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ABSTRACT Autonomous mission scheduling of multiple earth observation satellites (multi-EOSs) is
considered as a complicated combinatorial optimization problem, which requires simultaneous consideration
of imaging needs, resource constraints (electricity and memory) and possible emergencies. However, EOS
resources are extremely scarce relative to intensive mission observation demands and most of the existing
algorithms seldom consider emergencies. To address these challenges, this paper proposes a complete
multi-EOSs scheduling scheme composed of two coupling stages, including mission pre-planning and
mission replanning. We aim to obtain the optimal scheduling scheme for each EOS at the same time by
maximizing the observation profits and balancing the resource consumption of each EOS. In this study,
the roles of solar energy and ground stations in multi-EOSs mission scheduling are also considered. In the
first stage, based on the cooperation and competition mechanism as well as the dynamic adjustment approach,
an evolutionary ant colony optimization (EACO) method is developed to obtain the optimal solution
for multi-EOSs pre-planning. In the second stage, using the results produced by EACO, we propose an
interactive replanning approach to replan the missions that cannot be performed by faulty EOS in the event of
unexpected accidents. Finally, several target scenarios are designed and numerical experiments are performed
to show that the proposed algorithm presents better performance for large-scale multi-EOSs missions than
other state-of-the-art algorithms.

INDEX TERMS Multiple earth observation satellites, autonomous mission scheduling, evolutionary ant

colony optimization, dynamic adjustment approach, interactive replanning approach.

I. INTRODUCTION

Earth observation satellites (EOSs) can capture higher reso-
lution images of the ground using optical sensors to obtain
key information. EOSs can continuously observe areas of
interest over a period of time, so they have been widely
applied for ecology observation, disaster monitoring, national
defense, and other fields [1]. With the increase in user
demand and the occurrence of unexpected emergencies,
EOSs need to be reasonably planned to respond to each
mission quickly. However, the observation missions of EOSs
have the characteristics of high cost and complex techno-
logical requirements. Reasonable planning and maximiza-
tion of the observed profits are therefore key problems that
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need to be solved. At present, the cooperative operation of
multiple EOSs (multi-EOSs) has been applied to several
instances, including the German commercial satellite constel-
lation RapidEye [2], the GPM mission deployed by NASA
and JAXA [3], the QB50 mission launched by the European
Union in 2011 [4] and Chinese BeiDou satellites [5].

The multi-EOSs scheduling problem involves many
aspects, such as satellite resources, electricity consumption,
data transmission, observation mission requests, and other
factors that affect planning. Multi-EOSs scheduling is a
multi-agent mission allocation problem and this research area
has garnered increasing attention from scholars in recent
years. Rizk et al. [6] discussed the challenges and future
developments of multi-agent mission allocation and plan-
ning. Unlike general planning and scheduling problem, one
of the main characteristics of multi-EOSs scheduling is
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the visible time window (VTW) of each target, which is
the time interval for which each target is visible to the
EOSs. The EOSs can carry out observation missions only
within the VTWs. A VTW is associated with the orbit
parameters of the EOSs and the geographical location of
targets. To address the problem of EOSs mission schedul-
ing, some scholars adopted exact algorithms [7,8], although
exact algorithms provide optimal solutions, they are only
suitable for handling small-scale problems. There some
scholars adopted heuristic algorithms and swarm intelligent
optimization algorithms to deal with large-scale scheduling
problems [9,10]. Darnopykh et al. [11] showed that EOSs
scheduling is an NP-hard problem, and exact search algo-
rithms are not suitable for the multi-EOSs scheduling prob-
lem. Tangpattanakul et al. [12] proposed an indicator-based
multi-objective local search heuristic to solve the optimiza-
tion problem associated with the selecting and scheduling
of an EOS’s observations. However, with the improvement
of space technology, the number of deployed satellites is
also increasing, and the scheduling of multiple satellites has
become a popular topic of research for many scholars [13].

Multi-EOSs scheduling is an extension of single-EOS
scheduling, and it is reasonable to handle multi-EOSs
scheduling using heuristic algorithms. Refs. [14], [15]
proposed a genetic algorithm (GA) to solve the satellite
constellation optimal scheduling problem to minimize the
system response time when performing large-area observa-
tion missions. Refs. [16], [17] used non-dominated sorting
genetic algorithm-II (NSGA-II) to solve the multi-satellite
mission planning problem for large-area image acquisition.
Sarkheyli et al. [18] presented a new tabu search algorithm
for resource scheduling of low earth orbit (LEO) satellites
mission. To overcome the deficiencies in the static mis-
sion clustering, Wu et al. [19] presented an adaptive simu-
lated annealing-based scheduling algorithm integrated with
a dynamic mission clustering strategy for satellites obser-
vation scheduling. Zhang et al. [20], [21] proposed an ant
colony optimization (ACO) to effectively plan various control
resources for ensuring the normal operation of satellites.
Yu et al. [22] proposed an improved cooperation-oriented
ACO to solve the scheduling problem of aerial multi-target
staring surveillance with multi-satellites. Besides, other algo-
rithms, such as particle swarm optimization (PSO) [23], [24]
and learning-based approach [25], [26], have been proposed
to solve multi-satellite scheduling problems.

The above works have realized the importance of
multi-satellite mission scheduling, and some researchers
have further considered other factors, such as battery capac-
ity [18], [27] and storage capacity [22], [28]. However, these
works have ignored the roles of solar energy and ground
station in mission scheduling. Although satellite resources
are limited, they can be charged in regions receiving sun-
light and can deallocate memory by transmitting observation
data to the ground stations. Furthermore, the importance of
data transmission is shown in the reference [29]. Owing to
the complexity and large-scale of multi-EOSs scheduling,
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intelligent optimization algorithms are considered superior to
exact algorithms in many aspects. Mosa et al. [30] showed
that there are three aspects to choose ACO from intelligent
algorithms to solve optimization problems. Firstly, ACO has
a strong ability to solve optimization problems and could be
easily understood. Secondly, the convergence of ACO has
been proved. Thirdly, literature shows that ACO is superior
to other intelligent search algorithms [31].

Furthermore, some emergencies, such as high-priority tem-
porary observation missions or optical sensor failures, need to
be considered in multi-EOSs mission scheduling. Therefore,
optimal observation profits cannot be achieved if the obser-
vation missions are performed only according to the mission
pre-allocated scheme. Motivated by the Refs. [32], [33], it is
necessary to replan the scheduling of multi-EOSs online in
the event of emergencies.

