IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 5, 2021, accepted April 18, 2021, date of publication April 22, 2021, date of current version April 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3074891

Two-Step Meta-Learning for Time-Series

Forecasting Ensemble

EVALDAS VAICIUKYNAS', PAULIUS DANENAS 2, VILIUS KONTRIMAS 3,

AND RIMANTAS BUTLERIS?

! Department of Information Systems, Faculty of Informatics, Kaunas University of Technology, 44249 Kaunas, Lithuania
2Centre of Information Systems Design Technologies, Faculty of Informatics, Kaunas University of Technology, 44249 Kaunas, Lithuania

3Rivile Pvt. Ltd., 03131 Vilnius, Lithuania

Corresponding author: Evaldas Vaiciukynas (evaldas.vaiciukynas @ktu.It)

This work was supported by the European Union through the Lithuanian Business Promotion Agency (Artificial intelligence and statistical
methods based time series forecasting and management) under Project JO5-LVPA-K-04-0004.

ABSTRACT Amounts of historical data collected increase and business intelligence applicability with
automatic forecasting of time series are in high demand. While no single time series modeling method
is universal to all types of dynamics, forecasting using an ensemble of several methods is often seen as
a compromise. Instead of fixing ensemble diversity and size, we propose to predict these aspects adaptively
using meta-learning. Meta-learning here considers two separate random forest regression models, built on
390 time-series features, to rank 22 univariate forecasting methods and recommend ensemble size. The
forecasting ensemble is consequently formed from methods ranked as the best, and forecasts are pooled
using either simple or weighted average (with a weight corresponding to reciprocal rank). The proposed
approach was tested on 12561 micro-economic time-series (expanded to 38633 for various forecasting
horizons) of M4 competition where meta-learning outperformed Theta and Comb benchmarks by relative
forecasting errors for all data types and horizons. Best overall results were achieved by weighted pooling
with a symmetric mean absolute percentage error of 9.21% versus 11.05% obtained using the Theta method.

INDEX TERMS Business intelligence, univariate time-series model, forecasting ensemble, meta-learning,

random forest, M4 competition.

I. INTRODUCTION

Forecasting key performance indicators and any essential
dynamics for an organization should be a high-priority busi-
ness intelligence task. The aim is to envisage indicator values
into the future, based on historical observations. An accu-
rate forecast mitigates uncertainties about the future outlook
and can reduce errors in decisions and planning, directly
influencing the achievability of goals and contributing to
risk management. Forecasting should be an integral part of
the decision-making activities in management [1] since the
strategic success of the organization depends upon the practi-
cal relation between accuracy of forecast and flexibility of
resource allocation plan [2]. It is expected that increasing
amounts of historical data records, which constitute valuable
resources for the forecasting task, will facilitate accurate fore-
casting and boost these forecasts” importance. Although [3],
while researching main determinants of forecasting accuracy,
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found that increasing time-series length has a small positive
effect on forecasting accuracy, which contradicts insights
from the machine learning and deep learning fields.

Almost 40 years ago worldwide, Makridakis forecasting
competitions had started (organized in 1982, 1993, 2000,
2018, and 2020) with a goal to benchmark progress in fore-
casting techniques and derive scientific insights in time-series
forecasting. During these events, teams of participants com-
pete to obtain forecasts for ever-increasing amounts of
time-series from diverse fields. Results are summarized into
recommendations on the usefulness of various time-series
models or their ensembles. In the recent M4 competition [4]
the leading forecasting techniques (12 from 17 most accu-
rate ones) featured model ensembles that pool forecasts of
several, mainly statistical, models. The best solution was
submitted by Uber Technologies, where the hybrid technique
combined a statistical forecasting model with neural network
architecture. The next most successful submission [5] fea-
tured an ensemble of statistical models where weights were
thoroughly tuned, and the machine learning model learned
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these weight recommendations for later prediction. Insights
after an older M3 competition [6] were that forecasts
from univariate time-series models almost always (except
for annual data) are more accurate than forecasts from
multivariate time-series models with external variables
(i.e., macroeconomic indicators). Comparison between uni-
variate approaches revealed that more complex models do not
guarantee higher accuracy.

