
Received April 5, 2021, accepted April 15, 2021, date of publication April 22, 2021, date of current version April 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3075040

An Empirical Investigation on the Effect of Code
Smells on Resource Usage of Android
Mobile Applications
MOHAMMAD A. ALKANDARI 1, ALI KELKAWI 1,
AND MAHMOUD O. ELISH 2, (Senior Member, IEEE)
1Department of Computer Engineering, Kuwait University, Kuwait City 13060, Kuwait
2Department of Computer Science, Gulf University for Science and Technology, Hawally 32093, Kuwait

Corresponding author: Mohammad A. Alkandari (m.kandari@ku.edu.kw)

ABSTRACT Code smells refer to suboptimal coding practices which impact software quality and software
non-functional requirements such as performance, maintainability, and resource usage. Although desktop
application code smells have been extensively studied in the literature, mobile applications are relatively
new in nature, and the effect of code smells is only recently being studied on mobile devices. This paper
investigates the effect of code refactoring on enhancing both CPU usage and Memory usage. It presents
a study of three code smells: HashMap Usage, Member Ignoring Method and Slow Loop, and eight
open-source applications were selected from Github for testing purposes. The three aforementioned code
smells were refactored individually and cumulatively to study their effects on a mobile phone’s resource
usage, with CPU usage and memory usage as the metrics of choice. The resource usage of five different
versions of eight different mobile applications were measured to find the optimal refactoring strategy.
The results obtained suggest that refactoring HashMap Usage and Member Ignoring Methods yielded
significantly an average improvement in CPU usage of 12.7% and 13.7% respectively, while the refactoring
of all three code smells yielded an improvement of up to 7.1% in memory usage. This research shows that
certain refactoring methods have significant impacts on improving both the CPU usage and Memory usage.
These statistically significant results can be used as the basis of guidelines to assist in writing codes which
utilize smartphones’ resources more efficiently and enhance their quality.

INDEX TERMS Code smells, Android, resource usage.

I. INTRODUCTION
Mobile applications have come to dominate the software
industry over the past decade, with over 5 million applica-
tions available on the Apple App Store and Google Play
Store combined. It is expected that the number of application
downloads worldwide will exceed 250 billion downloads by
the year of 2022 [1]. This exponential rise in numbers calls
for closer evaluation of coding practices and their effects
on the non-functional requirements of mobile applications
such as performance, energy consumption, maintainability,
and security.

Poor coding practices, also known as code smells [12],
have been extensively studied in the literature when it comes
to desktop applications, with papers addressing the correla-

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

tion between different code smells and an application’s main-
tainability [2] and its quality [3]. However, due to their recent
growth, research has not been able to stay up to date with the
large number ofmobile applications being developed. Several
articles have been published to address a small number of
code smells’ effect on amobile application’s performance [4],
energy consumption [5], security [6] and resource usage [7].
However, there remain several combinations of code smells
whose effects onmobile applications and their non-functional
requirements which have not been explored.

Resource usage is an important factor for mobile appli-
cations due to the limited resources available. Therefore,
identifying reasons that an application is hogging resources
can pave the path for better coding practices to be used
to promote the usage of less CPU and device memory.
Although there have been several studies conducted on the
effect of code smells on the energy consumption of Android

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 61853

https://orcid.org/0000-0002-0893-6116
https://orcid.org/0000-0002-1969-1169
https://orcid.org/0000-0002-2767-0501
https://orcid.org/0000-0003-3264-185X


M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

applications [8]–[10], [13], code smells related to resource
usage have not been as extensively studied.

The objective of this paper is to empirically investigate the
effect of some code smells on resource usage of Android
mobile applications. It contributes statistically significant
results and empirical insights that can be used as the basis
of guidelines to assist in writing code which utilizes a smart-
phone’s resources more efficiently.

The rest of the paper is organized as follows: Section II
discusses background related to code smells and performance
metrics. Section III reviews related works. Section IV dis-
cusses the research methodology and the empirical study
conducted to investigate the effects of code smells on amobile
application’s memory and CPU usage. Section V discusses
the evaluation and the results of the conducted empirical
study. Finally, Section VI concludes the paper and provides
directions for future work.

II. BACKGROUND
This section describes the code smells which have been stud-
ied and investigated further in this paper. It also discusses the
metrics typically used to measure an Android application’s
resource usage.