EOS resources are extremely scarce relative to intensive
observation demands, so we need to design a reasonable
cooperative observation scheme for multi-EOSs systems.
However, to the best of our knowledge, very few studies
are available on multi-EOSs scheduling where the imaging
needs, resource constraints (electricity and memory) and pos-
sible emergencies are considered simultaneously. This paper
mainly studies the observation of intensive missions and
the mission replanning of faulty EOS. We propose a com-
plete multi-EOSs scheduling scheme composed of two cou-
pling stages: mission pre-planning and mission replanning.
An improved ACO and an interactive replanning approach
are proposed to solve the multi-EOSs autonomous mis-
sion scheduling. The main contributions of this work are
as follows: (1) We introduce a dynamic two-stage strat-
egy for multi-EOSs autonomous scheduling. The first stage
is mission pre-planning, and the second stage is mission
replanning. The second stage is based on the results of the
first stage, which can greatly reduce the online comput-
ing time. The roles of solar energy and ground station in
multi-EOSs mission scheduling are fully considered because
satellite resources are recoverable via charging using solar
energy and transmitting data to ground stations. (2) In the
first stage, inspired by the rule of survival of the fittest,
an evolutionary ant colony optimization (EACO) method
based on cooperation and competition mechanism is pro-
posed to solve the mission pre-planning of multi-EOSs.
To further improve the convergence and increase the search-
ability of the algorithm, we propose a dynamic adjust-
ment approach for information heuristic factor, expected
heuristic factor and pheromone evaluation factor. (3) In
the second stage, an interactive replanning framework is
proposed for certain emergencies. In this framework, based
on the interactive contract net protocol (ICNP), the mission
load rate, exchange contract and dynamic mission insertion
mechanism are introduced to address multi-EOSs mission
replanning.

The remainder of this paper is organized as follows.
Section 2 describes the multi-EOSs scheduling prob-
lem. In section3, the EACO is proposed which includes

61647



IEEE Access

J. Qi et al.: Cooperative Autonomous Scheduling Approach for Multi-EOSs

cooperation and competition mechanism as well as the
parameter dynamic adjustment approach. An interactive
replanning framework is presented in Section 4. The simu-
lation results are provided in Section 5. Finally, a conclusion
is given in Section 6.

GPM Global precipitation measurement
EOS Earth observation satellites

Multi-EOSs Multiple earth observation satellites

LEO Low earth orbit

VTW Visible time window

oTW Observation time window

DW Download window

STK Satellite Tool Kit

UAV Unmanned aerial vehicle

GA Genetic algorithm

NSGA-II Non-dominated  sorting  genetic
algorithm-II

ACO Ant colony optimization

PSO Particle swarm optimization

EACO Evolutionary ant colony optimization
ICNP Interactive contract net protocol
TPGA two-phase genetic annealing algorithm

Il. PROBLEM DESCRIPTION

Due to the constraints of mobility and on-board resources,
the observation capability of a single EOS is insufficient for
intensive missions, so it is necessary to study the autonomous
scheduling of multiple EOSs. Multi-EOSs scheduling mainly
involves the planning of satellite resources, electricity con-
sumption, data transmission, observation mission requests,
among others. The actual target achieved by multi-EOSs
mission scheduling is to allocate missions to each EOS rea-
sonably and make full use of the resources of each EOS.
Considering the constraints of actual observation, a group of
executable missions is selected from the candidate missions
for each EOS to maximize the total profits. Most studies
on multi-EOSs scheduling have not considered the recov-
erability of EOSs resources. Besides, because of the emer-
gency missions and EOS failure, it is necessary to reallocate
the multi-EOSs missions online. Thus, this study considered
multi-EOSs scheduling from these two aspects. A diagram of
the multi-EOSs scheduling process is shown in Fig. 1.

S—— Satellite trajectory

e
| Observation Time Window m !
: Visible Time Window (] n >
_____________ a Time

FIGURE 1. Schematic diagram of multi satellite observation mission.
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A. VARIABLES
The main variables and parameters used in this work are
defined as follows. Let T = {T;|i = 1,2, ..., N;} be a set
of missions, where 7; is a mission to be observed, N; is the
total number of missions. Here, the observation request of a
ground target is regarded as a mission. For each mission 77,
some notations are defined to describe their characteristics.

o Tp;: priority of the mission 7;

o Td;: execution duration of the mission T;

o Tm;: memory occupation of the mission 7;

o Te;: electricity consumption of the mission 7;

¢ 6;: minimum elevation of the mission 7T;

The set G = {Gj|j = 1,2,...,Ng} is defined as a set
of ground stations, where N, represents the total number of
ground stations. The set of EOSs is defined as S = {S;|/ =
1,2,...,N,}, where Sal is an EOS, and Nj is the number of
satellites. The resource of the /-th satellite can be defined as
follows.

o Small, Seals: maximal memory and electricity capacity
of EOS §;, which reflects the ability of the EOS to
observe the missions

o infield, intimal: initial electricity and memory of EOS
Sy

e rateDT;: data transmission rate between EOS §; and
each ground station

o ecDTy: electricity consumption per unit of data transmis-
sion §;

« rateE;: charging rate of solar battery on EOS §;

Multiple EOSs consume electricity when performing mis-
sions and communicating with the ground stations. In this
paper, we consider that the solar batteries of EOSs would be
charged in the sunshine areas of each orbit. The set SR; =
{SRZ , SR! e SRZ} is defined as the total sunshine area of
EOS S, where SR, = [sunS,lq, sunEfl] is the A-th sunshine
area of EOS §;, sunS}l and sunE}ll are the start and end times
of sunshine area SRil. Let TWiI = {TWiZ , TWil s TWilk}
be the set of all the VTWs for mission 7; by EOS S;, where
TW) = [tsl, tel;] is the k-th VTW of mission 7; by EOS
Sal ,tsfk and teﬁk are the start and end times for TWl.lk. The dura-
tion of a VTW varies from tens of seconds to a few minutes.
According to the user observation request, an appropriate
time interval is selected from the VTW as the observation
time window (OTW). The set OW), = [osl;, o€l ] is the
k-th OTW of mission 7; by EOS §;, and some missions
require multiple observations, so k>0. Similarly, we define
the time interval when the EOSs are visible to a ground
station as the download window (DW). The set DWJ.I =

{Tlel, TW]l2 ey TWJ.{Y} as a DW of the j-th ground station

G; by EOS §;, where DW/{Y = [dsjl.s, dejl.s] is the s-th DW, ds}s

and de]l-s are the start and end time for DWJ’é
Furthermore, a binary decision variable is defined to decide
whether the VTWs from the missions are chosen.

Tsell, € {0,1},VS, € S, T, € T, TW, e TW! (1)
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where Tsell-lk = 1 means that the TWilk of mission 7; is
selected by EOS S;. If EOS §; does not perform mission 73,
then Tselfk = 0. The mission of EOSs transmitting data to
the ground stations is similar to the decision of performing
the observation missions.

