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ABSTRACT In cloud computing, resource provisioning is a key challenging task due to dynamic resource
provisioning for the applications. As per the workload requirements of the application’s resources should be
dynamically allocated for the application. Disparities in resource provisioning produce energy, cost wastages,
and additionally, it affects Quality of Service (QoS) and increases Service Level Agreement (SLA) violations.
So, applications allocated resources quantity should match with the applications required resources quantity.
Load balancing in cloud computing can be addressed through optimal scheduling techniques, whereas this
solution belongs to the NP-Complete optimization problem category. However, the cloud providers always
face resource management issues for variable cloud workloads in the heterogeneous system environment.
This issue has been solved by the proposed Predictive Priority-based Modified Heterogeneous Earliest Finish
Time (PMHEFT) algorithm, which can estimate the application’s upcoming resource demands. This research
contributes towards developing the prediction-based model for efficient and dynamic resource provisioning
in a heterogamous system environment to fulfill the end user’s requirements. Existing algorithms fail to meet
the user’s Quality of Service (QoS) requirements such as makespan minimization and budget constraints
satisfaction, or to incorporate cloud computing principles, i.e., elasticity and heterogeneity of computing
resources. In this paper, we proposed a PMHEFT algorithm to minimize the makespan of a given workflow
application by improving the load balancing across all the virtual machines. Experimental results show that
our proposed algorithm’s makespan, efficiency, and power consumption are better than other algorithms.

INDEX TERMS Cloud computing, load balancing, Predictive Priority-based Modified Heterogeneous

Earliest Finish Time, Quality of Service, Service Level Agreement, scheduling, virtual machine.

I. OBJECTIVE

We propose a PMHEFT model in this paper, based on the
priority queue for the prediction base. In load balancing
network systems (cloud computing), this prediction-based
PMHEFT approach will be easy and more effective. Our
proposed scheme is working for both dynamic and static load
balancing.

Il. INTRODUCTION

Load balancing is a crucial factor in optimizing cloud
resources, i.e., compute, storage, and networking [1]. When
cloud consideration takes place, usually load balancing tech-
nique highly requires to distribute the task load among
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different VMs. Without it, the unequal burdens in server
formation may cause asset wastage, execution corruption,
and SLA violation [2]. Accordingly, using the right load
balancing strategy can improve servers’ usage and give better
assurance of Quality of Service (QoS) [3]. A portion of the
specialists in this field centers around the virtual machine
distribution or virtual machine movement to accomplish load
adjusting [4].

A. MOTIVATION

In IT industries, different cloud providers fulfill QoS to end
clients as indicated by their requirements. As a result, it brings
about a varying number of clients over a period. It embodies
that static resource provisioning may tend towards ineffi-
ciency to resource handling. It shows that clients may get
resources plentifully at some time, and at any other time,
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resources might be inadequate, which represents the load
imbalance and poor QoS with higher cost. Many researchers
explicate plenty of techniques to manage the addressed issue
with reduced cost and higher resource utilization. The pro-
posed work addressed a diverse facet of resource provision-
ing in the cloud computing domain, and the work satisfies
the client’s workload need based on predicted resource for
workload in the cloud. To fulfill the client’s needs, efficient
resource provisioning done using prediction with enhanced
performance. The work is proposed for provisioning the ser-
vices based on the QoS approach to accomplish user satis-
faction. As user’s need predicted by our proposed algorithm,
sufficient resources can be provisioned to serve the user
request in due time.

B. CONTRIBUTION

When the server consolidation process occurs, it must be very
effective for energy consumption and operating cost estima-
tion. It may also cause servers’ performance degradation if
it is not properly defined [5], [6]. From another perspective,
server consolidation to solidify virtual machines on certain
servers, making it more probable for machine over-burden
to happen. Then again, the shutdown time and correspon-
dence cost brought by server consolidation is unavoidable and
should be taken care of appropriately to fulfill the conveyed
QoS [7].

Researchers were prompted to potentially contribute
heuristic algorithms because of the complete NP problem [8].
In this research paper, the algorithm for heterogeneous com-
puter models has proposed an efficient critical task pre-
diction algorithm for distributing the load over the cloud
server. To evaluate this proposed simulation algorithm’s per-
formance, we use a cloud simulator to demonstrate the algo-
rithm’s efficiency. The ease and speed of application of the
prediction-based algorithm have been proved efficient. This
scheme is useful for using a load balancing system via HEFT
Prediction Priority Queue Loading. In load balancing, these
tiny HEFT requests need to load for completing the data
processing, acquisition, and transmission. This is the most
influential and significant task of load balancing. Earlier,
when such HEFT requests were used, it was an extrusive task
to retain the algorithm’s finite size and raise loads due to many
types of load requests [9]. The directed acyclic graph (DAG)
schedules problems effectively solved by the HEFT algorithm
on heterogeneous systems due to its low running time and
stout performance. It gives a steady performance for a wide
structure range of graphs. The HEFT algorithm’s limitation is
that it works on the techniques that all are static approaches of
mapping the problem, which deals only for static conditions.
It can easily fail in complex situations to find the optimal
scheduling [10].