A. CODE SMELLS
As discussed previously, code smells are considered poor
coding practices, and have been a topic of research in the
world of software due to the importance of optimizing the
performance of mobile applications by improving energy
consumption, resource usage and UI performance to name
a few. Initially studied in relation to desktop applications,
mobile specific code smells have been introduced and further
studied [11]. Although code smells on both platforms have
studied bad coding practices in object oriented programming
in desktop applications, mobile code smells have come to
light due to the negative impact they may have on a smart-
phone’s limited resources and energy.

Of the Android-specific code smells discussed in [14],
three are selected to study their relations to a mobile applica-
tion’s resource usage due to: (i) their commonality in Android
applications as discussed in [15]; (ii) their simplicity to be
detected and to be easily refactored; (iii) their commonality in
a programming environment; and (iv) their effects not being
investigated with respect to resource usage.

• Member Ignoring Method (MIM): This refers to the
mis-classification of a method (static or dynamic). It is
recommended to have a static method when feasible due
to the increase in speed from dynamic to static methods
of 15-20%. Figure 1 shows this code smell before and
after refactoring.

• Slow Loop (SL): This refers to the standard for loop
being slower than the for-each loop. Therefore, it is
suggested to replace the former with the latter whenever
possible to improve the efficiency of the application.
Figure 2 shows this code smell before and after refac-
toring.

FIGURE 1. Member Ignoring Method refactoring strategy.

FIGURE 2. Slow Loop refactoring strategy.

FIGURE 3. HashMap Usage refactoring strategy.

• HashMap Usage (HMU): As the name implies, this
refers to the usage of HashMaps in an Android applica-
tion. Theoretically, the Android framework prefers the
use of ArrayMap and SimpleArrayMap due to their bet-
ter memory-efficiency. Figure 3 shows this code smell
before and after refactoring.

B. RESOURCE USAGE METRICS
High resource usage in a mobile application inevitably leads
to poor performance and decreased battery life, thus it is

61854 VOLUME 9, 2021



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

FIGURE 4. Android Studio profiler.

imperative to find ways of optimizing resource usage to
ensure that the user experience is improved. For the purpose
of this study, resource usage will refer to CPU and memory
usage. Their relevance is as follows:

• CPU Usage: This is a measure of how much work is
being performed by the smart phone’s processor. Appli-
cations with high CPU usage are a cause for concern,
as it has a negative effect on battery life and device
speed.

• Memory Usage: This is a measure of how much
memory is being consumed by a mobile application.
Although the sizes of Random Access Memory (RAM)
in smart phones is continuously increasing with each
iteration of new releases, it is still important to try to
optimize the amount of memory consumed.

In evaluating the aforementioned resource usage metrics,
Android Studio was used as the tool of choice, as it offers
an extensive profiler tool which visually shows CPU and
memory usage at any given time as shown in Figure 4. Fur-
ther, it offers seamless integration with open-source Android
applications, the majority of which are developed using this
tool.

III. RELATED WORKS
Hecht et al. [4] conduct an empirical study on the effects of
code smells on the performance of Android mobile appli-
cations in terms of memory usage and UI performance.
The study discusses the individual and combined effects of
the three following code smells on two different applica-
tions: Internal Getter/Setter, Member Ignoring Method, and
HashMap Usage. The authors test the applications using
two metrics for UI performance: frame time and number
of delayed frames, which pertain to the time taken for an
Android application to draw one frame on the screen. A delay
in the drawing of these frames would lead to a reduction in
User Experience. The paper also discusses two metrics for
memory efficiency: memory usage and number of garbage
collection calls, which pertain to how well an application
manages its memory usage and the resources allocated to
it. Using PAPRIKA Toolkit to detect the code smells and
a process of manual refactoring of them both individually
and combined, the authors found an overall improvement
of 12.6% in UI performance by refactoring Member Ignoring
Methods and up to 3.6% improvement in memory perfor-
mance with all three code smells refactored.

Pritam et al. [21] Another research study, that was pub-
lished recently in this area, addressed code smells with
respect to software quality. This study targeted the assessment
of code smell for predicting class change proneness and
discover errors using machine learning algorithms.