B. MATHEMATICAL MODELING
Although a target may need to be observed multiple times,
each target can only be observed by one EOS in a given time
period. The set MS; = {ms£k|l =1,2,...,Ng;k=1,2,...}
indicates that the i-th mission is allocated to the /-th EOS,
and the subscript k represents k-th OTW of the mission. The
optimization goal of the multi-EOSs scheduling problem is to
maximize the sum of the observation profits and ensure that
the resource consumption of each EOS is relatively average,
which can be expressed as follows:
Ns
Fi1:(1-w)) F,
Max Ns =1 2
Fa: —w, Z(IdealResl —F.q - FCQ)2
=1
a: Vmsfk, msy (1 # 1), msﬁk Nmsy = 9;
Nt |TW,'I|

b : 0 < infield — Z Z Tselfk - Te;

i=1 k=1

ISR Ng IDW/|
+ Z rateE - SRZ — Z Z ecDT;
h=1 j=1 s=1

-rateDT} - DW/, < Seals;

Ne ITW/|
c:0<iniD— Y Y Tselj -Tm
.. — 3)
Ng 1DW]|
+ Z Z rateDTll . (DW/ZY> < SDy;
j=1 s=1
d-: oeik! + trans(i,i +1) < os§+k’k
“NeransG, i+ 1) = gof — gofH/vfpi + stime!
tsfk < osfk < oefk < tefk, oefk—osfk >Td;
e oifk < tsgk < tegk < oegk, tegk—tsf,; >Td;
tsy, < osy < tey < oey, tey —osy >Td;
osﬁk < tsfk < oefk < teﬁk, oeﬁk —tsfk >Td;

where i is the index of mission T, k is the index of
VTWs, [ is the index of EOSs S, w, is the weight
coefficientweight coefficientweight coefficient, IdealRes; is
the ideal consumption resource of the /-th EOS, which
depends on the totIaI available resources of that EOS,
F, = M ZL:{‘ Tsell, - Tp; is tl}e total priority of
. W!
observation targets, F,| = Zf\z 1 ZL:{‘ Tselfk (Tm; + Te;)
include the electricity and memory consumed for multi-EOSs
1
observation, Frg = YN, Z;.v:gl le[;vlvl | ecDT; (DWjI ) is the
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electricity consumption of the multiple EOSs transmitting

data to ground station, Zjvzgl ‘SD:VIV’ | ecDT; (DWJ.Z) is the
amount of data released for transmission to the ground sta-
tions, Y IM1 rarek; - (SR%) is the total amount of charging
in the sunshine region, ¢; is the look angle of mission T;,
vfp is sensor’s slewing velocity and stime' is the recover time
of sensor slewing.

Objective Function (2) consists of two parts F1 and Fa:
F7 is to maximize the sum of the priorities of observation
missions; Fg ensures that the resources consumed by each
EOS are relatively average. Thus, an EOS with abundant
resources can perform more missions, while that with few
resources can perform fewer missions. Here, priority is given
to maximizing F'; to ensure that more and more important
missions are observed.

Equation (3) is the constraint to be considered in the
observation scheduling. Equation (3a) is the mission exe-
cution constraint indicating that a given mission can only
be allocated to one EOS in a given time period to avoid
wastage of resources caused by mission conflicts. The i-th
mission can only be allocated to one EOS in a given time
interval k.

Equation (3b) is the electricity constraint, which represents
the electricity consumed by the EOSs for image acquisition
and data transmission and that the electricity supplied by solar
batteries needs to meet the limits of the battery capacity.

Equation (3c) is the memory constraint, which indicates
that the EOS memory should always be within its safe range
during data collection and transmission.

Equations (3d) is the maneuver constraint, which indicates
that the EOS must have enough time to adjust and stabilize
the swing angle of the sensor when performing the continuous
observation missions.

Equations (3e) is the time constraint, which indicates that
the observation duration needs to meet user requirements and
that the mission can only be observed in the VTWs.

The flowchart of the multi-EOSs scheduling proposed is
illustrated in Fig. 2.

IlIl. OPTIMAL MISSION PRE-PLANNING SCHEME BASED
ON EACO ALGORITHM

To reduce the time consumed during multi-ESOs scheduling
and achieve optimal allocation, we established the cooper-
ative competition rules between the ant colony based on
survival of the fittest. Then, to prevent the algorithm from
converging to a local optimal solution too quickly, the state
transition and pheromone update rules are designed based
on the elite ant system. Thereafter, a parameter dynamic
adjustment approach is constructed in combination with the
multi-EOSs scheduling problem. The mission pre-planning
algorithm is shown in Algorithm 1.

A. STATE TRANSITION RULE
According to the selection probability of the candidate mis-

sions, the state transition rule selects the optimal mission
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User Requirement

Execution duration

Observation area H

sets ‘ Number of EOSs H Task scenario start/end time

I

I

I

| Establish
| missi

I

I

| Observe as many targets as possible

Earth observation satellite resources

| Mission

Orbit Parameters H Data transmission ‘

tonstraints|

evaluation

Sunshine region ‘ ‘ Visible time windows

‘\_ Balance the workload of each EOS as possible

Multi-EOSs mission scheduling

Algorithm 1: Solving static
mission allocation

Algorithm 2: Solving
dynamic mission allocation

Objective function:
Maximizing observation profits and balance the EOS workload

FIGURE 2. Framework of multi-EOSs mission scheduling.

sequence for each EOSs using a certain method, to maxi-
mize the observation profits. The following is an example
of selecting the next mission 7; from a set of missions
after performing mission 7;. The pheromone on EOS S;
performing mission 7; and mission Ty is define as i ;.
Then, the probability of selecting mission T} is given as
follows:

arg ma}f{[fgft] [Uff,]}, Cr:<qo
semj

“

l .
Pik.s> otherwise

where ¢ is the iteration number, «; is the information heuristic
factor that represents the importance of the pheromone, B; is
the expected heuristic factor that indicates the importance
of heuristic information. n; represents the set of remaining
candidate missions of the EOS §;, n, represents the heuristic
information of mission Ty, qq is a parameter between O and 1,
and Cr ; is a number of uniform distribution that controls the
transfer rules.