Proceeding from results of Makridakis competitions [4],
[6] and numerous academic researches [7]-[11] it can be
concluded that an ensemble of univariate time-series mod-
els often outperforms the best member of the ensemble
with respect to forecasting accuracy. The success of fore-
casting ensemble lies in the diversity of its members [12],
which contributes to robustness against concept drift [13]
and enhances algorithmic stability [14]. Besides ensemble
diversity, the individual accuracy of its members is also of
utmost importance [15]. A simple arithmetic average with
all members weighted equally often outperforms more com-
plex strategies for combining forecasts from several models.
Advanced strategies seek to find optimal weights, for exam-
ple, based on the model’s Akaike information criterion [11] or
model’s in-sample forecasting errors [16] on the last dynam-
ics of time-series in question. In practice, to avoid corrupt-
ing the final forecast by a single inaccurate model, variants
of robust average or simply median are recommended in
forecast pooling [9]. Choice of weights for ensemble mem-
bers often relies upon in-sample forecasting errors. However,
when the approximate ranking of the model pool is available
instead of exact errors, the weight could be derived from the
model’s reciprocal rank [17].

There exists no forecasting method that performs best on
all types of time-series [18]. However, efforts to create more
universal approaches seek to adjust ensemble size and choose
potential members or weights adaptively based on dynamics
we try to extrapolate into the future. The argument that the
relative accuracy of forecasting methods depends upon the
properties of the time-series and information on dynamics at
hand can be exploited to choose a suitable model is an old
one [19].

Our research explores an adaptive construction of a
forecasting ensemble consisting of various statistical and
a few machine learning methods with a meta-learning
approach. Meta-learners here seek to rank a pool of meth-
ods and recommend ensemble size based on historical
time-series data characteristics. Recommendations of intro-
duced forecasting assistants are based on training regression
meta-models through forecasting experiments on a diverse set
of real-world examples - micro-economic time-series from
M4 competition. Experiments compare introduced forecast-
ing ensemble based on recommendations from assistants
with the best benchmark methods from M4 competition -
Theta and Comb, which were outperformed only by 17 out
of 49 submissions in M4 competition [4], [20].
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Il. RELATED WORK

The usefulness of statistics summarizing the data available
in a time-series in predicting the relative accuracy of dif-
ferent forecasting methods was explored in [21] where they
created regression models to predict the expected error of
the forecasting method for the time-series at hand. More
similar research to our idea of forecasting assistants, after
early expert system with rules derived by human ana-
lysts in [22], are forecasting techniques based on meta-
learning [15], [18], [23] and recommendation rules [24], [25].
In general, meta-learner after the induction phase is capa-
ble of indicating which learning method is the most appro-
priate to a given problem [26]. The meta-learning concept
for time-series forecasting uses a machine learning model
(i.e., decision tree or ensemble of trees) and trains it on a
set of features, — various characteristics of time-series — to
recommend the most suitable univariate time-series model.
It was also found that meta-learning is effective even when
the meta-learner is trained on time-series from one domain
and tested on time-series from another [27], suggesting
machine learning universal capability more widely known
as transfer learning. FFORMS (Feature-based FORecast
Model Selection) [23] idea was implemented in R pack-
age seer besides participation in M4 competition. However,
due to mediocre performance, it was further developed into
adaptive weight-producing forecasting ensemble FFORMA
(Feature-based FORecast Model Averaging) [5], [28], avail-
able in R package M4metalearning, achieving second place
in M4 competition. Three novel approaches for forecasting
method recommendation, where the meta-learning task was
based on classification or regression or both, were evalu-
ated in [18] with recommendation considering explicitly a
machine learning-based regressor method instead of a statis-
tical one. Meta-learning approach of weigh-producing nature
featuring double-channel convolutional neural network was
introduced in [29]. It outperformed FFORMA and other vari-
ants of meta-learning strategies in retail sales forecasting.
However, only 2 out of 9 strategies explored were univari-
ate. In contrast, others, including the M5 winner, required
influential factors (such as price, promotions, seasonality, and
calendar events) with historical values and values along the
forecasting horizon.