Morales et al. [17] study the effects of anti-patterns (code
smells) on the energy efficiency of 20 Android applications
downloaded from F-Droid. Although the paper looks at 8 dif-
ferent code smells, only the three Android-specific ones are
considered for this paper, which are Binding Resources too
early, HashMap Usage and Private getters and setters. Bind-
ing Resources too early refers to the initialization of energy
consuming resources such as GPS or Wi-Fi before they need
to be used. The authors use several tools to conduct this case
study: ReCon for the detection of code smells, HiroMacro for
the generation of usage scenarios, Monkeyrunner to automat-
ically run the generated usage scenarios, Android Studio to
refactor the code smells, and the digital oscilloscope TiePie
Handyscope HS5 to measure the application’s energy con-
sumption. The results obtained during the study showed that
although the improvement in energy efficiency by refactoring
code smells depends on the context in which the application
runs, applications with code smells consumed more energy
than their refactored counterparts.

Carette et al. [9] discuss the effects of the three afore-
mentioned code smells on the energy consumption of five
open-source Android applications. The authors use a combi-
nation of two tools, PAPRIKA and NAGAVIPER, dubbing it
as the HOT-PEPPER approach. In this paper, the PAPRIKA
toolkit is slightly modified to detect as well as refactor the
code smells. NAGA VIPER is used to measure and compare
the energy metrics of each Android application, by feeding
it both the original Android Package (APK) as well as the
refactored one. Based on the results obtained, the most sig-
nificant improvement in energy consumption was found to be
4.83%, showing that more research needs to be invested in the
reduction of code smells to improve application performance.

Cruz and Abreu [18] explore the effects of code smells
on an Android application’s energy efficiency. The authors
attempt to outline performance-based development guide-
lines to ensure that applications consume as little energy as
possible. The paper conducts tests on 6 open-source Android
applications, observing 8 different code smells (some of
which are mentioned in Table 4) using Lint, a tool pro-
vided by the Android Software Development Kit (SDK) to

VOLUME 9, 2021 61855



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

TABLE 1. Summary of related works.

detect problems with code structure. It was found that appli-
cations with the code smells ViewHolder, DrawAllocation,
WakeLock, ObsoleteLayoutParam and Recycle are more
likely to have improvements in terms of energy efficiency.
Through the studies conducted, the authors also found that the
mobile device’s battery life could last up to one hour longer
by using energy-aware coding practices.

Oliveira et al. [7] also assess the effects of an Android
application’s resource usage in terms of CPU and memory
with three different code smells: God Class, GodMethod and
Feature Envy. God Class refers to a class which has too many
methods and attributes and does not make use of all of them.
God Method describes a method that is long and handles
more than one task. Feature Envy refers to a method which
uses more attributes from another class than its own class.
The authors use JDeodorant as the tool of choice due to its
ability to detect and refactor these code smells. The results of
this empirical study showed that refactoring of Desktop code
smells on Android applications may not necessarily yield
better results in terms of CPU usage, with the refactoring of
God Method in one application increasing CPU consumption
by 47%, while the refactoring of all three code smells reduced
memory consumption by up to 8.4%.

Palomba et al. [19] study the effects of nine Android-
specific code smells (some ofwhich arementioned in Table 4)
on the energy consumption of 60 Android applications. These
smells are detected and refactored by aDoctor, a tool which
was developed by the authors. The energy consumption of the
Android applications was tested by PETRA, a software-based
tool which estimates the energy profile of mobile apps. This
empirical study concluded that four code smells (Internal
Setter, Leaking Thread, Member Ignoring Method, and Slow

Loop) consume up to 87 times more energy than methods
affected by other code smells.

Table 1 shows a summary of these papers, the code smells
studied and the metrics used. As demonstrated in the table,
Oliveira et al. [7] research and our study have some similari-
ties using the same Metrics (CPU usage and Memory usage)
as well as the same non-functional requirements (Resource
Usage). However, our study investigates completely differ-
ent code smells which are: Member Ignoring Method, Slow
Loop, and HashMap Usage.

IV. RESEARCH METHODOLOGY AND STUDY DESIGN
This section describes the research methodology and the
research questions this study aims to answer, and proceeds
to describe the process and tools used to conduct the study.

