
Received March 28, 2021, accepted April 14, 2021, date of publication April 22, 2021, date of current version April 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3075059

A Cooperative Autonomous Scheduling
Approach for Multiple Earth Observation
Satellites With Intensive Missions
JUNTONG QI1, JINJIN GUO 1, MINGMING WANG1, AND CHONG WU2
1School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2EFY Intelligent Control (Tianjin) Technology Company Ltd., Tianjin 300450, China

Corresponding author: Juntong Qi (qijt@tju.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61873182, and in part by the Science
and Technology on Space Intelligent Control Laboratory under Grant HTKJ2019KL502009.

ABSTRACT Autonomous mission scheduling of multiple earth observation satellites (multi-EOSs) is
considered as a complicated combinatorial optimization problem, which requires simultaneous consideration
of imaging needs, resource constraints (electricity and memory) and possible emergencies. However, EOS
resources are extremely scarce relative to intensive mission observation demands and most of the existing
algorithms seldom consider emergencies. To address these challenges, this paper proposes a complete
multi-EOSs scheduling scheme composed of two coupling stages, including mission pre-planning and
mission replanning. We aim to obtain the optimal scheduling scheme for each EOS at the same time by
maximizing the observation profits and balancing the resource consumption of each EOS. In this study,
the roles of solar energy and ground stations in multi-EOSs mission scheduling are also considered. In the
first stage, based on the cooperation and competitionmechanism aswell as the dynamic adjustment approach,
an evolutionary ant colony optimization (EACO) method is developed to obtain the optimal solution
for multi-EOSs pre-planning. In the second stage, using the results produced by EACO, we propose an
interactive replanning approach to replan the missions that cannot be performed by faulty EOS in the event of
unexpected accidents. Finally, several target scenarios are designed and numerical experiments are performed
to show that the proposed algorithm presents better performance for large-scale multi-EOSs missions than
other state-of-the-art algorithms.

INDEX TERMS Multiple earth observation satellites, autonomous mission scheduling, evolutionary ant
colony optimization, dynamic adjustment approach, interactive replanning approach.

I. INTRODUCTION
Earth observation satellites (EOSs) can capture higher reso-
lution images of the ground using optical sensors to obtain
key information. EOSs can continuously observe areas of
interest over a period of time, so they have been widely
applied for ecology observation, disaster monitoring, national
defense, and other fields [1]. With the increase in user
demand and the occurrence of unexpected emergencies,
EOSs need to be reasonably planned to respond to each
mission quickly. However, the observation missions of EOSs
have the characteristics of high cost and complex techno-
logical requirements. Reasonable planning and maximiza-
tion of the observed profits are therefore key problems that
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need to be solved. At present, the cooperative operation of
multiple EOSs (multi-EOSs) has been applied to several
instances, including the German commercial satellite constel-
lation RapidEye [2], the GPM mission deployed by NASA
and JAXA [3], the QB50 mission launched by the European
Union in 2011 [4] and Chinese BeiDou satellites [5].

The multi-EOSs scheduling problem involves many
aspects, such as satellite resources, electricity consumption,
data transmission, observation mission requests, and other
factors that affect planning. Multi-EOSs scheduling is a
multi-agent mission allocation problem and this research area
has garnered increasing attention from scholars in recent
years. Rizk et al. [6] discussed the challenges and future
developments of multi-agent mission allocation and plan-
ning. Unlike general planning and scheduling problem, one
of the main characteristics of multi-EOSs scheduling is

61646
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6300-1161
https://orcid.org/0000-0002-7349-5249


J. Qi et al.: Cooperative Autonomous Scheduling Approach for Multi-EOSs

the visible time window (VTW) of each target, which is
the time interval for which each target is visible to the
EOSs. The EOSs can carry out observation missions only
within the VTWs. A VTW is associated with the orbit
parameters of the EOSs and the geographical location of
targets. To address the problem of EOSs mission schedul-
ing, some scholars adopted exact algorithms [7,8], although
exact algorithms provide optimal solutions, they are only
suitable for handling small-scale problems. There some
scholars adopted heuristic algorithms and swarm intelligent
optimization algorithms to deal with large-scale scheduling
problems [9,10]. Darnopykh et al. [11] showed that EOSs
scheduling is an NP-hard problem, and exact search algo-
rithms are not suitable for the multi-EOSs scheduling prob-
lem. Tangpattanakul et al. [12] proposed an indicator-based
multi-objective local search heuristic to solve the optimiza-
tion problem associated with the selecting and scheduling
of an EOS’s observations. However, with the improvement
of space technology, the number of deployed satellites is
also increasing, and the scheduling of multiple satellites has
become a popular topic of research for many scholars [13].

Multi-EOSs scheduling is an extension of single-EOS
scheduling, and it is reasonable to handle multi-EOSs
scheduling using heuristic algorithms. Refs. [14], [15]
proposed a genetic algorithm (GA) to solve the satellite
constellation optimal scheduling problem to minimize the
system response time when performing large-area observa-
tion missions. Refs. [16], [17] used non-dominated sorting
genetic algorithm-II (NSGA-II) to solve the multi-satellite
mission planning problem for large-area image acquisition.
Sarkheyli et al. [18] presented a new tabu search algorithm
for resource scheduling of low earth orbit (LEO) satellites
mission. To overcome the deficiencies in the static mis-
sion clustering, Wu et al. [19] presented an adaptive simu-
lated annealing-based scheduling algorithm integrated with
a dynamic mission clustering strategy for satellites obser-
vation scheduling. Zhang et al. [20], [21] proposed an ant
colony optimization (ACO) to effectively plan various control
resources for ensuring the normal operation of satellites.
Yu et al. [22] proposed an improved cooperation-oriented
ACO to solve the scheduling problem of aerial multi-target
staring surveillance with multi-satellites. Besides, other algo-
rithms, such as particle swarm optimization (PSO) [23], [24]
and learning-based approach [25], [26], have been proposed
to solve multi-satellite scheduling problems.