The main difference of FFORMA and M5 approaches
over FFORMS and other forecasting method recommenda-
tion systems referenced above is that weights for a pool of
models in an ensemble are recommended instead of a single
best model. A detailed overview of historical meta-learning
approaches can be found in [29]. Building upon the suc-
cess of FFORMA, we propose to simplify meta-learning by
decomposing it into two separate regression tasks, where
A1l assistant ranks the pool of potential time-series models
and A2 assistant recommends ensemble size to cap the ranked
list. Such simplification avoids the tedious process of weight
tuning and could diminish overfitting risk due to overtuning.
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lll. METHODOLOGY

Assistants Al and A2 use time-series features for modeling
and meta-learning target attribute, which corresponds to a
rank of a specific forecasting technique for Al and a rec-
ommended ensemble size for A2. Each time-series used in
meta-learning preparation phase is split into train/test parts.
Features are calculated on the training part, while forecasts
using a pool of univariate forecasting models are obtained
on the testing part. Forecasting errors on the testing part
are estimated, and forecasting models are ranked for Al;
meanwhile, all possible ensembles are evaluated for A2.
After the training phase of Al and A2 models, their use-
fulness in helping with time-series forecasting is evaluated
using M4-micro dataset in the testing phase. Methodology
pipeline is illustrated by Fig. 1. Additionally, variable impor-
tance from Al and A2 models is reported in performed
experiments.

A. TIME-SERIES FEATURES
Feature engineering for assistant models consisted of pooling
various known time-series characteristics into a collection
of 130 features (see Table 1). Almost half of all features were
previously introduced as state-of-the-art time-series features,
available in R packages catch22 [30], consisting of carefully
selected 22 features, and tsfeatures [31], consisting of 42 fea-
tures also used in FFORMA framework [5], [28].

Seeking to extend characteristics of time-series we consid-
ered calculating features not only on the original data (orig),
but also on the results of 2 transformations (diff and log):

o diff - first differences help to improve/achieve
stationarity;

e log - logarithmic transform has variance stabilizing
properties.

Note that log transformation here is not applied
column-wise to the table with extracted features, but
to the original time-series, which seeks to achieve a
variance-stabilizing effect on the dynamics at hand. Calcu-
lating 130 features on 3 variants of time-series (orig, diff and
log) results in a final set of 390 features, which are later used
for building assistant meta-learners.

B. FORECASTING MODELS

A representative pool of 22 univariate time-series forecasting
models was selected (see Table 2). The diversity of models to
consider as a potential ensemble member varies from simple,
such as the seasonal naive and linear trend, to complex BATS
and Prophet models. However, most of them are statistical,
except for machine learning approaches NNAR and xgb.
Model implementations from 6 R packages were used, where
parameters when creating a model on time-series training part
were chosen automatically if model implementation had that
capability.

C. FORECASTING ERRORS
After fitting the univariate time-series model on the training
part, forecasting can be performed for a required number of
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steps ahead, i.e., forecasting horizon. Comparing forecasted
values with ground truth allows evaluating how accurate the
forecast was, and forecasting errors are used for this purpose.
We estimate three absolute and three relative forecasting
errors.

Absolute forecasting errors considered:

« RMSE - root mean squared error;
« MAE - mean absolute error;
o MDAE - median absolute error.

Relative forecasting errors considered:

« SMAPE - symmetric mean absolute percentage error;

« MAAPE - mean arctangent absolute percentage
error [45];

« MASE - mean absolute scaled error [46].

The final ranking of forecasting models was constructed
by averaging individual rankings, obtained for each error
type separately. After averaging out individual rankings,
a faster model was given priority in the final ranking in case
of ties. Incorporating absolute and relative errors into the
final ranking allows us to sort out models more compre-
hensively without less bias towards a single type of error.
Relative forecasting errors were also reported in experiments
to compare the introduced approach to benchmark methods
(Theta and Comb).

D. META-LEARNER MODEL

Meta-learner for our experiments was random forest
(RF) [47] regression machine learning model. RF is an
ensemble of many (ntrees in total) CART (classification
and regression tree) instances. Each CART is built on an
independent bootstrap sample of the original dataset while
selecting from a random subset (of size mtry) of features
at each tree node. Fast RF implementation in R package
ranger [48] was chosen, which, conveniently for the specifics
of our assistants, allows us to always include some variables
as candidates for a binary node split besides mtry randomly
selected ones. Time-series features were left for random
selection, but a few critical meta-information features were
set to always.split.variables parameter. Meta-information
features were forecasting horizon length and data type (daily,
weekly or monthly). Additionally, Al assistant included
model name (first column in Table 2) and three dummy indi-
cators on model capabilities such as seasonality, complexity,
and decomposition.