A. RESEARCH METHODOLOGY
The research methodology of this study starts with under-
standing the literature behind code smells and their effects
on software non-functional requirements such as perfor-
mance, maintainability, and resource usage. Then, examine
and choose a sufficient number of existing Android Appli-
cations from various categories with at least 3 counts of the
code smells and at least 10 classes in order to ensure that each
application has different functionalities which can be tested.
After that, analyze all code smells using a particular tool
that has both a Graphical User Interface, and command-line
support which help detect the code smells. Then, manually
refactor all detected code smells with respect to Member
Ignoring Method, Slow Loop, and HashMap Usage. After
that, manually run some test scenarios generated particularly
to test the different functionalities of each application and

61856 VOLUME 9, 2021



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

collect the average CPU and Memory usage for each run.
Then, apply statistical tests and analyze the collected data,
and draw conclusions from the obtained results. More infor-
mation and specific details regarding the research methodol-
ogy and procedure will be provided in the next subsections.

B. RESEARCH QUESTIONS
The purpose of this study is to discover whether refactoring
certain code smells can improve the resource usage capabil-
ities of a mobile application. Based on this goal, we first
collect a corpus of open-source Android applications. The
applications are tested for the aforementioned code smells
using aDoctor [14]. Each application is then tested based on
a generated test scenario on the original application as well
as when the code smells are refactored both individually and
cumulatively. The results collected are then analyzed statis-
tically to extract an informative conclusion. The following
research questions are formulated to guide the study forward:

• RQ1: Does refactoring specific code smells reduce a
mobile application’s CPU usage?

• RQ2: Does refactoring specific code smells reduce a
mobile application’s memory usage?

C. CORPUS
A total of eight Android applications from six different cat-
egories were used in this study. These applications were
selected after inspecting several open-source projects avail-
able on Github, with a focus on applications with at least
3 counts of the code smells being studied and at least
10 classes, ensuring that the application has different func-
tionalities which can be tested. It is worth noting that all appli-
cations are written using Java language. Despite the recent
popularity of Kotlin language in creating Android mobile
applications, code smells of Android applications written in
Java have been more thoroughly defined and there is a larger
corpus of open-source Android written in Java available for
testing. The applications selected were: CycleStreets,1 Loop
Habit Tracker,2 Travel Mate,3 NSIT-Connect,4 GNUCash,5

OmniNotes,6 EasyXKCD7 and Memory Game.8

D. PROCEDURE
1) CODE SMELL DETECTION
Once the open-source code of the application is downloaded,
aDoctor [14] is used as the tool for detecting Android code
smells. This tool was developed to detect 15 Android-specific
code smells, and offers both a Graphical User Interface and
command-line support to analyze an application’s source
code. Upon testing, it was found that aDoctor failed to detect

1https://github.com/cyclestreets/android
2https://github.com/iSoron/uhabits
3https://github.com/project-travel-mate/Travel-Mate
4https://github.com/NSITonline/NSIT-Connect
5https://github.com/codinguser/gnucash-android
6https://github.com/federicoiosue/omni-notes
7https://github.com/tom-anders/easy_xkcd
8https://github.com/sromku/memory-game

HashMap Usage code smell in several projects. Therefore,
this code smell was detected through a simple search using
Android Studio’s utilities.

2) CODE SMELL REFACTORING
While there are several custom tools that have been devel-
oped in the literature for automatic refactoring, we adopt
Palomba et al. [19] approach in using manual refactoring.
This is largely due to the simple nature of the code smells
being studied, therefore manual refactoring is not seen to
be an expensive process, while also making sure that each
refactoring detected is one that is correct and necessary for
refactoring. The code smells detected are manually refactored
according to the following:

• Member Ignoring Method: Non-static methods are
converted to static methods if they have no need to call
instance variables in a given class.

• Slow Loop: For loops are converted to for each loops.
In some instances, the usage of for each loops is not
possible as the loop is meant to iterate over an object
which does not implement the Iterable interface.

• HashMap Usage: HashMaps are replaced with
ArrayMaps where applicable. In some instances,
the conversion of HashMap to ArrayMap causes com-
patibility errors in the program.

3) COLLECTION OF RESULTS
Similar to the refactoring process, each application is manu-
ally run on the test scenarios outlined in Table 2, generated
to test the different functionalities of a given application. The
choice of manual testing is made to ensure that the CPU and
memory usage results can be collected without the interfer-
ence of third-party automation tools. Five individual runs are
made and the average CPU and memory usage for each run
is collected using the Android Studio profiler. Although the
testing process is manual, careful care is taken to ensure that
each of the five runs is identical in steps and execution of the
test scenario. The applications are first loaded using Android
Studio, and tested on the test scenarios on an emulated version
of the Google Pixel 2 device running Android Oreo operating
system. It has a 1.9 GHz octa-core Qualcomm Snapdragon
835 processor and 4GBRAM. This version of the application
will be referred to as Vorig. Four more versions of each
application were generated:

• VHMU - This version has the HashMapUsage code smell
refactored.