The above works have realized the importance of
multi-satellite mission scheduling, and some researchers
have further considered other factors, such as battery capac-
ity [18], [27] and storage capacity [22], [28]. However, these
works have ignored the roles of solar energy and ground
station in mission scheduling. Although satellite resources
are limited, they can be charged in regions receiving sun-
light and can deallocate memory by transmitting observation
data to the ground stations. Furthermore, the importance of
data transmission is shown in the reference [29]. Owing to
the complexity and large-scale of multi-EOSs scheduling,

intelligent optimization algorithms are considered superior to
exact algorithms in many aspects. Mosa et al. [30] showed
that there are three aspects to choose ACO from intelligent
algorithms to solve optimization problems. Firstly, ACO has
a strong ability to solve optimization problems and could be
easily understood. Secondly, the convergence of ACO has
been proved. Thirdly, literature shows that ACO is superior
to other intelligent search algorithms [31].

Furthermore, some emergencies, such as high-priority tem-
porary observationmissions or optical sensor failures, need to
be considered in multi-EOSs mission scheduling. Therefore,
optimal observation profits cannot be achieved if the obser-
vation missions are performed only according to the mission
pre-allocated scheme. Motivated by the Refs. [32], [33], it is
necessary to replan the scheduling of multi-EOSs online in
the event of emergencies.

EOS resources are extremely scarce relative to intensive
observation demands, so we need to design a reasonable
cooperative observation scheme for multi-EOSs systems.
However, to the best of our knowledge, very few studies
are available on multi-EOSs scheduling where the imaging
needs, resource constraints (electricity and memory) and pos-
sible emergencies are considered simultaneously. This paper
mainly studies the observation of intensive missions and
the mission replanning of faulty EOS. We propose a com-
plete multi-EOSs scheduling scheme composed of two cou-
pling stages: mission pre-planning and mission replanning.
An improved ACO and an interactive replanning approach
are proposed to solve the multi-EOSs autonomous mis-
sion scheduling. The main contributions of this work are
as follows: (1) We introduce a dynamic two-stage strat-
egy for multi-EOSs autonomous scheduling. The first stage
is mission pre-planning, and the second stage is mission
replanning. The second stage is based on the results of the
first stage, which can greatly reduce the online comput-
ing time. The roles of solar energy and ground station in
multi-EOSs mission scheduling are fully considered because
satellite resources are recoverable via charging using solar
energy and transmitting data to ground stations. (2) In the
first stage, inspired by the rule of survival of the fittest,
an evolutionary ant colony optimization (EACO) method
based on cooperation and competition mechanism is pro-
posed to solve the mission pre-planning of multi-EOSs.
To further improve the convergence and increase the search-
ability of the algorithm, we propose a dynamic adjust-
ment approach for information heuristic factor, expected
heuristic factor and pheromone evaluation factor. (3) In
the second stage, an interactive replanning framework is
proposed for certain emergencies. In this framework, based
on the interactive contract net protocol (ICNP), the mission
load rate, exchange contract and dynamic mission insertion
mechanism are introduced to address multi-EOSs mission
replanning.

The remainder of this paper is organized as follows.
Section 2 describes the multi-EOSs scheduling prob-
lem. In section3, the EACO is proposed which includes
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cooperation and competition mechanism as well as the
parameter dynamic adjustment approach. An interactive
replanning framework is presented in Section 4. The simu-
lation results are provided in Section 5. Finally, a conclusion
is given in Section 6.

GPM Global precipitation measurement
EOS Earth observation satellites
Multi-EOSs Multiple earth observation satellites
LEO Low earth orbit
VTW Visible time window
OTW Observation time window
DW Download window
STK Satellite Tool Kit
UAV Unmanned aerial vehicle
GA Genetic algorithm
NSGA-II Non-dominated sorting genetic

algorithm-II
ACO Ant colony optimization
PSO Particle swarm optimization
EACO Evolutionary ant colony optimization
ICNP Interactive contract net protocol
TPGA two-phase genetic annealing algorithm

II. PROBLEM DESCRIPTION
Due to the constraints of mobility and on-board resources,
the observation capability of a single EOS is insufficient for
intensive missions, so it is necessary to study the autonomous
scheduling of multiple EOSs. Multi-EOSs scheduling mainly
involves the planning of satellite resources, electricity con-
sumption, data transmission, observation mission requests,
among others. The actual target achieved by multi-EOSs
mission scheduling is to allocate missions to each EOS rea-
sonably and make full use of the resources of each EOS.
Considering the constraints of actual observation, a group of
executable missions is selected from the candidate missions
for each EOS to maximize the total profits. Most studies
on multi-EOSs scheduling have not considered the recov-
erability of EOSs resources. Besides, because of the emer-
gency missions and EOS failure, it is necessary to reallocate
the multi-EOSs missions online. Thus, this study considered
multi-EOSs scheduling from these two aspects. A diagram of
the multi-EOSs scheduling process is shown in Fig. 1.

FIGURE 1. Schematic diagram of multi satellite observation mission.

A. VARIABLES
The main variables and parameters used in this work are
defined as follows. Let T = {Ti|i = 1, 2, . . . ,Nt } be a set
of missions, where Ti is a mission to be observed, Nt is the
total number of missions. Here, the observation request of a
ground target is regarded as a mission. For each mission Ti,
some notations are defined to describe their characteristics.

• Tpi: priority of the mission Ti
• Tdi: execution duration of the mission Ti
• Tmi: memory occupation of the mission Ti
• Tei: electricity consumption of the mission Ti
• θi: minimum elevation of the mission Ti
The set G = {Gj|j = 1, 2, . . . ,Ng} is defined as a set

of ground stations, where Ng represents the total number of
ground stations. The set of EOSs is defined as S = {Sl |l =
1, 2, . . . ,Ns}, where Sal is an EOS, and Ns is the number of
satellites. The resource of the l-th satellite can be defined as
follows.