RF size ntrees was fixed at 256, as recommended in
literature [49], [50]. Classical RF should be composed of
unpruned CART, allowing growing trees to maximal possible
depth, corresponding to min.node.size = 1 setting, but in our
case min.node.size parameter was tuned together with mtry
using Bayesian optimization in R package tuneRanger with
21 warm-up and 9 tuning iterations. The minimization objec-
tive for Al assistant was the out-of-bag root mean squared
logarithmic error - a variant of RMSE penalizing errors at
lower values and achieving that prediction of best-ranked
cases is more precise than of worse-ranked candidates.
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FIGURE 1. Methodology outline by unified modeling language activity diagram: input (left hand side) and output (right hand side) artefacts are listed
besides each action block and all process is split into 3 phases. To adhere to machine learning standards, we assure that due to performed
cross-validation a set of time-series in the preparation and training phases do not mach time-series in the testing phase.

The minimization objective for the A2 assistant was a simple
out-of-bag RMSE metric. Both being RF regression models,
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A1l could be nick-named as a ‘“‘ranker” whereas A2 as a
“capper” due to different tasks they are dedicated to.
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TABLE 1. Overview of time-series features for meta-learning: 130 time-series characteristics in total.

Feature set name Size R package(-s) used // detailed list of feature names, mainly corresponding to function names in R package(-s)

catch22 22 catch22 // DN_HistogramMode_5, DN_HistogramMode_10, CO_flecac, CO_FirstMin_ac, CO_HistogramAMI_even_2_5,
CO_trev_1_num, MD_hrv_classic_pnn40, SB_BinaryStats_mean_longstretchl, ~SB_TransitionMatrix_3ac_sumdiagcov,
PD_PeriodicityWang_th0_01, = CO_Embed2_Dist_tau_d_expfit_meandiff, = IN_AutoMutuallnfoStats_40_gaussian_fmmi,
FC_LocalSimple_mean]_tauresrat, DN_OutlierInclude_p_001_mdrmd, DN_OutlierInclude_n_001_mdrmd,
SP_Summaries_welch_rect_area_5_1, SB_BinaryStats_diff_longstretchO, SB_MotifThree_quantile_hh,
SC_FluctAnal_2_rsrangefit_50_1_logi_prop_rl, SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1, SP_Summaries_welch_rect_centroid,
FC_LocalSimple_mean3_stderr

tsfeats 13 tsfeatures // stability, lumpiness, crossing.points.fraction, flat.spots.fraction, nonlinearity, ur.kpss, ur.pp, arch.lm, ACF1, ACF10.SS,
ACF.seas, PACF10.SS, PACFE.seas

stlfeats 12 tsfeatures // nperiods, seasonal_period, trend, spike, linearity, curvature, e_acf1, e_acf10, seasonal_strength, peak, trough, lambda

hctsa 13 tsfeatures // embed2_incircle_1, embed2_incircle_2, ac_9, firstmin_ac, trev_num, motiftwo_entro3, walker_propcross, std1st_der,
boot_stationarity_fixed, boot_stationarity_ac2, histogram_mode_10, outlierinclude_mdrmd, first_acf_zero_crossing

hpfeats: heterogene- 6 tsfeatures, WeightedPortTest // arch_acf, garch_acf, arch_r2, garch_r2, lagl.Ljung.Box, lagF.Ljung.Box

ity, portmanteau

snfeats: stationarity, 10 tseries, stats, nortest // ADF, KPSS.Level, KPSS.Trend, PP, ShapiroWilk, Lilliefors, AndersonDarling, Pearson, CramerVonMises,

normality ShapiroFrancia

ksmfeats: kurtosis, 11 PerformanceAnalytics // kurtosis.fisher, kurtosis.sample, skewness.fisher, skewness.sample, skewness.variability, skewness.volatility,

skewness, misc skewness kurtosis.ratio, misc.smoothing.index, misc.Kelly.ratio, misc.drowpdown.average.depth, misc.drowpdown.average.length

Hurst 17 PerformanceAnalytics, longmemo, tsfeatures, liftLRD, pracma, fractal // PerformanceAnalytics, Whittle, HaslettRaftery,
lifting, pracma.Hs, pracma.Hrs, pracma.He, pracma.Hal, pracma.Ht, fractal.spectral.lag.window, fractal.spectral.wosa, frac-
tal.spectral.multitaper, fractal.block.aggabs, fractal.block.higuchi, fractal. ACVFE.beta, fractal. ACVFEalpha, fractal ACVEHG

fractality 7 fractaldim // HallWood, DCT, wavelet, variogram, madogram, rodogram, periodogram

entropy 9 TSEntropies, ForeCA [/ TSE.approximate, TSE.fast.sample, TSE.fast.approx, spectral.smoothF.wosa, spectral.smoothF.direct,
spectral.smoothF.multitaper, spectral.smoothT.wosa, spectral.smoothT.direct, spectral.smoothT.multitaper

anomaly 10 pracma, anomalize // fraction. TukeyMAD, twitter.igr.fraction, twitter.igr.infraction.pos, twitter.iqr.fraction.pos, twitter.igr.abs.last.pos,

twitter.iqr.rel.last.pos, twitter.igr.infraction.neg, twitter.iqr.fraction.neg, twitter.iqr.abs.last.neg, twitter.iqr.rel.last.neg