• VMIM - This version has the Member Ignoring Methods
code smell refactored.

• VSL - This version has the Slow Loop code smell refac-
tored.

• VALL - This version has all three code smells refactored.

Each of the five versions were manually run five sep-
arate times on the same user test scenarios which cover
the applications’ functionalities, and the average readings of
CPU and memory usage were aggregated and tabulated for
comparison.

VOLUME 9, 2021 61857



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

TABLE 2. Description and duration of testing scenarios.

V. EMPIRICAL STUDY RESULTS
This section discusses the results obtained from the con-
ducted empirical study, and answers the research questions.

A. OVERVIEW
The results collected for average CPU usage and average
memory usage are shown in Figure 5 and Figure 6 respec-
tively. As discussed previously, a given Android application
is tested after each individual code smell is refactored, and
after all three code smells are refactored in combination.
This approach is used in previous works [4], [9] and helps
distinguish and focus on the effect of refactoring individual
code smells as well as on the effect of refactoring multiple
code smells at once.

In looking at the initial results in Figure 5, we can see
that the refactoring of indiviual code smells HashMap Usage,
Slow Loop, Memory Ignoring Method often results in lower
average CPU usage. However, the combined refactoring of

TABLE 3. Number of code smells corrected.

these code smells may result in an increased average CPU
usage in some cases. Formemory usage in Figure 6, it is easier
to see that the refactoring of individual code smells as well

61858 VOLUME 9, 2021



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

FIGURE 5. CPU usage of all versions.

as the refactoring of all three code smells collectively almost
always results in decreased average memory usage. These
results are tabulated and will be further analyzed with respect
to the number of code smells refactored shown in Table 3.

B. RESULTS AND DISCUSSION
As mentioned earlier, the objective of this study is to investi-
gate the effect of code refactoring on CPU usage andMemory
usage. Therefore, this section analyzes the data and answers
the main questions of this research:

1) RQ1: DOES REFACTORING SPECIFIC CODE SMELLS
REDUCE A MOBILE APPLICATION’s CPU USAGE?
Figure 5 shows the CPU usage of the original applications
along with the four derived versions of the same application.

It is worth noting that only the application’s CPU usage is
taken into consideration, and not that of the smartphone’s
background usage as well. Although the same usage scenario
is used across all versions, CPU usage readings often differ
everytime the application is run. Therefore, Table 4 is used
to show the average CPU usage for each version of the
applications and the differences with Vorig. for comparison
purposes.

In Table 4, we present the average and standard deviation of
the CPU consumption of the five versions of each application,
as well as the improvement, with a negative figure indicating
that the refactoring results in an improvement in performance,
and a positive figure indicating that the refactoring results in
a worse performance. For the refactoring of HashMap Usage,
seven of the eight applications tested showed an improvement
in CPU performance, with the average improvement being

VOLUME 9, 2021 61859



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

FIGURE 6. Memory usage of all versions.

12.65%. For the refactoring of Member Ignoring Method,
five of the six applications tested resulted in an improve-
ment in CPU performance, with the average improvement
being 13.71%. In refactoring the Slow Loop code smell,
five of the seven applications tested resulted in an improve-
ment in CPU performance, with an average improvement
of 9.56%. Finally, refactoring the three code smells resulted
in an improvement in CPU performance in only four of
the eight applications tested. However, the average improve-
ment is 2.23%. This result indicates that code smells are not
independent in improving or worsening the performance of
Android applications and refactoring multiple code smells
does not necessarily translate to an improvement in perfor-
mance, and may even negatively impact the application’s
performance.