• Small, Seals: maximal memory and electricity capacity
of EOS Sl , which reflects the ability of the EOS to
observe the missions

• infield , intimal: initial electricity and memory of EOS
Sl

• rateDTl : data transmission rate between EOS Sl and
each ground station

• ecDTl : electricity consumption per unit of data transmis-
sion Sl

• rateEl : charging rate of solar battery on EOS Sl
Multiple EOSs consume electricity when performing mis-

sions and communicating with the ground stations. In this
paper, we consider that the solar batteries of EOSs would be
charged in the sunshine areas of each orbit. The set SRl =
{SRl1, SR

l
2, . . . , SR

l
h} is defined as the total sunshine area of

EOS Sl , where SRlh =
[
sunS lh, sunE

l
h

]
is the h-th sunshine

area of EOS Sl , sunS lh and sunE
l
h are the start and end times

of sunshine area SRlh. Let TW
l
i = {TW

l
i1,TW

l
i2, . . . ,TW

l
ik}

be the set of all the VTWs for mission Ti by EOS Sl , where
TW l

ik =
[
tslik , te

l
ik

]
is the k-th VTW of mission Ti by EOS

Sal,tslik and te
l
ik are the start and end times for TW l

ik . The dura-
tion of a VTW varies from tens of seconds to a few minutes.
According to the user observation request, an appropriate
time interval is selected from the VTW as the observation
time window (OTW). The set OW l

ik =
[
oslik , oe

l
ik

]
is the

k-th OTW of mission Ti by EOS Sl , and some missions
require multiple observations, so k>0. Similarly, we define
the time interval when the EOSs are visible to a ground
station as the download window (DW). The set DW l

j =

{TW l
j1,TW

l
j2, . . . ,TW

l
js} as a DW of the j-th ground station

Gj by EOS Sl , where DW l
js =

[
dsljs, de

l
js

]
is the s-th DW, dsljs

and deljs are the start and end time for DW l
js.

Furthermore, a binary decision variable is defined to decide
whether the VTWs from the missions are chosen.

Tsel lik ∈ {0, 1},∀Sl ∈ S,Tl ∈ T ,TW
l
ik ∈ TW

l
i (1)
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where Tsel lik = 1 means that the TW l
ik of mission Ti is

selected by EOS Sl . If EOS Sl does not perform mission Ti,
then Tsel lik = 0. The mission of EOSs transmitting data to
the ground stations is similar to the decision of performing
the observation missions.

B. MATHEMATICAL MODELING
Although a target may need to be observed multiple times,
each target can only be observed by one EOS in a given time
period. The setMSi = {mslik |l = 1, 2, . . . ,Ns; k = 1, 2, . . .}
indicates that the i-th mission is allocated to the l-th EOS,
and the subscript k represents k-th OTW of the mission. The
optimization goal of the multi-EOSs scheduling problem is to
maximize the sum of the observation profits and ensure that
the resource consumption of each EOS is relatively average,
which can be expressed as follows:

Max


F1 : (1− ωp)

Ns∑
l=1

Fp

F2 : −ωp

Ns∑
l=1

(IdealResl − Fc1 − Fc2)2
(2)

s.t.



a : ∀mslik ,ms
r
ik (l 6= r),mslik ∩ ms

r
ik = ∅;

b : 0 ≤ infield −
Nt∑
i=1

|TW l
i |∑

k=1

Tsel lik · Tei

+

|SRl |∑
h=1

rateEl · SRlh −
Ng∑
j=1

|DW l
j |∑

s=1

ecDTl

· rateDT ll · DW
l
js ≤ Seals;

c : 0 ≤ iniDl −
Nt∑
i=1

|TW l
i |∑

k=1

Tsel lik · Tmi

+

Ng∑
j=1

|DW l
j |∑

s=1

rateDT ll ·
(
DW l

js

)
≤ SDl;

d :

{
oeik l + trans(i, i+ 1) ≤ osli+k,k
trans(i, i+ 1) = ϕli − ϕ

l
i+1/v

l
ϕi
+ stimel

e :


tslik ≤ os

l
ik ≤ oe

l
ik ≤ te

l
ik , oe

l
ik−os

l
ik≥Tdi

oslik ≤ ts
l
ik ≤ te

l
ik ≤ oe

l
ik , te

l
ik−ts

l
ik≥Tdi

tslik ≤ os
l
ik ≤ te

l
ik ≤ oe

l
ik , te

l
ik−os

l
ik≥Tdi

oslik ≤ ts
l
ik ≤ oe

l
ik ≤ te

l
ik , oe

l
ik−ts

l
ik≥Tdi

(3)

where i is the index of mission T , k is the index of
VTWs, l is the index of EOSs S, ωp is the weight
coefficientweight coefficientweight coefficient, IdealResl is
the ideal consumption resource of the l-th EOS, which
depends on the total available resources of that EOS,

Fp =
∑Nt

i=1
∑|TW l

i |

k=1 Tsel lik · Tpi is the total priority of

observation targets, Fc1 =
∑Nt

i=1
∑|TW l

i |

k=1 Tsel lik (Tmi + Tei)
include the electricity and memory consumed for multi-EOSs

observation, Fc2 =
∑Nt

i=1
∑Ng

j=1
∑|DW l

l |

s=1 ecDTl
(
DW l

j

)
is the

electricity consumption of the multiple EOSs transmitting

data to ground station,
∑Ng

j=1
∑|DW l

l |

s=1 ecDTl
(
DW l

j

)
is the

amount of data released for transmission to the ground sta-
tions,

∑|SRl |
h=1 rateEl ·

(
SRlh

)
is the total amount of charging

in the sunshine region, ϕli is the look angle of mission Ti,
vlϕ is sensor’s slewing velocity and stimel is the recover time
of sensor slewing.