TABLE 2. A selected pool of 22 base models for univariate time-series forecasting. Most models are statistical, except for NNAR and xgb, which are based
on machine learning. The horizontal line separates a few simple models from the remaining complex ones.

Model R package::function  Description

SNaive forecast::snaive Seasonal naive method

LinTrend forecast::tslm Linear trend

LinTrendSeason forecast::tslm Linear trend with seasonal dummies

QuadTrend forecast::tslm Quadratic trend

QuadTrendSeason  forecast::tslm Quadratic trend with seasonal dummies

TSB tsintermittent::tsb Teunter-Syntetos-Babai method (based upon Croston for intermittent demand) with optimized
parameters [32]

ARIMA forecast::auto.arima Autoregressive integrated moving average [33]

SARIMA forecast::auto.arima Seasonal autoregressive integrated moving average [33]

ETS forecast::ets Family of exponential smoothing state space models [34], [35]

HoltWinters stats::HoltWinters Holt-Winters filtering with additive seasonality [36]

Theta forecast::thetaf Theta method - simple exponential smoothing with drif [37]

STL-ARIMA forecast::stim ARIMA model on seasonal decomposition of time-series [38]

STL-ETS forecast::stim ETS model on seasonal decomposition of time-series [38]

StructTS stats::StructTS Basic stuctural model - local trend with seasonality [39]

BATS forecast::tbats Exponential smoothing with Box-Cox transform, ARMA errors, trend and complex seasonality [40]

Prophet prophet::prophet Decomposable time-series and generalized additive model with non-linear trends [41]

NNAR forecast::nnetar Neural network with a hidden layer and lagged inputs [42]

xgb-none forecastxgb::xgbar Extreme gradient boosting model with lagged inputs [43]

xgb-decompose forecastxgb::xgbar Extreme gradient boosting model with lagged inputs and decomposition-based seasonal adjustment [43]

thief-ARIMA thief::thief Temporal hierarchical approach with ARIMA at each level [44]

thief-ETS thief::thief Temporal hierarchical approach with ETS at each level [44]

thief-Theta thief::thief Temporal hierarchical approach with Theta at each level [44]

Al ranks 22 forecasting models to find the best candidates for
the time-series at hand, while A2 tries to propose an optimal
size of forecasting ensemble, i.e., a number of best-ranked
models to choose for forecast pooling.

Two variants of forecast pooling, namely, Simple (arith-
metic average) and Weighted (weighted average), were
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evaluated for meta-learning. Al assistant was identical in
both variants, but A2 was constructed separately after eval-
uation of cumulative pooling of forecasts from the best
Al-ranked univariate time-series models, where pooling was
done either with equal weights or weights derived from recip-
rocal rank [17].
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FIGURE 2. Visualization of M4-micro dataset by 2D ¢-SNE projection of time-series features: full sample of 12561 time-series (left) and result after
balanced sampling into 2 cross-validation folds, containing 6281 (center) and 6280 (right) time-series. Color of the point denotes the length of
time-series. Note that to avoid any informational leakage splitting into 2 cross-validation folds was done for the original dataset before proceeding

with expansions.

IV. M4-MICRO DATASET

We excluded two monthly cases (ID = 19700 and
ID = 19505) from an original M4 subset of 12563 micro-
economic time-series due to the lack of dynamics. Among
12561 selected cases level of aggregation was as follows:
1476 daily, 112 weekly, and 10973 monthly. All selected
cases were pre-processed by segmenting them properly into
train/test splits at several forecasting horizons. Forecasting
horizons with a varying number of steps ahead were consid-
ered: 15, 30, 90, 180, 365, and 730 days for daily data; 4,
13, 26, 52, and 104 weeks for weekly data; 6, 12, 24, 60, and
120 months for monthly data.