In Table 5, we apply the Wilcoxon signed-rank statistical
test to the CPU usage results to analyze if refactoring of
code smells has a statistically significant impact on Android
applications. Results with p-value of less than 0.1 show 90%
confidence level that the impact is significant. As shown in
the results, the refactoring of HashMap Usage and Mem-
ber Ignoring Method code smells individually results in a
significant improvement in average CPU usage, which is
reflected in the average improvements of 12.65% and 13.71%
respectively. From these results, we can conclude that the
refactoring of HMU and MIM code smells can have a sta-
tistically significant impact on the CPU usage of Android
applications. Further, the data illustrates that HashMapUsage
with a p-value of 0.093 or Member Ignoring Method with a
p-value of 0.075 is sufficient to obtain statistically significant

61860 VOLUME 9, 2021



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

TABLE 4. Percentage differences of average CPU usage.

TABLE 5. Wilcoxon statistical test results for CPU usage.

results. This means that applying only one of the refactoring
methods is enough to enhance the CPU usage and improve
its quality. Thus, no need to apply all refactoring methods
because their impacts will not be significant.

2) RQ2: DOES REFACTORING SPECIFIC CODE SMELLS
REDUCE A MOBILE APPLICATION’s MEMORY USAGE?
Figure 6 shows the memory usage of the original applications
along with the four derived versions of the same application.
Table 6 is used to show the average memory usage for each
version of the application and the differences with Vorig. for
comparison purposes.

In Table 6, we present the average and standard deviation of
the memory consumption of the five verions of each applica-
tion, as well as the improvement. Although the improvement
in CPU results may vary, it is easier to see that refactor-
ing the code smells being studied almost always results in
improved results of averagememory usage. For refactoring of
HashMap Usage, all eight applications resulted in improved
memory usage, with an average improvement of 9.31%.
For the refactoring of Member Ignoring Method, five of
the six applications tested resulted in improved memory
usage, with an average improvement of 5.57%. In refactoring
the Slow Loop code smell, five of the seven applications
tested resulted in an improvement in memory usage, with
an average improvement of 5.54%. Finally, refactoring the
three code smells resulted in an improvement in memory
usage in all eight applications, with an average improvement
of 7.13%.

In Table 7, we apply the same statistical test to the memory
usage results to study the impact of code smell refactoring on
Android applications. As shown in the results, the refactoring
of the three code smells both individually and cumulatively
produces significant improvement in average memory usage.
From these results, we can conclude that the refactoring
of HMU, MIM and SL code smells as well as all three
code smells together can result in improved memory usage.
Moreover, the data shows that one refactoring method is
sufficient to obtain statistically significant results. Thismeans
that applying only one of the refactoring methods is enough
to enhance the memory usage and improve its quality. Thus,
there is no need to apply all refactoring methods because
their impacts will not be significant. The data also demon-
strates that the HashMap Usage or applying all refactoring
methods investigated in this study would have a slightly
better improvements in the memory usage when compared
to applying only Member Ignoring Method or Slow Loop
Method.

C. THREATS TO VALIDITY
In this section, we discuss some of the threats to the validity
of this research as outlined in [16].
Construct validity is concerned with the effectiveness of

tests made to capture the required results. In this study,
we were careful in running the test scenario five times to
collect average readings of CPU andmemory usage, therefore
reducing any error margins caused by collecting a single set
of results. However, false positives identified by the tool of
choicemeant that each code smell recognizedmust be studied
before being considered as a true positive and refactored
accordingly. Manual refactoring of code smells has been
also considered, whereby we ensured that refactored code
segments were related to the observed code smell only. All
tests were conducted on anAndroid emulator to eliminate any
side effects such as the effect of other applications on battery
usage and background CPU/Memory usage that may arise
from testing on a physical device. However, it is worth noting
that there may be some performance differences between the

VOLUME 9, 2021 61861



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

TABLE 6. Percentage differences of average memory usage.

TABLE 7. Wilcoxon statistical test results for memory usage.

emulator and the physical device that may be worth studying
in future works.
Internal validity is concerned with the causal relationship

between treatment and effect. In this study, we were careful
in isolating each derived version of the application to ensure
that the outcomes displayedwere due to the refactoring of one
specific code smell.
External validity is concerned with our ability to gener-

alize the results obtained. Further studies need to be con-
ducted to study the effects of refactoring the aforementioned
code smells on a smartphone’s resource usage. Therefore,
the results obtained cannot be generalized to other applica-
tions as of yet. Although the study was conducted on eight
mobile applications, we believe this paper can contribute
to the ongoing studies investigating the impacts of various
code smells on a mobile application’s non-functional require-
ments.