In the traditional ACO, the random selection threshold C7 ;
is a random number on [0,1], which causes chaos of the
solution. In this work, the random selection threshold Cr ;
is controlled by the uniform random number on [0,1]. The
uniform distribution is chosen here to ensure that the choice
of search optimization strategy for each iteration is equally
possible and to increase the randomness of the solution more
reasonably. According to the expression of uniform distribu-
tion function, we can get the expression of Cr ; as follows:

CT,I/KCa CT,t € (O, Ke)

Cr,=
T (Cre—ke) /U —ke) . Cri€ (ke D)

&)
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where k. € (0, 1) determines the change frequency of Cr ;
and the state transition probability pfk’t is designed as follows:

(=i, ] [ ] i
pik’t - Zserﬁ[ I:Tisft] |:’7S,tl‘j|

0, otherwise

B. PHEROMONE UPDATE RULE

The pheromone update process includes evaporation and
generation of pheromones. To avoid search stagnation, this
work first introduces the elite ant colony system that releases
additional pheromones to enhance the effects of positive
feedback. Second, the pheromone concentration of each mis-
sion sequence has a maximum and a minimum. Because
the minimum concentration is conducive for better solu-
tion exploration, the maximum concentration ensures that
the experience is enlightening for the ant colony. The local
pheromone update rule is as follows:

Tik,t = 1 —pr) Tik,t + A'L'ik,t

n O
Mty =3, Antpt 7

nAnt = k,, - num(SeleT)

where p; is the pheromone evaporation factor that is used to
prevent infinite accumulation of pheromones, and its value
range is O to 1; Aty ; is the accumulation of the pheromone
concentration on the mission sequence from mission 7; to
mission T} for each ant at the end of the iteration t; nAnt
is the number of ants, which is determined by the number
of candidate missions to be performed for each EOS; SeleT
is the set of candidate missions; Q; is pheromone amount
and Fun, is the objective function value obtained by ant a.
After all the ants find the end node, the global pheromone
update rule is performed by adding pheromones to all the
edges, including the pheromones produced by the elite ants.
The global update rule is described as follows:

Tik,i+1 = (1 — o) Tik s + PtAT;c,f
8
ATy, = Co ®
’ Funpeg

where At} , is the pheromone produced by elite ants. Then
updated pheromone Tk ;41 is within range [Tuin, Tmax]-

C. DESIGN OF HEURISTIC FUNCTION FOR MULTI-EOQSs
SCHEDULING

Different objective functions represent different expectations
for multi-EOSs scheduling, so the heuristic functions should
also be designed according to the objective functions. The
heuristic functions selected herein include mission priority,
electricity consumption, and memory consumption.

In multi-EOSs scheduling, missions with higher priorities
are considered first, and the mission resource consumption
also reflects the scheduling rules of mission priority. Prior-
ity is given to missions that consume the fewest resources
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because EOSs can conserve resources to accomplish more
missions.

Pi = (Tpmax = Tpi) (Tpmax — Tpmin) ™ +m
en; = (Temax — Te;) (Tepmax — Temin)_l +n2 9
mn; = (Tmpax — Tmy) (Typay — Tmmin)_1 +n3

where Tpyqc and Tppi, are the maximum and minimum
of mission priority Tp;; Teuqy and Tep;, are the maximum
and minimum of electricity consumption in the mission set;
Tmypqy and Tmyy,;, are the maximum and minimum of memory
consumption in the mission set; 11, 17 and n3 are small
constants.

Based on the above heuristic information, the heuristic
function for the EACO is obtained as follows:

ni=wi-pni+wr-eni+ (1 —wy —w) -mny (10)

where w; and w; are weight coefficients, indicating the
importance of the mission properties.

D. COOPERATION AND COMPETITION STRATEGY

In nature, some animals cooperate to resist natural enemies,
but they also compete with each other for food and territory.
The cooperation and competition mechanisms make popu-
lations evolve toward better directions. The implementation
principle for the evolutionary ACO based on cooperation and
competition involves establishing an environment of cooper-
ation and competition among the populations to find the opti-
mal solution. The cooperation and competition mechanisms
can be described as follows.

First, we define a cooperation coefficient; if the condition
of information exchange among the ant colonies is satisfied,
each ant colony will not exchange information randomly.
Instead, information exchange is determined by the coop-
eration coefficient, which reflects its evolution characteris-
tics. This not only avoids randomness but also ensures that
pheromones will not gather on some paths, which effectively
prevents the algorithm from converging prematurely. The
cooperation coefficient of the r-th ant colony Co, is defined
as follows:

’
_ Fun best

- r
Funy,,

Coy (11)
where Fun;,, is the best objective function value in the r-th
population, Funy,, is the average value of the objective
function in the r-th population. After g iterations, two ant
subgroups are selected to exchange information according to

cooperation probability, which is described as follows:
P, =|Cor —Corl,k=r—1,....r—g+1 (12)

After the information exchange object of the r-th ant sub-
group is determined as that of the k-th ant subgroup, the best
solution of the k-th ant subgroup is replaced by the worst
solution of the r-th ant subgroup.

Seqyorsr = Seyesy (13)
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where Seq/,,,, is the worst mission scheduling result of r-th
ant subgroup and Seq'g os¢ 18 the best mission scheduling result
of k-th ant subgroup.

Algorithm 1 Mission Pre-Planning Based on EACO
Input: The set of EOSs S, the set of missions T, the set of
ground station G;
Output: Scheduling results of each EOS PT;
1: Initialization: Schedule time horizon Sy, heuristic fac-
tor «g, ®min, Bo, Bmin, pheromone evaporation factor
005 Pmin, Pheromone range Tpin, Tmax, parameters of
selection threshold «., Cr o and pheromone amount Qr,
maximum iteration Mg;
2. forl=1;1 <N;;l++do

3 VIWs < FunTW (8,T,S44y ) {obtain VI Ws};

4 Count = 0;

5 while TimeUnit(Count) < Syqy do

6: fori=1;i<N;;i++ do

7 SeleT < FunTask(VTWs,T;,Sal) {Eq. (3)};
8 end for

9 fori=1;i<N;;i++ do

10: if Eq. (19)is satisfied then

11: a; < Funalp(a; 1, ko,0min) {Eq. (15)};
12: B: < Funbeta(B;_1, kg,Bmin) {Eq. (16)};
13: end if

14: if update condition of p; is satisfied then
1s: pr < Funrho(p;—1, kp,0min) {Eq. (17)};
16: end if

17: k < Funtra(ty ,,Cr ;...0) {Eq. (4) — (6)};
18: Tik 1+1 < Funtau(ti ;,01,k,,0-,SeleT)

{Eq. (7) — )

19: Seq; < allocate T; to S; {Eq. (11) — (13)};
20: Res; < Funres(Sal,Seq;,T;);
21: end for
22: Count = Count + 1;

23:  end while
24:  PT < Funpt(S,T,Seq,Res);
25: end for

E. PARAMETER DYNAMIC ADJUSTMENT APPROACH

The ACO performance is not only related to the pheromone
update rule and heuristic function but also affected by heuris-
tic factors, pheromone evaporation factors, and other param-
eters. In the general ACO, the above parameters are fixed
in the search process, which causes the algorithm to con-
verge to the local optimum. Thus, we propose a parame-
ter dynamic adjustment approach based on the multi-EOSs
scheduling problem. In the early stage, the approach mainly
adjusts the heuristic factor, and in the later stage, it mainly
adjusts the pheromones. To reduce unnecessary updates of the
heuristic factor, a trigger condition for updating parameters
is designed. That is, after g iterations, the heuristic factors
are adjusted when the condition is satisfied. This update
condition is defined as follows.