Concerned with specifics of time-series representation
space [51] and to avoid potential concept drift situation if
meta-learners are built using random sub-spaces, we split
the dataset by performing a stratified 2-fold cross-validation
(2-fold CV) carefully. Stratification is done here by an effi-
cient balanced sampling [52] on 3D #-SNE [53] projection
of time-series features, which allows splitting the time-series
dataset into two equally-sized parts where each part covers
the overall representation space of the initial dataset. The
result of such stratification is visualized in Fig. 2 with result-
ing CV folds depicted after 2D 7-SNE projection.

Time-series expansion by segmenting data into several
train/test hold-out splits was done as follows. Initially,
we expand a set of time-series from 12561 to 38633 (see ini-
tial expansion in Table 3) to be able to test various forecasting
horizons. Then we increase the amount of time-series from
38633 to 92846 (see final expansion in Table 3) by consider-
ing additional splitting time-series in half to be able to train
meta-learners on more data. Initial expansion was carried out
to benchmark various forecasting horizons, and only recent
data was split-off for testing. In contrast, final expansion was
considered as a way of data augmentation to harvest more
training data for meta-learners. Besides initial expansion,
extra two splits were done where possible - hold-out on older
and newer halves of time-series. Following the recommen-
dation of [54] for using an out-of-sample hold-out split in
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multiple testing periods, we consider 80/20 as a sufficient
train/test ratio. After leaving out the last observations for
testing (based on the forecasting horizon’s length), if the
amount of the training data drops down below 80% we refuse
to segment time-series.

V. EXPERIMENTAL RESULTS

The forecasting experiment was performed using 2-fold
CV by creating assistants on CV fold 1 of final expan-
sion and testing success of assistant-recommended fore-
casting ensemble on CV fold 2 of initial expansion and
vice versa. Besides forecasting using the proposed approach,
benchmark methods Theta and Comb were used on initial
expansion, and relative forecasting errors were calculated for
comparison.

Results by SMAPE (see Table 4) demonstrate that both
Simple and Weighted variants of meta-learning outperform
Theta and Comb techniques. Weighted slightly outperformed
Simple variant for more than half (10 out of 16) horizons and
also overall (see the last row in Table 4).

Results by MAAPE (see Table 5) demonstrate that both
Simple and Weighted variants of meta-learning outperform
Theta and Comb techniques. Weighted slightly outperformed
Simple variant for more than half (11 out of 16) horizons and
also overall (see the last row in Table 5).

Results by MASE (see Table 6) demonstrate that both
Simple and Weighted variants of meta-learning outperform
Theta and Comb techniques. Weighted slightly outperformed
Simple variant for more than half (12 out of 16) horizons and
also overall (see the last row in Table 5).

Forecasting errors showed an expected and consistent
tendency to increase together with increasing forecasting
horizon length. Interestingly, MASE errors were the low-
est overall for weekly whereas SMAPE and MAAPE for
daily data. To summarize over all data types and horizons:
among benchmark methods, Theta tends to outperform Comb
slightly, and meta-learning approaches win over both bench-
marks with the Weighted variant as the best.
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TABLE 3. Expanding M4 micro dataset for benchmarking and augmentation. The expansion was performed by segmenting each time-series into various
train/test splits, fulfilling the 80/20 heuristic. Heuristic ensures that the amount of data available for time-series model training is at least four times
larger than for testing. The amount of data for estimating forecasting error of the meta-learner solution is defined by the forecasting horizon. Full sample
for benchmarking at the smallest forecasting horizon consists of 12561 time-series, visualized on the left of Fig. 2.

Horizon Initial expansion for benchmarking Final expansion for augmentation
Fullsample CVfoldl CVfold2 | Fullsample CVfoldl CYV fold2
15 days 1476 736 740 4374 2178 2196
30 days 1443 720 723 4201 2100 2101
90 days 1335 667 668 3699 1853 1846
180 days 1181 593 588 3313 1661 1652
365 days 1047 524 523 2693 1346 1347
730 days 780 389 391 780 389 391
7262 3629 3633 19060 9527 9533
4 weeks 112 58 54 206 106 100
13 weeks 112 58 54 206 106 100
26 weeks 47 24 23 141 72 69
52 weeks 47 24 23 119 60 59
104 weeks 36 18 18 76 40 36
> 354 182 172 748 384 364
6 months 10973 5486 5487 32904 16452 16452
12 months 10973 5486 5487 22317 11166 11151
24 months 5574 2792 2782 14110 7055 7055
60 months 3432 1713 1719 3630 1813 1817
120 months 65 31 34 77 33 44
31017 15508 15509 73038 36519 36519
> 38633 19319 19314 ] 92846 46430 46416
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FIGURE 3. Permutation-based variable importance from meta-learner - a random forest regression model: A1 (left) and A2 (right)
assistants.