Finally, Reliability validity is concerned with the repli-
cability of a study. All technologies used in this paper are
publicly and freely available, with the test procedure outlined
in Section IV, making the replication of this study possible.

VI. CONCLUSION
The empirical study conducted in this paper attempted to
address the effects of three common code smells on the CPU
and memory usage of smartphone applications: HashMap
Usage, Member Ignoring Method and Slow Loop. Five

different versions of the selected mobile applications were
tested, with the code smells refactored individually and
cumulatively for comparison with the original implementa-
tion.

The results obtained statistically demonstrate that refactor-
ing certain code smells, such as Member Ignoring Method,
can have a positive impact on a mobile application’s CPU
usage, while refactoring other code smells such as HashMap
Usage can have a positive impact on a mobile applica-
tion’s memory usage. The results obtained suggest that
refactoring HashMap Usage and Member Ignoring Methods
yielded an average improvement in CPU usage of 12.7% and
13.7% respectively, while the refactoring of all three code
smells yielded an average improvement of 7.1% in mem-
ory usage. These statistically significant results emphasise
the importance of code refactoring with respect to software
non-functional requirements such as performance, maintain-
ability, and resource usage.

This research also illustrate that it is not necessary to apply
all code refactoring methods used in this study to improve
the quality of the CPU usage and memory usage. Sometimes,
only one refactoring method might be sufficient to enhance
the memory and CPU usage. Therefore, there is no need to
spend more effort on applying other refactoring methods.
This would definitely save time, effort, and cost. Further,
the impacts of some refactoring methods on the CPU usage
are different than their impacts on theMemory usage. In other
words, the HashMap usage or Member Ignoring Method
show significant impacts on improving the CPU usage, while
applying all methods (HMU, MIM, SL, ALL) or each single
method by itself show significant impacts on improving the
Memory usage.

We believe the results of this study can be used as a basis for
future implementation guidelines to assist developers in writ-
ing code which efficiently utilizes a smartphone’s resources.
In the future, we plan to extend this study by exploring the
effects of other code smells on a smartphone’s CPU andmem-
ory usage, as well as automating the process of collecting

61862 VOLUME 9, 2021



M. A. Alkandari et al.: Empirical Investigation on the Effect of Code Smells on Resource Usage

and testing applications to increase the scale of future studies
conducted. Moreover, there may be trade-offs between spe-
cific code smells and the non-functional requirements of a
mobile application, which can be studied in more detail in
a separate study. In addition, more research questions will
be formulated in the near future to address the impacts of
code refactoring not only on CPU and Memory usage, but
also from the management point of view on time, effort, and
cost. In addition, more studies will be conducted in the future
to study the effect of code smells in applications developed
by languages other than Java.

REFERENCES
[1] I. Blair,Mobile AppDownload andUsage Statistics, Dosegljivo. Accessed:

Nov. 2019. [Online]. Available: https://buildre.com/app-statistics
[2] D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyba,

‘‘Quantifying the effect of code smells on maintenance effort,’’ IEEE
Trans. Softw. Eng., vol. 39, no. 8, pp. 1144–1156, Aug. 2013.

[3] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka, ‘‘Investi-
gating the impact of code smells on system’s quality: An empirical study on
systems of different application domains,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance, Sep. 2013, pp. 260–269.

[4] G. Hecht, N. Moha, and R. Rouvoy, ‘‘An empirical study of the perfor-
mance impacts of Android code smells,’’ in Proc. Int. Conf. Mobile Softw.
Eng. Syst., May 2016, pp. 59–69.

[5] A. Banerjee and A. Roychoudhury, ‘‘Automated re-factoring of Android
apps to enhance energy-efficiency,’’ in Proc. Int. Conf. Mobile Softw. Eng.
Syst., May 2016, pp. 139–150.

[6] M. Ghafari, P. Gadient, and O. Nierstrasz, ‘‘Security smells in Android,’’
in Proc. IEEE 17th Int. Work. Conf. Source Code Anal. Manipulation
(SCAM), Sep. 2017, pp. 121–130.

[7] J. Oliveira, M. Viggiato, M. Santos, E. Figueiredo, and H. Marques-Neto,
‘‘An empirical study on the impact of Android code smells on resource
usage,’’ in Proc. 30th Int. Conf. Softw. Eng. Knowl. Eng., Jul. 2018,
pp. 313–314.