F, —F, — 1 <61, (14)
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where F; = [Funpest,i—g+1,- .., Funpeg], 8 is the
error threshold, and 1, is a p-dimensional column vec-
tor whose elements are all 1. When the above condition
is satisfied, the updating rules of heuristic factors are as
follows:

= {Kaazl, if thtat71>amin (15)
Cnin, Otherwise
_1, 1 _1>Bmi
B, = kgBi—1, lf’(/?ﬂt 1>Bmin (16)
Bmin, otherwise

where k, and kg are positive constants, and their main func-
tion is to change the heuristic factors from the optimal param-
eters of the earlier iteration to those of the later iteration;
Umin and B, are the minimum value of information heuristic
factor and expectation heuristic factor.

If the objective function remains unchanged for g suc-
cessive iterations, the algorithm may fall into a local opti-
mal solution. Therefore, the pheromone evaporation factor is
updated as follows:

KpPr—1,
,Ot:ipt

Pmin s

lfK,O Pt—1>Pmin

. (7
otherwise

where «, is a positive constant, o, is the minimum of
pheromone evaporation factor.

Algorithm 2 Mission Replanning Based on Interactive

Replanning Approach

Input: The set of EOSs S, the set of missions T, the set
of ground station G,the plan of mission allocation PT,
the failed EOSs F;

Output: Replanning results of each EOS rePT;

1: Initialization: Schedule time horizon Sy, heuristic fac-
tor &g, %mins B0, Bmin, pheromone evaporation factor
0£0s Pmin, Pheromone range Tpin, Tmax, parameters of
selection threshold k., Cr o and pheromone amount O,
maximum iteration Mg;

2: numpg < num(Fy) {the number of F};

3: fori=1;i < numgg; i+ + do

4:  taskps < Funtask (F,PT) {tasks set of F};

5. RUMgsrps <— num (taskpg);

6: for j = 1; | < numyysrs; j + + do

7: WorkL < Funwk(PT,T ,AvaRes) {Eq. (18)};

8: LoadIndex < sort (WorkL,W) {Eq. (19)};

9: for! =1;1 <N,;!+ +do

10: if LoadIndex (1) # F (i) then

11: reSeq; <— allocate mission taskrs(j) to EOS
LoadIndex (1),

12: Pro; < Funpr(reSeq;, S) {obtain profit},

13: end if

14: end for

15: rePT < FunrPT( Pro,reSeq,S, T )

{allocate to the highest profits EOS};
16:  end for
17: end for
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IV. MULTI-EOSs INTERACTIVE REPLANNING
FRAMEWORK

‘When multiple EOSs perform observation missions, they may
encounter unforeseen situations, such as optical equipment
failure and temporary emergencies. Therefore, an interactive
replanning approach for emergencies is also presented. Based
on the results of mission pre-planning, the ICNP and mission
insertion mechanisms are adopted to solve the mission replan-
ning problem for multiple EOSs. The mission replanning
algorithm is shown in Algorithm 2.

A. INTERACTIVE CONTRACT NET PROTOCOL

In the process of multi-EOSs scheduling, mission
pre-planning requires a lot of time. If the condition for
mission replanning is triggered, it is inappropriate to over-
turn the previous allocation scheme. Therefore, it is more
appropriate to reallocate new missions on the basis of mis-
sion pre-planning. The interactive replanning approach has
good adaptability and robustness for large-scale distributed
systems. Multiple EOSs perform new missions according to
the information exchange between each node until the system
returns to a stable state. Then, they continue to perform
missions or the next replanning. The negotiation process
of the ICNP can be divided into the following four stages,
namely bidding, participating in the bidding, winning the bid,
and executing the contract, as shown in Fig. 3.

Satellite trajectory

—“ ************ >

| — — » Announce a task

| — — » Competitive bidding
L Winning the bid

FIGURE 3. Schematic diagram of Interactive contract net protocol.

For new missions, an EOS with a lower workload is pri-
oritized in the bidding stage. If this EOS cannot complete
the mission, it will communicate with a potential candidate
in the form of broadcasts as the bidder, informing them of the
geographic location, time window, observation duration, and
resources required to complete the new mission. In the event
of EOS optical sensor failure, the EOS broadcasts mission
information that cannot be completed (communication link
will not fail), and the candidate EOSs then participate in the
bidding for the new mission. Here, we define the workload of
the /-th EOS as follows:

Ne 1TW/
> X Tsell, (Te; + Tmy)
i=1 k=1

WorkL; = (18)
AvaRes;

AvaRes; —
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where is AvaRes; the available resource of the /-th EOS. If the
EOS workload is greater than W, it means that the EOS is not
suitable for new missions. For an EOS with a low workload,
it judges whether the new mission can be inserted into the
original mission list. The winning EOS is then determined by
evaluating the profits of the candidate EOS performing the
new missions.

: WorkL;>W), Not suitable for new tasks

(19)

WorkL; < W, It is possible to perform new tasks

where W; is the threshold to judge whether the workload of
the healthy EOS can perform new missions.

B. EXCHANGE CONTRACT AND MISSION INSERTION
MECHANISM

The traditional replanning strategy arranges new missions at
the end of the mission list, so it cannot guarantee maximum
benefit from the missions. The exchange contract and mission
insertion mechanism proposed herein is shown in Fig. 4 and
implies that the reallocated mission is added to the vacant
time of the healthy EOS. If the new mission has a higher
priority, it will replace the original mission and maximize the
benefit of the entire multi-EOSs system.

EOS; tasks sequence

1] I [l

exchange contract

EOS:i tasks sequence Nl B EEs
? T task insertion mechanism
New tasks M | R
%/ Time'
(:\Compare:} [ — oo y

FIGURE 4. Schematic diagram of mission insertion mechanism.

V. RESULTS
In this section, we present some numerical and unmanned
aerial vehicle (UAV) flight experiments to prove the effec-
tiveness of the proposed algorithm. All the simulation data
from the satellites and targets were obtained from Satellite
Tool Kit (STK) 11.2. STK can be used to obtain the VTWs
between the EOSs and the ground targets, the sunshine region
of EOSs, and the DWs between the EOSs and ground sta-
tions. The schedule time horizon is 24 A, from 2020/12/25
00:00:00 to 2020/12/26 00:00:00. The design of the EOSs is
shown in Fig. 5, and their orbit parameters are obtained from
https://celestrak.com/. The experimentis coded in
MATLAB R2018b and executed on a laptop with Intel(R)
Core(TM) i5-8250U CPU (1.6 GHz) under Windows 10
with 16 GB RAM. The specific parameters are listed in
Appendix A.