We have measured the prognostic usefulness of time-series calculating permutation-based variable importance for a ran-
characteristics for additional insights into meta-learners by dom forest model built on a full M4-micro dataset. Variable
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TABLE 4. Forecasting results according to SMAPE forecasting error.
> denotes results over all horizons, the best result for each row is
formatted in italic-bold.

TABLE 6. Forecasting results according to MASE forecasting error.
denotes results over all horizons, the best result for each row is
formatted in italic-bold.

Horizon | Theta Comb Simple Weighted Horizon | Theta Comb Simple Weighted
15days | 2507+0.152 25110146 23260145  2332+0.153 115days | 1.047 £0.050 1.056 4+ 0.055 0.963 + 0.046  0.964 + 0.049
30days | 3354+0277 334040282 323340287 322940286 30days | 1.365+0076 136240077 1311+0081 1.310 + 0.081
90 days 5.587 £0.312 5.576 £0.318 5.060 £ 0.310 5.064 £ 0.310 90days | 2.24540.106 2239+0.107 1.99740.102 1.996 + 0.101

égg gays 1%22 i 83411;1 lgggi i 823% lzggg i 83;2 lz-ffé i ggg 180 days | 3.265+0200 33340200 291020202  2.904 & 0.202

ays .. . . . ol R . . 3 ave X . . . . X .

730days | 182701003 19052+ 1042 16396+ 0974 16395+ 0.991 00days | 39870309 G132£0320  SS3LE0301 50600300

730days | 7.676 £0521 7798 +0517 674740484 6761 + 0.504
S| 8003+0245 813340248  7.026+0225  7.031 +0226 S| 3115 £0098 3161 L0099 2750 £ 0.091 2751 £ 0,092

Aol Bt ity VA ey oS A v dweeks | 0579 £0077 059240084 04800070 0475+ 0.068

doweeks | 889514395 8594 L4404  8IS4+£4378 8092+ 4371 13weeks | 048610052 047610058 042610047 04321+ 0051

S2weeks | 1334044619 1257514036 10.763+£3519  10.922 + 3.784 26weeks | 0681£0324  0680+£0350 06220347 059910340

104 weeks | 1745245277 18198+ 6037 16273 £4.767 16008 + 4.855 52weeks | 0.993+£0299  0967£0308 082140282  0.806 + 0.286

> | 10690+ 1.126 10534+ 1.127 9366+ 1.010 9374 + 1.041 104 weeks (l)%g i 8?8; (')"7’23 i 8?8; éggg i g-?é? (l)ggg i gzgg
6months | 12.150+0278  12.147 40286  9.158 +0214  9.096 + 0.212 210 : g S . - -

12months | 12183 +£0246 1287440269 10479 +0222  10.420 + 0.220 6months | 0.642+0011 063740011 05130010 0511 + 0.010

24months | 9.544+0352  9325+£0353  8451+£0327  8486+0333 12months | 0730 £0.013 0750+ 0014  0.625+0012  0.622 % 0.012

60 months | 12724 +0.604 14780+ 0740  11.617 0583  11.449 + 0.567 24months | 1.153+£0029 11180029 097740027 0977 + 0.027

120 months | 15051 +5.820 13.656 +4.244 10798 +3.371  10.650 + 3.329 60 months | 1986+0099 24280131 1919+0221  1.827 +0.130

11763 £0.161 1219240174  9.774£0.140  9.719 £ 0.139 120 months | 4217+ 1.153 4025+ 1.120  3.162+0982  3.144 - 0.989

S [ IT047£0.139 11414 £0149 0254 L0121 9210 £ 0.120 0921 £0015 0968 +0018 0797 +0.026 0785 + 0.017

S ] 1332£0023  13/8E£0025 1.163 £0028 1.153 £ 0.023

TABLE 5. Forecasting results according to MAAPE forecasting error. }°
denotes results over all horizons, the best result for each row is
formatted in italic-bold.