Objective Function (2) consists of two parts F1 and F2:
F1 is to maximize the sum of the priorities of observation
missions; F2 ensures that the resources consumed by each
EOS are relatively average. Thus, an EOS with abundant
resources can perform more missions, while that with few
resources can perform fewer missions. Here, priority is given
to maximizing F1 to ensure that more and more important
missions are observed.

Equation (3) is the constraint to be considered in the
observation scheduling. Equation (3a) is the mission exe-
cution constraint indicating that a given mission can only
be allocated to one EOS in a given time period to avoid
wastage of resources caused by mission conflicts. The i-th
mission can only be allocated to one EOS in a given time
interval k .

Equation (3b) is the electricity constraint, which represents
the electricity consumed by the EOSs for image acquisition
and data transmission and that the electricity supplied by solar
batteries needs to meet the limits of the battery capacity.

Equation (3c) is the memory constraint, which indicates
that the EOS memory should always be within its safe range
during data collection and transmission.

Equations (3d) is the maneuver constraint, which indicates
that the EOS must have enough time to adjust and stabilize
the swing angle of the sensor when performing the continuous
observation missions.

Equations (3e) is the time constraint, which indicates that
the observation duration needs to meet user requirements and
that the mission can only be observed in the VTWs.

The flowchart of the multi-EOSs scheduling proposed is
illustrated in Fig. 2.

III. OPTIMAL MISSION PRE-PLANNING SCHEME BASED
ON EACO ALGORITHM
To reduce the time consumed during multi-ESOs scheduling
and achieve optimal allocation, we established the cooper-
ative competition rules between the ant colony based on
survival of the fittest. Then, to prevent the algorithm from
converging to a local optimal solution too quickly, the state
transition and pheromone update rules are designed based
on the elite ant system. Thereafter, a parameter dynamic
adjustment approach is constructed in combination with the
multi-EOSs scheduling problem. The mission pre-planning
algorithm is shown in Algorithm 1.

A. STATE TRANSITION RULE
According to the selection probability of the candidate mis-
sions, the state transition rule selects the optimal mission
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FIGURE 2. Framework of multi-EOSs mission scheduling.

sequence for each EOSs using a certain method, to maxi-
mize the observation profits. The following is an example
of selecting the next mission Tk from a set of missions
after performing mission Ti. The pheromone on EOS Sl
performing mission Ti and mission Tk is define as τik,t .
Then, the probability of selecting mission Tk is given as
follows:

k =

arg maxs∈m̄l
{

[
τ
αt
is,t

] [
η
βt
s,t

]
}, CT ,t ≤ q0

plik,t , otherwise
(4)

where t is the iteration number, αt is the information heuristic
factor that represents the importance of the pheromone, βt is
the expected heuristic factor that indicates the importance
of heuristic information. m̄l represents the set of remaining
candidate missions of the EOS Sl , ηs represents the heuristic
information of mission Ts, q0 is a parameter between 0 and 1,
and CT ,t is a number of uniform distribution that controls the
transfer rules.

In the traditional ACO, the random selection thresholdCT ,t
is a random number on [0,1], which causes chaos of the
solution. In this work, the random selection threshold CT ,t
is controlled by the uniform random number on [0,1]. The
uniform distribution is chosen here to ensure that the choice
of search optimization strategy for each iteration is equally
possible and to increase the randomness of the solution more
reasonably. According to the expression of uniform distribu-
tion function, we can get the expression of CT ,t as follows:

CT ,t =

{
CT ,t/κc, CT ,t ∈ (0, κc)(
CT ,t − κc

)
/ (1− κc) , CT ,t ∈ (κc, 1)

(5)

where κc ∈ (0, 1) determines the change frequency of CT ,t
and the state transition probability plik,t is designed as follows:

plik,t =


[
τ
αt
ik,t

] [
η
βt
k,t

]
∑

s∈m̄l

[
τ
αt
is,t

] [
η
βt
s,t

] , k ∈ m̄l

0, otherwise

(6)

B. PHEROMONE UPDATE RULE
The pheromone update process includes evaporation and
generation of pheromones. To avoid search stagnation, this
work first introduces the elite ant colony system that releases
additional pheromones to enhance the effects of positive
feedback. Second, the pheromone concentration of each mis-
sion sequence has a maximum and a minimum. Because
the minimum concentration is conducive for better solu-
tion exploration, the maximum concentration ensures that
the experience is enlightening for the ant colony. The local
pheromone update rule is as follows:

τik,t = (1− ρt) τik,t +1τik,t

1τik,t =
∑n

a=1
Ant

Qτ
Funa

nAnt = κn · num(SeleT )

(7)

where ρt is the pheromone evaporation factor that is used to
prevent infinite accumulation of pheromones, and its value
range is 0 to 1; 1τik,t is the accumulation of the pheromone
concentration on the mission sequence from mission Ti to
mission Tk for each ant at the end of the iteration t; nAnt
is the number of ants, which is determined by the number
of candidate missions to be performed for each EOS; SeleT
is the set of candidate missions; Qτ is pheromone amount
and Funa is the objective function value obtained by ant a.
After all the ants find the end node, the global pheromone
update rule is performed by adding pheromones to all the
edges, including the pheromones produced by the elite ants.
The global update rule is described as follows:τik,t+1 = (1− ρt) τik,t + ρt1τ

∗
ik,t

1τ ∗ik,t =
Qτ

Funbest

(8)

where 1τ ∗ik,t is the pheromone produced by elite ants. Then
updated pheromone τik,t+1 is within range [τmin, τmax].

C. DESIGN OF HEURISTIC FUNCTION FOR MULTI-EOSs
SCHEDULING
Different objective functions represent different expectations
for multi-EOSs scheduling, so the heuristic functions should
also be designed according to the objective functions. The
heuristic functions selected herein include mission priority,
electricity consumption, and memory consumption.