[8] M. Gottschalk, J. Jelschen, and A. Winter, ‘‘Saving energy on mobile
devices by refactoring,’’ in Proc. EnviroInfo, 2014, pp. 437–444.

[9] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, ‘‘Investi-
gating the energy impact of Android smells,’’ in Proc. IEEE 24th Int. Conf.
Softw. Anal., Evol. Reeng. (SANER), Feb. 2017, pp. 115–126.

[10] L. Cruz and R. Abreu, ‘‘Using automatic refactoring to improve energy
efficiency of Android apps,’’ 2018, arXiv:1803.05889. [Online]. Available:
http://arxiv.org/abs/1803.05889

[11] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen,
‘‘Understanding code smells in Android applications,’’ in Proc. Int. Conf.
Mobile Softw. Eng. Syst., May 2016, pp. 225–236.

[12] M. Fowler, Refactoring: Improving the Design of Existing Code. London,
U.K.: Pearson, 1999.

[13] S. Habchi, N. Moha, and R. Rouvoy, ‘‘Android code smells: From intro-
duction to refactoring,’’ J. Syst. Softw., vol. 177, Jul. 2021, Art. no. 110964.

[14] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
‘‘Lightweight detection of Android-specific code smells: The aDoctor
project,’’ inProc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Feb. 2017, pp. 487–491.

[15] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien, ‘‘Tracking
the software quality of Android applications along their evolution (T),’’ in
Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2015,
pp. 236–247.

[16] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering. Berlin, Germany: Springer-
Verlag, 2012.

[17] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
‘‘Anti-patterns and the energy efficiency of Android applications,’’ 2016,
arXiv:1610.05711. [Online]. Available: http://arxiv.org/abs/1610.05711

[18] L. Cruz and R. Abreu, ‘‘Performance-based guidelines for energy efficient
mobile applications,’’ inProc. IEEE/ACM4th Int. Conf. Mobile Softw. Eng.
Syst. (MOBILESoft), May 2017, pp. 46–57.

[19] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
‘‘On the impact of code smells on the energy consumption of mobile
applications,’’ Inf. Softw. Technol., vol. 105, pp. 43–55, Jan. 2019.

[20] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
‘‘EARMO: An energy-aware refactoring approach for mobile apps,’’ IEEE
Trans. Softw. Eng., vol. 44, no. 12, pp. 1176–1206, Dec. 2018.

[21] N. Pritam, M. Khari, L. H. Son, R. Kumar, S. Jha, I. Priyadarshini,
M. Abdel-Basset, and H. V. Long, ‘‘Assessment of code smell for predict-
ing class change proneness using machine learning,’’ IEEE Access, vol. 7,
pp. 37414–37425, 2019.

MOHAMMAD A. ALKANDARI received the
Ph.D. degree in computer science from the College
of Engineering, Virginia Polytechnic Institute and
State University (Virginia Tech). Hewas theDirec-
tor of the Office of Engineering Education Tech-
nology, College of Engineering and Petroleum,
Kuwait University, for three years. He is currently
an Assistant Professor of computer engineering
with Kuwait University, Kuwait, where he has
been on the faculty, since 2012. He is also the

Coordinator of the Software and Systems Engineering Research Group,
Department of Computer Engineering. He is a Researcher in software engi-
neering, requirements engineering, software project management, software
quality assurance, software safety and security, the Internet of Things, and
human–computer interaction.

ALI KELKAWI received the B.E. degree in com-
puter engineering from the American University
of Kuwait, Kuwait, in 2018. He is currently pur-
suing the M.Sc. degree in computer engineering
with Kuwait University. In 2018, he joined the
Department of Computer Science, Gulf Univer-
sity for Science and Technology, Kuwait, where
he is currently a Teaching Assistant. His research
interests include evolutionary computation meth-
ods and artificial intelligence.

MAHMOUD O. ELISH (Senior Member, IEEE)
received the Ph.D. degree in computer science
fromGeorgeMason University, in 2005. He is cur-
rently an Associate Professor and the Head of the
Department of Computer Science, Gulf University
for Science and Technology, Kuwait. He has pub-
lished more than 45 papers in peer-reviewed jour-
nals and international conferences, and his work
has received over 1300 citations. His research
interests include software metrics, software qual-

ity, software maintenance and evolution, software security, empirical soft-
ware engineering, and computational intelligence in software engineering.

VOLUME 9, 2021 61863