To verify the effectiveness of the algorithm, eight scenarios
are designed here, and the number of ground targets is 25, 50,
75, 100, 125, 150, 175 and 200 respectively. The priority of
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FIGURE 5. Orbits distribution of the 24 EOSs and specific parameters are
listed in Appendix A.

® (h)

FIGURE 6. Illustration of target distribution scenarios. (a) Centralized:

2 target groups, each group has 5 targets; Random: 15 targets;

(b) Centralized: 3 target groups, each group has 7 targets; Random:

29 targets; (c) Centralized: 4 target groups, each group has 8 targets;
Random: 43 targets; (d) Centralized: 4 target groups, each group has

10 targets; Random: 60 targets; (e) Centralized: 5 target groups, each
group has 10 targets; Random: 70 targets; (f) Centralized: 5 target groups,
each group has 12 targets; Random: 90 targets; (g) Centralized: 5 target
groups, each group has 15 targets; Random: 100 targets; (h) Centralized:
5 target groups, each group has 15 targets; Random: 125 targets.

ground targets is a random integer between 1 and 10. There
are two types of ground targets and their location distribution
is shown in Fig. 6. Two different types of targets are designed
as follows:

1) The first one is centralized. In the eight scenarios, 2, 3,
4,4,5,5, 5 and 5 cities are selected around the world. 5,
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TABLE 1. Cities information.

D Name Longitude(deg) Latitude(deg)
1 Chengdu 104.06 30.67
2 Sydney 150.88 -33.92
3 Vancouver -123.0 49.22
4 State of Malacca 100.02 3.57
5 New York -74.03 40.78
TABLE 2. Ground station information.
Name Longitude(deg) Latitude(deg) Elevation(deg)
Miyun 116 40 15
Kashi 75.93 39.51 15
Kunming 102.73 25.05 15
Sanya 109.50 18.20 15

7,8, 10, 10, 12, 15 and 15 targets are generated within a
4° latitude and longitude of each city. The information
of the five cities is shown in Table 1.

2) The second one is a global randomness. In the eight
scenarios, 15,29, 43, 60, 70,90, 100 and 125 targets are
generated, and their latitudes vary from - 60° to 60°.

The priority of each target is between 1 and 10, and the
elevation angle is evenly distributed between 30° and 50°.
The memory consumption and observation time of each tar-
get are evenly distributed between [300MB, 350 MB] and
[100s, 120 s], respectively. The power consumption of each
mission is positively correlated with the required observation
time. The ground station information is shown in Table 2.
The initial electricity and initial memory of each EOS are
one-fourth of their total values.

A. PARAMETER ANALYSIS

The parameters of the EACO are shown in Table 3. To analyze
the influence of different parameter combinations of heuristic
factors on the early iteration results, we choose from « €
[1,2] and B € [1, 2] with an interval of 0.05 respectively,
and repeat the calculation 20 times for each parameter com-
bination. The number of iterations is 10, and the result is as
follows.

TABLE 3. Parameters of EACO.

Variable Description Value
My Maximum iteration 80
Qmin Lower bound of information heuristic factor 1
Bmin Lower bound of expected heuristic factor 1
Pmin Lower bound of pheromone evaporation factor 0.01
Qr Pheromone amount 600
Tmin Lower bound of pheromone 0.05
Tmaz Upper bound of pheromone 0.95
Ke Control parameter of selection threshold 0.75
Kn Parameter for determining the number of ants 3

To analyze the influence of different heuristic factors on
the later stage of the algorithm, the number of iterations is
80. The results are shown in Fig. 8.

From the simulation results of Fig. 7 and Fig. 8, we can get
the appropriate heuristic factor parameter combination for the
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Observation Profit

FIGURE 7. Early convergence result of profit under different heuristic
factors.

510
505
500
495
490
485

Observation Profit

480
475

470 .|
1

FIGURE 8. Late convergence result of profit under different heuristic
factors.
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FIGURE 9. Late convergence result of profit under different heuristic
factors.

early and late iterations of multi-EOSs mission scheduling.
The blue parts indicate that the average values of the objective
functions were small, implying that the algorithm did not
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FIGURE 10. Results of multi-EOSs scheduling with different methods.
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FIGURE 11. Number of missions performed by each EOS in the first stage.

converge to a better solution. The yellow parts indicate that
the average values of the objective functions were larger,
implying that the algorithm produced better results. As can
be seen in Fig. 7, when « and B, the average values of the
first 10 iterations of the algorithm were the larger. Therefore,
the heuristic factors in the early stage of EACO were set as
ap and Bp, which is helpful for the algorithm to converge to
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(d) Resource consumption and supplement of EOSs S19 — Sa24

FIGURE 12. Results of multi-EOSs scheduling with different methods.

a better solution. As shown in Fig. 8, when o € [1.55, 1.65]
and B € [1.25, 1.35], EACO has a better optimal solution.
Therefore, the later adjustment strategy of EACO is set to
oa=1.6and g =1.3.

The value of the evaporation factor also affects the conver-
gence of the algorithm, so we chose from p e [0.05, 0.95]
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FIGURE 14. Number of missions performed by each EOS in the first stage.

with an interval of 0.01 and repeat the calculation 20 times
under each parameter.

Different values of the evaporation factor have different
influences on EACO. It can be seen from Fig. 9 that the
evaporation factor has good convergence when this value is
about 0.5.

B. COMPARISON WITH DIFFERENT ALGORITHMS
To further verify the effectiveness of the proposed algorithm,
we compared the EACO with the two-phase genetic anneal-
ing algorithm (TPGA) [14], adaptive GA (AGA), and ACO
for the above eight target scenarios. The AGA considers
that the crossover probability and mutation probability will
change with the fitness function. To fully describe the effects
of the algorithms, each algorithm was repeated 20 times.

It can be seen from Fig. 10 that the four algorithms obtain
better scheduling schemes when the number of targets is
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TABLE 4. First stage: missions execution sequence of each EOS.

Satellite Number Missions sequence

T72 — T68 — T5 — Tg — ng
Toe — T35 — T30 — Te

Ts2 — Tgg — Tua — To7
T3—>T7—>T8—>T75—>T10
Te2 — Tra — Ts8 — Ts2 — Tro
Tio0 — Taz — Tag — T34

O 00~ W AW —

T39g — Te1 — Tu1 — T3 — T3g
Tgs — T33 — Ty2 — Ts3 — T3
Tgg — Tga — 11 — Tse

10 T55 — ng — T6 — T73

11 T31 — Tys — T50 — Tor

12 Tie — T11 — T3 — To4

13 T20 — T94 — Ty — T95

14 T51 — T32 — T

15 Tes — Ts3 — T79 — Tyo

16 Togo — To1 — Too — Tea

17 T45 — T59 — T54 — Tso

18 Ty — Tg1 — Tog — Thog

19 Tos — Tug — T36 — Tr7

20 Tg7 — T26 — T29 — T93 — Tha

21 Ti7 — Tog — This — Ti3

22 To1 — Tue — T37 — Te3

23 Ter — Teo — T71 — Too

24 T57 — Tlg — Th2

small. Only the sum of the priorities of the observed mis-
sions is larger, which indicates that the scheduling scheme is
better, and the algorithm does not converge earlier. However,
with the increase in the scale of the targets, the observed
targets and the observation profits obtained by the adaptive
GA and ACO are gradually reduced, which infers that the
two algorithms may fall into local optimum. The TPGA and
EACO can achieve better results, but the EACO produces
better observation profits and observes more targets at a large
scale compared with the TPGA.
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FIGURE 16. Number of missions performed by each EOS in the second
stage.