In multi-EOSs scheduling, missions with higher priorities
are considered first, and the mission resource consumption
also reflects the scheduling rules of mission priority. Prior-
ity is given to missions that consume the fewest resources
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because EOSs can conserve resources to accomplish more
missions.

pηi = (Tpmax − Tpi) (Tpmax − Tpmin)−1 + η1
eηi = (Temax − Tei) (Temax − Temin)−1 + η2
mηi = (Tmmax − Tmi) (Tmmax − Tmmin)−1 + η3

(9)

where Tpmax and Tpmin are the maximum and minimum
of mission priority Tpi; Temax and Temin are the maximum
and minimum of electricity consumption in the mission set;
Tmmax and Tmmin are the maximum andminimum ofmemory
consumption in the mission set; η1, η2 and η3 are small
constants.

Based on the above heuristic information, the heuristic
function for the EACO is obtained as follows:

ηi = ω1 · pηi + ω2 · eηi + (1− ω1 − ω2) · mηi (10)

where ω1 and ω2 are weight coefficients, indicating the
importance of the mission properties.

D. COOPERATION AND COMPETITION STRATEGY
In nature, some animals cooperate to resist natural enemies,
but they also compete with each other for food and territory.
The cooperation and competition mechanisms make popu-
lations evolve toward better directions. The implementation
principle for the evolutionary ACO based on cooperation and
competition involves establishing an environment of cooper-
ation and competition among the populations to find the opti-
mal solution. The cooperation and competition mechanisms
can be described as follows.

First, we define a cooperation coefficient; if the condition
of information exchange among the ant colonies is satisfied,
each ant colony will not exchange information randomly.
Instead, information exchange is determined by the coop-
eration coefficient, which reflects its evolution characteris-
tics. This not only avoids randomness but also ensures that
pheromones will not gather on some paths, which effectively
prevents the algorithm from converging prematurely. The
cooperation coefficient of the r-th ant colony Cor is defined
as follows:

Cor =
Funrbest
Funravg

(11)

where Funrbest is the best objective function value in the r-th
population, Funravg is the average value of the objective
function in the r-th population. After g iterations, two ant
subgroups are selected to exchange information according to
cooperation probability, which is described as follows:

Pco = |Cor − Cok |, k = r − 1, . . . , r − g+ 1 (12)

After the information exchange object of the r-th ant sub-
group is determined as that of the k-th ant subgroup, the best
solution of the k-th ant subgroup is replaced by the worst
solution of the r-th ant subgroup.

Seqrworsr = Seqkbest (13)

where Seqrworsr is the worst mission scheduling result of r-th
ant subgroup and Seqkbest is the best mission scheduling result
of k-th ant subgroup.

Algorithm 1Mission Pre-Planning Based on EACO
Input: The set of EOSs S, the set of missions T , the set of

ground station G;
Output: Scheduling results of each EOS PT ;
1: Initialization: Schedule time horizon Sday, heuristic fac-

tor α0, αmin, β0, βmin, pheromone evaporation factor
ρ0, ρmin, pheromone range τmin, τmax , parameters of
selection threshold κc, CT ,0 and pheromone amount Qτ ,
maximum iterationMg;

2: for l = 1; l ≤ Ns; l ++ do
3: VTWs← FunTW (S,T ,Sday ) {obtain VTWs};
4: Count = 0;
5: while TimeUnit(Count) ≤ Sday do
6: for i = 1; i ≤ Nt ; i++ do
7: SeleT ← FunTask(VTWs,Ti,Sal) {Eq. (3)};
8: end for
9: for i = 1; i ≤ Nt ; i++ do

10: if Eq. (19) is satisfied then
11: αt ← Funalp(αt−1, κα ,αmin) {Eq. (15)};
12: βt ← Funbeta(βt−1, κβ ,βmin) {Eq. (16)};
13: end if
14: if update condition of ρt is satisfied then
15: ρt ← Funrho(ρt−1, κρ ,ρmin) {Eq. (17)};
16: end if
17: k ← Funtra(τik,t ,CT ,t ,αt ,βt ) {Eq. (4)− (6)};
18: τik,t+1 ← Funtau(τik,t ,ρt ,κn,Qτ ,SeleT )

{Eq. (7)− (8)};
19: Seql ← allocate Ti to Sl {Eq. (11)− (13)};
20: Resl ← Funres(Sal,Seql ,Ti);
21: end for
22: Count = Count + 1;
23: end while
24: PT ← Funpt(S,T ,Seq,Res);
25: end for

E. PARAMETER DYNAMIC ADJUSTMENT APPROACH
The ACO performance is not only related to the pheromone
update rule and heuristic function but also affected by heuris-
tic factors, pheromone evaporation factors, and other param-
eters. In the general ACO, the above parameters are fixed
in the search process, which causes the algorithm to con-
verge to the local optimum. Thus, we propose a parame-
ter dynamic adjustment approach based on the multi-EOSs
scheduling problem. In the early stage, the approach mainly
adjusts the heuristic factor, and in the later stage, it mainly
adjusts the pheromones. To reduce unnecessary updates of the
heuristic factor, a trigger condition for updating parameters
is designed. That is, after g iterations, the heuristic factors
are adjusted when the condition is satisfied. This update
condition is defined as follows.

Ft − Ft − 1 ≤ δh1g (14)
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where Ft =
[
Funbest,t−g+1, . . . ,Funbest,t

]
, δh is the

error threshold, and 1g is a p-dimensional column vec-
tor whose elements are all 1. When the above condition
is satisfied, the updating rules of heuristic factors are as
follows:

αt =

{
κααt−1, if κααt−1>αmin
αmin, otherwise

(15)

βt =

{
κββt−1, if κββt−1>βmin
βmin, otherwise

(16)

where κα and κβ are positive constants, and their main func-
tion is to change the heuristic factors from the optimal param-
eters of the earlier iteration to those of the later iteration;
αmin and βmin are the minimum value of information heuristic
factor and expectation heuristic factor.