Horizon | Theta Comb Simple Weighted
15 days 2.520 + 0.151 2.536 +0.153 2.3354+0.148 2335+ 0.153
30 days 3312+ 0.268 3.296 4+ 0.269 3.185 +£0.273 3.183 + 0.272
90 days 5.538 £ 0.316 5.526 +0.318 5.033 + 0.317 5.036 4+ 0.317

180 days 8.047 £ 0433 8.366 4 0.444 7.161 4+ 0434 7142 + 0434

365days | 15431 4+0.783 15538 +0.772 13.132 £ 0.766  13.165 £ 0.765

730 days | 17.696 0971 17.989 £ 0975 16.306 +£0.993  16.286 + 1.000

> 7.622 +0.226 7.719 4+ 0.228 6.842 +0.218 6.842 + 0.219

4 weeks 8.750 £+ 1.027 8.856 4 1.061 7.570 4+ 0.953 7.514 + 0.938

13 weeks 9.475 4+ 1.146 8.896 4+ 1.057 8.636 + 1.142 8.717 4+ 1.207

26 weeks 8471 £4.175 8.233 +4.190 7.945 +4.213 7.849 + 4.208

52 weeks | 12.084 +£3451 11.620 +3.374 10.231 £ 3.223  10.270 &+ 3.320

104 weeks | 15.683 +-3.885 16.119 £4.218 15251 +£3.8900 14.979 4+ 3.921
> | 10.090 + 0.955 9.891 4 0.962 9.091 4+ 0.938 9.064 + 0.949
6months | 11.059 £0242  10.983 +0.243 8.892 4 0.207 8.840 + 0.206
12 months | 12239 £0.244  13.203 £0.273  10.648 +0.224  10.593 + 0.223
24 months 9.119 4+ 0.320 8.906 4+ 0.319 8.190 + 0.306 8.200 4 0.307
60 months | 12.500 £ 0.601 13.512 £ 0.601 11.330 £ 0.556  11.197 + 0.548
120 months | 11.883 £3.194  11.499 4-2.941 9.389 4+ 2.538 9.341 + 2.539
11.289 £+ 0.151 11.676 £ 0.158 9.658 4 0.136 9.607 + 0.136

> \ 10.589 £0.129 10916 £ 0.135 9.123 £ 0.118 9.082 + 0.117

importance was measured as a drop in mean squared error
of the random forest regression model after permuting each
feature, i.e., how strongly distorting ties between a feature
in question and a target affects the model’s accuracy. Fea-
ture sets had several features, so their corresponding indi-
vidual importance estimates were averaged for a fair com-
parison and are reported in Fig. 3. From comparison it can
be noticed that both transformations (log and diff') besides
original time-series were useful, with the exception of diff
transformation for hctsa and catch2?2 features. Interestingly,
the pre-processing of time-series by log transformation was
highly useful for most feature sets. The best feature sets for
meta-learning tasks were entropy, tsfeats, and Hurst. Among
the least useful feature sets anomaly could be considered for
removal.

Since we did not use the full M4 dataset (just 12.561% from
the entire dataset of 100000 time-series) and tested much
more forecasting horizons, it would be improper to compare
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SMAPE and MASE errors directly to M4 competition results.
Nonetheless, the measure ““% improvement of method over
the benchmark™ from Table 4 in [20] could lend itself for
comparison with the winner of M4 competition - Smyl (Uber)
reached an improvement of 9.4% in SMAPE and 7.7% in
MASE over baseline Comb method. Our Weighted variant
here demonstrated an improvement of 19.3% in SMAPE and
16.3% in MASE.

VI. CONCLUSION

Extensive evaluation of the proposed meta-learning approach
on micro-economic time-series from M4 competition demon-
strated that meta-learning could outperform benchmark
methods Theta and Comb. The best performance was
achieved by pooling forecasts from assistant-recommended
univariate time-series models using weighted average with
weights corresponding to reciprocal rank. Lower forecasting
errors were obtained using a weighted variant of forecasting
ensemble over the Theta method: 9.21% versus 11.05% by
SMAPE, 9.08% versus 10.59% by MAAPE, 1.15 versus
1.33 by MASE. The regression meta-learner model was more
successful and had a better out-of-bag fit for Al than for
A2 assistant. All transformations were found to be useful for
feature engineering and the most effective time-series charac-
teristics for meta-learner were entropy, tsfeats, and Hurst fea-
ture sets. Considering a more extensive set of time-series data
for meta-learning and exploring automatic feature engineer-
ing’s usefulness using sequence-to-sequence auto-encoder
would be exciting directions for further research.
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