The first stage is mission pre-planning, which can obtain
the scheduling results of each EOS offline, because the key
data can be obtained by STK in advance, which can save a lot
of time. The running time of the EACO under different mis-
sion sizes is presented in Fig.11. To describe the scheduling
state of each EOS, taking target scenario (d) as an example,
the mission executions of 24 earth resource satellites for
100 ground targets are described. The scheduling results of
the first stage for multiple EOSs in scenario (d) are presented
in Fig. 12 Fig. 13 and Fig. 14, which show the process of
image acquisition, consumption and supplement of electricity
and memory.

Fig. 12 shows the remaining resources for each satellite
during their mission. During multi-EOSs mission schedul-
ing, both imaging and data transmission consume a certain
amount of electricity and memory; however, considering the
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TABLE 5. Second stage: missions execution sequence of each EOS.

Satellite Number Missions sequence

1 T72~>T68~>T5~>T9~)T76
2 Toe — T35 — T30 — T3

3 Tgo — To7

4 T3 — 17 — 13

5 Teo — Thrg — Tss — Tso — Ths
6 Tioo — Tur — Tug — T34 — Tgs
7 T39g — Te1 — Ty1 — T73 — T3s
8 Tg5 — T33 — Tyo — ng — T49
9 Tg9 — Tga — T1 — Tse

10 Tss — Teg — 16

11 T31 — Tuz — T50 — 115

12 Tie — Th1 — Tse — Tua

13 Tog — Tog — To — Tos — Tho
14 Ts1 — T32 — T13

15 T65 — T53 — T79 — T4o

16 Too — To1 — Too — Tea — Txo
17 Tys — Ts9 — T54 — Tro

18 Ty — Tg1 — Tog — T19g — T¥s

19 T25 — T24

20 Tg7 — Tog — Tog — Toz — T4 — Tov
21 Ti7 — Tog — T77

22 T91 — T46 — T37 — T63 — T73

23 Ter — Teo — T71 — Too — Tee

24 Ts7 — Thg — T12 — Tog

importance of solar energy and the ground stations, the EACO
can enable each EOS to complete more missions with limited
resources and balance the workload of each EOS.

Fig. 13 and Fig. 14 show the results of multi-EOSs mission
scheduling in the first stage. The low orbit of the EOS allows
it to orbit the earth many times in a day, so it can observe
some missions on the ground many times. The ordinate is
the mission number from 1 to 100 and the horizontal axis is
the time of day. In Fig. 13, the black line is the VTWs of
EOS for the allocated mission, and the red, green, blue and
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pink lines are the execution time interval of each EOS. The
scheduling result for 100 missions is plotted in Fig. 14. As can
be seen from Fig. 12 (a) and Fig. 13, mission 775 is allocated
to EOS S4, and the execution time is about 63200 s, so the
electricity and memory of Sy are reduced in this time period.
From Fig. 12 (b) and Fig. 13, it can be seen that EOS Sy
performs mission 731 at around 14400 s and from Fig. 12 (b),
it can be seen that the electricity and memory of EOS S1; are
also consumed by the execution of missions. According to the
pre-planning result of each EOS in Fig. 13, we can obtain the
mission execution sequence of each EOS in Table 4.

In this study, we consider that the EOS sensors may fail
during multi-EOSs mission, thereby preventing them from
completing the allocated missions. Therefore, we propose
ICNP and mission insertion mechanism for mission replan-
ning. Assuming that EOS Sy fails after 12 hours of operation,
it can be seen from Fig. 13 that missions 779 and missions
T75 pre-allocated to EOS S4 need to be reallocated. Based on
the interactive replanning approach, the results of multi-EOSs
mission replanning are shown in Fig. 15 and Fig. 16.

Fig. 15 and Fig. 16 show the scheduling results of multiple
EOSs based on the interactive replanning approach due to
failure of EOS S4. From Fig. 15, we can find that the mis-
sions originally scheduled to be executed after 12 hours are
reallocated, and mission 7¢ and mission 775 are successfully
allocated to EOS S13 and S;g, respectively. It can be seen
from the local enlarged drawing in Fig. 15 that mission Tq
is reallocated to EOS S;3 at about 55600 s, and mission 775
is reallocated to EOS S1g at about 76500 s. The rescheduling
result of 100 missions is shown in Fig. 16, which shows the
number of missions performed by each EOS. According to
the replanning result of each EOS in Fig. 15, we can obtain
the missions execution sequence of each EOS in Table 5.

C. UAVs FLIGHT EXPERIMENT
To show the results of the operation of the multiple satel-
lites in orbit, we use 24 quadrotor UAVs to simulate the
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FIGURE 18. Long-exposure photo of a flight with multi-UAVs.

multi-satellite earth observation mission based on the existing
multi-UAV platform. Because UAVs can carry the pan-head
cameras and capture the images of the mission area in real
time, similar to the imaging processes of the EOSs. First,
as shown in Fig. 5, it is assumed that there is an earth in
the middle of the orbit of multiple UAVs, then the mission
locations to be observed are set on the surface of the earth, and
multiple UAVs operate according to the orbit of each satellite.
When the UAV reaches the top of the pre-allocated mission,
it can capture the target by adjusting the camera angle. Firstly,
the motion information of each EOS is obtained by STK, and
then the trajectory information of multiple UAVs is obtained
by scaling it in a certain proportion. The relationship between
EOSs observation mission and UAVs observation mission are
shown in Fig. 17.

To improve the viewing effect, we use the light of UAVSs to
show the trajectory of UAVs at night. In the simulation pro-
cess, 24 EOSs are used to perform the observation missions.
Here we use 24 UAVs to simulate the in-orbit observation
process of EOSs. Fig. 18 depicts a long-exposure photo of a
flight with multiple UAVs. The video of the experiment can
be found at https://www.youtube.com/watch?v=
vOT_NFixHRY.
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TABLE 6. Specific parameters of multiple EOSs.