If the objective function remains unchanged for g suc-
cessive iterations, the algorithm may fall into a local opti-
mal solution. Therefore, the pheromone evaporation factor is
updated as follows:

ρt =

{
κρρt−1, if κρρt−1>ρmin
ρmin, otherwise

(17)

where κρ is a positive constant, ρmin is the minimum of
pheromone evaporation factor.

Algorithm 2 Mission Replanning Based on Interactive
Replanning Approach
Input: The set of EOSs S, the set of missions T , the set

of ground station G,the plan of mission allocation PT ,
the failed EOSs Fs;

Output: Replanning results of each EOS rePT ;
1: Initialization: Schedule time horizon Sday, heuristic fac-

tor α0, αmin, β0, βmin, pheromone evaporation factor
ρ0, ρmin, pheromone range τmin, τmax , parameters of
selection threshold κc, CT ,0 and pheromone amount Qτ ,
maximum iterationMg;

2: numFs← num(Fs) {the number of Fs};
3: for i = 1; i ≤ numFs; i++ do
4: taskFs← Funtask (Fs,PT ) {tasks set of Fs};
5: numtaskFs← num (taskFs);
6: for j = 1; l ≤ numtaskFs; j++ do
7: WorkL ← Funwk(PT ,T ,AvaRes) {Eq. (18)};
8: LoadIndex ← sort (WorkL,W ) {Eq. (19)};
9: for l = 1; l ≤ Ns; l ++ do

10: if LoadIndex (l) 6= Fs (i) then
11: reSeql ← allocate mission taskFs(j) to EOS

LoadIndex(l);
12: Prol ← Funpr(reSeql , S) {obtain profit};
13: end if
14: end for
15: rePT ← FunrPT( Pro,reSeq,S, T )

{allocate to the highest profits EOS};
16: end for
17: end for

IV. MULTI-EOSs INTERACTIVE REPLANNING
FRAMEWORK
Whenmultiple EOSs perform observationmissions, theymay
encounter unforeseen situations, such as optical equipment
failure and temporary emergencies. Therefore, an interactive
replanning approach for emergencies is also presented. Based
on the results of mission pre-planning, the ICNP and mission
insertionmechanisms are adopted to solve themission replan-
ning problem for multiple EOSs. The mission replanning
algorithm is shown in Algorithm 2.

A. INTERACTIVE CONTRACT NET PROTOCOL
In the process of multi-EOSs scheduling, mission
pre-planning requires a lot of time. If the condition for
mission replanning is triggered, it is inappropriate to over-
turn the previous allocation scheme. Therefore, it is more
appropriate to reallocate new missions on the basis of mis-
sion pre-planning. The interactive replanning approach has
good adaptability and robustness for large-scale distributed
systems. Multiple EOSs perform new missions according to
the information exchange between each node until the system
returns to a stable state. Then, they continue to perform
missions or the next replanning. The negotiation process
of the ICNP can be divided into the following four stages,
namely bidding, participating in the bidding, winning the bid,
and executing the contract, as shown in Fig. 3.

FIGURE 3. Schematic diagram of Interactive contract net protocol.

For new missions, an EOS with a lower workload is pri-
oritized in the bidding stage. If this EOS cannot complete
the mission, it will communicate with a potential candidate
in the form of broadcasts as the bidder, informing them of the
geographic location, time window, observation duration, and
resources required to complete the new mission. In the event
of EOS optical sensor failure, the EOS broadcasts mission
information that cannot be completed (communication link
will not fail), and the candidate EOSs then participate in the
bidding for the new mission. Here, we define the workload of
the l-th EOS as follows:

WorkLl =

AvaResl − Nt∑
i=1

|TW l
i |∑

k=1
Tsel lik (Tei + Tmi)


AvaResl

(18)
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where is AvaResl the available resource of the l-th EOS. If the
EOSworkload is greater thanWl , it means that the EOS is not
suitable for new missions. For an EOS with a low workload,
it judges whether the new mission can be inserted into the
original mission list. The winning EOS is then determined by
evaluating the profits of the candidate EOS performing the
new missions.{
WorkLl>Wl, Not suitable for new tasks
WorkLl ≤ Wl, It is possible to perform new tasks

(19)

where Wl is the threshold to judge whether the workload of
the healthy EOS can perform new missions.

B. EXCHANGE CONTRACT AND MISSION INSERTION
MECHANISM
The traditional replanning strategy arranges new missions at
the end of the mission list, so it cannot guarantee maximum
benefit from themissions. The exchange contract andmission
insertion mechanism proposed herein is shown in Fig. 4 and
implies that the reallocated mission is added to the vacant
time of the healthy EOS. If the new mission has a higher
priority, it will replace the original mission and maximize the
benefit of the entire multi-EOSs system.

FIGURE 4. Schematic diagram of mission insertion mechanism.

V. RESULTS
In this section, we present some numerical and unmanned
aerial vehicle (UAV) flight experiments to prove the effec-
tiveness of the proposed algorithm. All the simulation data
from the satellites and targets were obtained from Satellite
Tool Kit (STK) 11.2. STK can be used to obtain the VTWs
between the EOSs and the ground targets, the sunshine region
of EOSs, and the DWs between the EOSs and ground sta-
tions. The schedule time horizon is 24 h, from 2020/12/25
00:00:00 to 2020/12/26 00:00:00. The design of the EOSs is
shown in Fig. 5, and their orbit parameters are obtained from
https://celestrak.com/. The experiment is coded in
MATLAB R2018b and executed on a laptop with Intel(R)
Core(TM) i5-8250U CPU (1.6 GHz) under Windows 10
with 16 GB RAM. The specific parameters are listed in
Appendix A.

To verify the effectiveness of the algorithm, eight scenarios
are designed here, and the number of ground targets is 25, 50,
75, 100, 125, 150, 175 and 200 respectively. The priority of

FIGURE 5. Orbits distribution of the 24 EOSs and specific parameters are
listed in Appendix A.

