional travel
time of all passengers is from 3612843 to 3778124 minutes;
in the PFCRS, it is from 4346638 to 4377826 minutes,
while in the PFCR, it is from 5199735 to 5269815 min-
utes, thus the total time saved in the PFCBRA is
evident.
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In summary, the integrated optimization of BRA with
PFC can greatly reduce the travel time for passengers at the
expense of a small amount of urban rail operating revenue.

VIII. CONCLUSION AND FUTURE STUDIES
To relieve passenger congestion in the urban rail network,
PFC is a common method in megacities during peak hours.
To facilitate the travel of controlled passengers at rail stations,
this paper proposes a BRA strategy, and studies an integrated
optimization problem of BRA with PFC for urban rail tran-
sit. The shift or retention choices for controlled passengers,
as well as the additional travel time for retained, shifted and
original bus passengers with the integrated strategy are ana-
lyzed. To characterize the integrated problemmathematically,
an integer non-linear programming model is proposed with
two objectives of minimizing the average additional travel
time for all affected passengers and maximizing the operating
revenue of urban rail transit. Since the proposed model is
non-linear and contains two objectives, the DPCMOPSO is
designed to solve the model, in which a hybrid constraint pro-
cessing method based on feasible and infeasible population
concurrent evolution, as well as repairing infeasible solutions
are devised to deal with the constraints. Finally, three sets
of experiments are implemented to demonstrate the perfor-
mance of the integrated optimization of BRA with PFC. The
experimental results show that the integrated optimization
could greatly shorten passengers’ travel time compared with
the independent optimization of PFC.

Future studies will mainly focus on the following aspects:
(1) This paper only considers static passenger demand in

the urban rail network. In reality, passenger demand is always
dynamic or random. Thus, research based on dynamic or
random passenger demand can be accounted for in our future
research.

(2) For better dealing with real large-scale instances,
a more effective algorithm should be further studied.

IX. APPENDIX
The transport capacity of rail sections is shown in Table 7,
in which PFC period 1 represents 7:00 a.m.-7:15 a.m., PFC
period 2 represents 7:15 a.m.-7:30 a.m., and so on, PFC
period 8 represents 8:45 a.m.-9:00 a.m.. The newly arriving
passenger volume at rail stations is shown in Table 8.

The stopping bus stations of 35 original bus routes are
shown in Table 9. 55 bus adjustment schemes are illustrated
in Table 10, in which the corresponding original bus routes,
PFC stations, and stopping bus stations are given.
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