D Satellite Two-Line Element Sets SE; (J) SM; (MB)
1377810 11043A 20360.00000000 .00000021 00000-0 20304-4 0 00005
1 HAIYANG-2A 237781 099.3166 004.2965 0000825 135.0189 070.7590 13.78724579471306 20000 16384
1 28051U 03046A 20360.00000000 -.00000974 00000-0 -34180-3 0 00004
2 IRS-P6 228051 098.4672 072.9166 0057913 180.2863 038.6458 14.34176297893691 10000 8192
1 28220U 04012A 20360.00000000 .00000509 00000-0 40720-4 0 00006
3 SHIYAN 1 228220 097.8664 330.9723 0018057 349.1572 035.9075 15.00177199909170 20000 16384
LAPAN- 129709U 07001 A 20360.00000000 .00000094 00000-0 11838-4 0 00007
4 TUBSAT 229709 097.8885 316.5839 0011850 207.1291 112.1709 14.82253009754580 10000 8192
1 31113U 07010A 20360.00000000 .00000017 00000-0 64643-5 0 00007
5 HAIYANG 1B 231113 098.3813 035.8031 0014243 013.9505 108.1154 14.30257729715395 20000 16384
1 32289U 07055A 20360.00000000 .00000097 00000-0 12524-4 0 00009
6 YAOGAN 3 232289 097.9836 014.1425 0001818 089.0377 120.3373 14.81054454709198 10000 8192
1 33320U 08041A 20360.00000000 -.00000096 00000-0 -13514-4 0 00003
7 HUANIJING 1A 233320 097.7627 045.1114 0026481 168.1339 035.9355 14.77097957662739 20000 16384
1 33321U 08041B 20360.00000000 .00000203 00000-0 28352-4 0 00008
8 HUANIJING 1B 233321 097.7709 047.6548 0034103 199.3281 149.5041 14.77304064662735 10000 8192
1 33492U 09002A 20360.00000000 .00000150 00000-0 26487-4 0 00003
9 GOSAT (IBUKD) 233492 (098.0762 108.1293 0001230 092.9489 131.6818 14.67547667638093 20000 16384
1 37791U 11044D 20360.00000000 .00000098 00000-0 18362-4 0 00002
10 RASAT 237791 098.1096 090.1598 0022818 032.5726 187.8375 14.64802378500131 10000 8192
140115U 14048A 20360.00000000 .00000629 00000-0 73618-4 0 00008
11 WORLDVIEW-3 5 40115 097.8308 071.3951 0002327 075.3683 122.6194 14.85182463345087 20000 16384
1 40143U 14053A 20360.00000000 .00001165 00000-0 48817-4 0 00004
12 YAOGAN 21 240143 097.4184 064.8597 0015699 326.5777 111.7386 15.23480994000353 10000 8192
1 40298U 14070A 20360.00000000 .00001468 00000-0 69013-4 0 00001
13 ASNARO 2 40298 097.4070 078.7201 0001713 068.6722 085.7239 15.19668336340278 20000 16384
1 40894U 15047A 20360.00000000 .00000137 00000-0 19678-4 0 00002
14 GAOFEN 9-01 240894 097.8761 074.6998 0033467 150.9971 080.5316 14.76292192284597 10000 8192
1 40931U 15052B 20360.00000000 .00000056 00000-0 78131-5 0 00000
15 LAPAN-A2 2 40931 005.9986 056.6070 0013695 090.9618 168.1114 14.76656468283476 20000 16384
1 41038U 15069A 20360.00000000 .00000057 00000-0 75076-5 0 00003
16 YAOGAN 29 2 41038 098.0257 347.8212 0001855 041.5696 128.4747 14.80476935274470 10000 8192
1 41167U 15077B 20360.00000000 .00000358 00000-0 21697-4 0 00008
17 KENTRIDGE 1 241167 014.9767 177.3474 0011347 119.3642 251.2034 15.09248702277618 20000 16384
1 25504U 98060A 20360.00000000 .00000034 00000-0 96484-5 0 00006
18 SCD2 225504 024.9939 149.9545 0017103 255.1722 116.2423 14.44110343170885 10000 8192
1 41604U 16040F 20360.00000000 .00000812 00000-0 35324-4 0 00002
19 BIROS 2 41604 097.2905 052.0137 0010639 232.1493 337.7834 15.22288688250350 20000 16384
1 41727U 16049A 20360.00000000 .00000007 00000-0 20192-5 0 00001
20 GAOFEN 3 241727 098.4113 004.9535 0001674 091.3338 348.1370 14.42215973230346 10000 8192
1 42987U 17068A 20360.00000000 .00003326 00000-0 86362-4 0 00009
21 SKYSAT-C11 242987 097.2461 111.7582 0011429 083.7046 083.5350 15.38947000175386 20000 16384
1 43195U 18015D 20360.00000000 .00002118 00000-0 84423-4 0 00008
22 NUSAT-4 (ADA) 2 43195 097.4638 127.7556 0017880 143.3072 012.0562 15.25115902160923 10000 8192
1 44622U 19066A 20360.00000000 .00000207 00000-0 27067-4 0 00009
23 GAOFEN 10R 2 44622 097.8388 298.7126 0001875 059.2886 221.6001 14.80600698066171 20000 16384
1 44819U 19082A 20360.00000000 .00000074 00000-0 97364-5 0 00005
24 GAOFEN 12 2 44819 097.9000 019.1721 0001943 078.8810 024.7132 14.80234660058144 10000 8192

VI. CONCLUSION

In this study, we investigated multi-EOSs autonomous
scheduling by simultaneously considering observation,
resource recoverability, and unexpected emergencies. A com-
plete multi-EOSs scheduling scheme composed of two
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coupling stages, namely mission pre-planning and mission
replanning, was proposed. To obtain the optimal observation
scheme for multi-EOSs pre-planning, we developed coop-
eration and competition mechanisms as well as a dynamic
adjustment approach to improve the quality of solutions.
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To solve the urgent mission, an interactive replanning
approach was proposed to reallocate the unfinished missions
of the failed EOS. We conducted experiments in two stages of
multi-EOSs scheduling to verify the effectiveness of the pro-
posed algorithms. The first experiment compares our EACO
with TSGA, AGA and ACO. The results show that EACO is
superior over the other three in terms of both the number of
observation missions and observation profits. Taking mission
scenario (d) as an example, the mission execution time inter-
val and resource change of each EOS are described in detail.
In the second experiment, tasks that cannot be completed by
the faulty EOS are reasonably allocated to other EOSs based
on the interaction framework, and the observation profits are
not reduced. Because the imaging process of UAV is similar
to that of EOS, we used UAVs to simulate the operations of
EOSs in orbit and obtained images of a region of interest
using an airborne camera.

In our future work, we intend to include additional con-
straints, such as uncertainties due to clouds and weather
effects, on the observations.

APPENDIX A

The specific parameters of each EOS are calculated by using
SGP4 model and they are listed in Table 6. In addition, we set
the following upper bound for the electricity and memory of
each EOS.
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