FIGURE 6. Illustration of target distribution scenarios. (a) Centralized:
2 target groups, each group has 5 targets; Random: 15 targets;
(b) Centralized: 3 target groups, each group has 7 targets; Random:
29 targets; (c) Centralized: 4 target groups, each group has 8 targets;
Random: 43 targets; (d) Centralized: 4 target groups, each group has
10 targets; Random: 60 targets; (e) Centralized: 5 target groups, each
group has 10 targets; Random: 70 targets; (f) Centralized: 5 target groups,
each group has 12 targets; Random: 90 targets; (g) Centralized: 5 target
groups, each group has 15 targets; Random: 100 targets; (h) Centralized:
5 target groups, each group has 15 targets; Random: 125 targets.

ground targets is a random integer between 1 and 10. There
are two types of ground targets and their location distribution
is shown in Fig. 6. Two different types of targets are designed
as follows:

1) The first one is centralized. In the eight scenarios, 2, 3,
4, 4, 5, 5, 5 and 5 cities are selected around the world. 5,
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TABLE 1. Cities information.

TABLE 2. Ground station information.

7, 8, 10, 10, 12, 15 and 15 targets are generated within a
4◦ latitude and longitude of each city. The information
of the five cities is shown in Table 1.

2) The second one is a global randomness. In the eight
scenarios, 15, 29, 43, 60, 70, 90, 100 and 125 targets are
generated, and their latitudes vary from - 60◦ to 60◦.

The priority of each target is between 1 and 10, and the
elevation angle is evenly distributed between 30◦ and 50◦.
The memory consumption and observation time of each tar-
get are evenly distributed between [300MB, 350MB] and
[100 s, 120 s], respectively. The power consumption of each
mission is positively correlated with the required observation
time. The ground station information is shown in Table 2.
The initial electricity and initial memory of each EOS are
one-fourth of their total values.

A. PARAMETER ANALYSIS
The parameters of the EACO are shown in Table 3. To analyze
the influence of different parameter combinations of heuristic
factors on the early iteration results, we choose from α ∈

[1, 2] and β ∈ [1, 2] with an interval of 0.05 respectively,
and repeat the calculation 20 times for each parameter com-
bination. The number of iterations is 10, and the result is as
follows.

TABLE 3. Parameters of EACO.

To analyze the influence of different heuristic factors on
the later stage of the algorithm, the number of iterations is
80. The results are shown in Fig. 8.

From the simulation results of Fig. 7 and Fig. 8, we can get
the appropriate heuristic factor parameter combination for the

FIGURE 7. Early convergence result of profit under different heuristic
factors.

FIGURE 8. Late convergence result of profit under different heuristic
factors.

FIGURE 9. Late convergence result of profit under different heuristic
factors.

early and late iterations of multi-EOSs mission scheduling.
The blue parts indicate that the average values of the objective
functions were small, implying that the algorithm did not

61654 VOLUME 9, 2021



J. Qi et al.: Cooperative Autonomous Scheduling Approach for Multi-EOSs

FIGURE 10. Results of multi-EOSs scheduling with different methods.

FIGURE 11. Number of missions performed by each EOS in the first stage.

converge to a better solution. The yellow parts indicate that
the average values of the objective functions were larger,
implying that the algorithm produced better results. As can
be seen in Fig. 7, when α and β, the average values of the
first 10 iterations of the algorithm were the larger. Therefore,
the heuristic factors in the early stage of EACO were set as
α0 and β0, which is helpful for the algorithm to converge to

FIGURE 12. Results of multi-EOSs scheduling with different methods.

a better solution. As shown in Fig. 8, when α ∈ [1.55, 1.65]
and β ∈ [1.25, 1.35], EACO has a better optimal solution.
Therefore, the later adjustment strategy of EACO is set to
α = 1.6 and β = 1.3.

The value of the evaporation factor also affects the conver-
gence of the algorithm, so we chose from ρ ∈ [0.05, 0.95]
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FIGURE 13. Results of mission pre-planning for each EOS.

FIGURE 14. Number of missions performed by each EOS in the first stage.

with an interval of 0.01 and repeat the calculation 20 times
under each parameter.

Different values of the evaporation factor have different
influences on EACO. It can be seen from Fig. 9 that the
evaporation factor has good convergence when this value is
about 0.5.

B. COMPARISON WITH DIFFERENT ALGORITHMS
To further verify the effectiveness of the proposed algorithm,
we compared the EACO with the two-phase genetic anneal-
ing algorithm (TPGA) [14], adaptive GA (AGA), and ACO
for the above eight target scenarios. The AGA considers
that the crossover probability and mutation probability will
change with the fitness function. To fully describe the effects
of the algorithms, each algorithm was repeated 20 times.

It can be seen from Fig. 10 that the four algorithms obtain
better scheduling schemes when the number of targets is

TABLE 4. First stage: missions execution sequence of each EOS.

small. Only the sum of the priorities of the observed mis-
sions is larger, which indicates that the scheduling scheme is
better, and the algorithm does not converge earlier. However,
with the increase in the scale of the targets, the observed
targets and the observation profits obtained by the adaptive
GA and ACO are gradually reduced, which infers that the
two algorithms may fall into local optimum. The TPGA and
EACO can achieve better results, but the EACO produces
better observation profits and observes more targets at a large
scale compared with the TPGA.
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FIGURE 15. Results of mission replanning for each EOS.

FIGURE 16. Number of missions performed by each EOS in the second
stage.

The first stage is mission pre-planning, which can obtain
the scheduling results of each EOS offline, because the key
data can be obtained by STK in advance, which can save a lot
of time. The running time of the EACO under different mis-
sion sizes is presented in Fig.11. To describe the scheduling
state of each EOS, taking target scenario (d) as an example,
the mission executions of 24 earth resource satellites for
100 ground targets are described. The scheduling results of
the first stage for multiple EOSs in scenario (d) are presented
in Fig. 12 Fig. 13 and Fig. 14, which show the process of
image acquisition, consumption and supplement of electricity
and memory.

Fig. 12 shows the remaining resources for each satellite
during their mission. During multi-EOSs mission schedul-
ing, both imaging and data transmission consume a certain
amount of electricity and memory; however, considering the

TABLE 5. Second stage: missions execution sequence of each EOS.

importance of solar energy and the ground stations, the EACO
can enable each EOS to complete more missions with limited
resources and balance the workload of each EOS.

Fig. 13 and Fig. 14 show the results of multi-EOSs mission
scheduling in the first stage. The low orbit of the EOS allows
it to orbit the earth many times in a day, so it can observe
some missions on the ground many times. The ordinate is
the mission number from 1 to 100 and the horizontal axis is
the time of day. In Fig. 13, the black line is the VTWs of
EOS for the allocated mission, and the red, green, blue and
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FIGURE 17. Relationship between EOSs observation mission and UAVs observation mission.

pink lines are the execution time interval of each EOS. The
scheduling result for 100missions is plotted in Fig. 14. As can
be seen from Fig. 12 (a) and Fig. 13, mission T75 is allocated
to EOS S4, and the execution time is about 63200 s, so the
electricity and memory of S4 are reduced in this time period.
From Fig. 12 (b) and Fig. 13, it can be seen that EOS S11
performs mission T31 at around 14400 s and from Fig. 12 (b),
it can be seen that the electricity and memory of EOS S11 are
also consumed by the execution of missions. According to the
pre-planning result of each EOS in Fig. 13, we can obtain the
mission execution sequence of each EOS in Table 4.

In this study, we consider that the EOS sensors may fail
during multi-EOSs mission, thereby preventing them from
completing the allocated missions. Therefore, we propose
ICNP and mission insertion mechanism for mission replan-
ning. Assuming that EOS S4 fails after 12 hours of operation,
it can be seen from Fig. 13 that missions T10 and missions
T75 pre-allocated to EOS S4 need to be reallocated. Based on
the interactive replanning approach, the results of multi-EOSs
mission replanning are shown in Fig. 15 and Fig. 16.

Fig. 15 and Fig. 16 show the scheduling results of multiple
EOSs based on the interactive replanning approach due to
failure of EOS S4. From Fig. 15, we can find that the mis-
sions originally scheduled to be executed after 12 hours are
reallocated, and mission T10 and mission T75 are successfully
allocated to EOS S13 and S18, respectively. It can be seen
from the local enlarged drawing in Fig. 15 that mission T10
is reallocated to EOS S13 at about 55600 s, and mission T75
is reallocated to EOS S18 at about 76500 s. The rescheduling
result of 100 missions is shown in Fig. 16, which shows the
number of missions performed by each EOS. According to
the replanning result of each EOS in Fig. 15, we can obtain
the missions execution sequence of each EOS in Table 5.

C. UAVs FLIGHT EXPERIMENT
To show the results of the operation of the multiple satel-
lites in orbit, we use 24 quadrotor UAVs to simulate the

FIGURE 18. Long-exposure photo of a flight with multi-UAVs.

multi-satellite earth observationmission based on the existing
multi-UAV platform. Because UAVs can carry the pan-head
cameras and capture the images of the mission area in real
time, similar to the imaging processes of the EOSs. First,
as shown in Fig. 5, it is assumed that there is an earth in
the middle of the orbit of multiple UAVs, then the mission
locations to be observed are set on the surface of the earth, and
multiple UAVs operate according to the orbit of each satellite.
When the UAV reaches the top of the pre-allocated mission,
it can capture the target by adjusting the camera angle. Firstly,
the motion information of each EOS is obtained by STK, and
then the trajectory information of multiple UAVs is obtained
by scaling it in a certain proportion. The relationship between
EOSs observation mission and UAVs observation mission are
shown in Fig. 17.

To improve the viewing effect, we use the light of UAVs to
show the trajectory of UAVs at night. In the simulation pro-
cess, 24 EOSs are used to perform the observation missions.
Here we use 24 UAVs to simulate the in-orbit observation
process of EOSs. Fig. 18 depicts a long-exposure photo of a
flight with multiple UAVs. The video of the experiment can
be found at https://www.youtube.com/watch?v=
v0T_NFixHRY.
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TABLE 6. Specific parameters of multiple EOSs.

VI. CONCLUSION
In this study, we investigated multi-EOSs autonomous
scheduling by simultaneously considering observation,
resource recoverability, and unexpected emergencies. A com-
plete multi-EOSs scheduling scheme composed of two

coupling stages, namely mission pre-planning and mission
replanning, was proposed. To obtain the optimal observation
scheme for multi-EOSs pre-planning, we developed coop-
eration and competition mechanisms as well as a dynamic
adjustment approach to improve the quality of solutions.
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To solve the urgent mission, an interactive replanning
approach was proposed to reallocate the unfinished missions
of the failed EOS.We conducted experiments in two stages of
multi-EOSs scheduling to verify the effectiveness of the pro-
posed algorithms. The first experiment compares our EACO
with TSGA, AGA and ACO. The results show that EACO is
superior over the other three in terms of both the number of
observation missions and observation profits. Taking mission
scenario (d) as an example, the mission execution time inter-
val and resource change of each EOS are described in detail.
In the second experiment, tasks that cannot be completed by
the faulty EOS are reasonably allocated to other EOSs based
on the interaction framework, and the observation profits are
not reduced. Because the imaging process of UAV is similar
to that of EOS, we used UAVs to simulate the operations of
EOSs in orbit and obtained images of a region of interest
using an airborne camera.

In our future work, we intend to include additional con-
straints, such as uncertainties due to clouds and weather
effects, on the observations.

APPENDIX A
The specific parameters of each EOS are calculated by using
SGP4 model and they are listed in Table 6. In addition, we set
the following upper bound for the electricity and memory of
each EOS.
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