An application can be embodied by a DAG, G = (V, E),
as shown in Figure 1, where V and E represent a set of v
nodes and e-communication edges between tasks. The node
vi € V shows an application task instruction executed on
the same machine. The task n; should execute completely
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Task | P1 | P2 | P3
1 7 7 7
2 8 8 8
3 7 9 7
4 7 6 6
5 6 8 6
6 6 |10 | 5
7 8 |11 | 8
8 5 7 8
9 8 9 | 10
10 6 |10 | 8
11 8 9 | 10

FIGURE 1. An example of DAG and a computation time matrix of the
tasks for each processor.

before starting the task n; for each e(i,j) € E shows the
task’s dependency constraints. The DAG is completed by
matrix W that is a computation cost matrix v x p, where v, p
represents the number of tasks and number of processors in
the system [11], [12].

The proposed Predictive Priority-based Modified Hetero-
geneous Early Finish Time (PMHEFT) algorithm resolves the
prominent obstacle of load balancing and ensures deadlock
problems never arise using a prediction priority queue.

The main contribution to this study includes:

o Performance evaluation of existing algorithms for static
and dynamic scheduling criteria in cloud computing.

o Performance evaluation of existing algorithms for
energy consumption in cloud computing.

« Proposing and implementing a predictive priority-based
algorithm on cloud computing.

o Proposing and implementing a new load balancing
scheme for cloud computing.

C. ORGANIZATION

The paper is organized as follows: Section 2 gives the lit-
erature review of the state-of-the-art algorithms proposed
for resource allocation and load balancing. Section 3 briefly
describes our proposed model. The simulation setup and
detailed result analysis have been discussed in section 4.
Section 5 concludes the paper and specifies future work
directions.

Ill. RELATED WORK

This section’s key objective is to identify the diverse load-
balancing studies/articles released over time and their sig-
nificance by increasing cloud usage. Several load balancing
strategies have been proposed to date, which need to be
measured based on the different load balancing parameters.
This helps in understanding needs and conflicts with cur-
rent load balancing approaches to ensure Quality of Service
based facilities [13]. The resource planning problem has been
extensively explored in a heterogeneous system where the
processors differ in computational abilities and communi-
cate over a network underlying them. A group of investiga-
tors suggested papers in this area. Typically, the scheduling
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problem is NP-complete, so that the desire to be optimal
can lead to higher overhead planning of resources [14]. The
negative result encourages heuristic approaches to resolve the
problem of resource scheduling [15].

The author [16] evaluated numerous current load bal-
ancing systems and listed complex and mixed sub-
domains. The author did not discuss task-based load
balancing. They defined these strategies’ behavior based
on the above-mentioned criteria and their advantages, chal-
lenges, and drawbacks. The concerns developed by these
algorithms were to create more aware algorithms to power
consumption, reduce resource usage, and make load bal-
ancing strategies more energy aware. Many task scheduling
algorithms have been proposed to minimize the makespan
of meta tasks in heterogeneous surroundings, such as Min-
imum Completion Time (MCT), Minimum Execution Time
(MET), and Opportunistic Load Balancing (OLB) [17]. The
opportunistic load balancing randomly assigns each task to
the VM that is supposed to be available regardless of the
task’s expected time to run on the machine, making all VMs
as busy as possible. One of the advantages of OLB is its
versatility. The MET heuristic randomly allocates user tasks
to that VMSs, which takes less execution time. However,
this heuristic faces load unbalancing because it does not
consider VM availability and VM current load. The MCT
works based on assigning tasks to the VM, which least task
completion time of allocated tasks. This provides such tasks
to be assigned VMs that don’t have less execution time for
them [18].

The author [19] evaluated the grid network’s load bal-
ancing and static task distribution methods, concentrat-
ing on delay in communication, task migration, and mean
response time for user-submitted tasks. VM placement per-
forms on physical machines at data centers. VM placement
methods aim to reduce wastage of resources along with
minimization of power consumption. The VM placement
problem solution needs to entertain based on VM manage-
ment in heterogeneous environments, the number of VM on
a server, and VM configuration complexities in a large-scale
data center [20]. The facility of migration permits tasks to
move towards underloaded VM from overloaded VM [21].
Although, this technique does not consider task makespan
and completion time. A user task is first stored in the queue
manager. Then the priority of a task is calculated, and for
the execution of the task, suitable resource gets provisioned
only if it belongs to a repeated task category. Every new task
gets analyzed and submitted in the on-demand queue, and
the algorithm evaluates best match resources for on-demand
queue listed user tasks [22].

The heterogeneous multi-cloud environment is currently a
prevalent topic and challenging due to the functionality and
varying capacities of cloud resources under heterogeneity.
Task scheduling algorithms aimed to minimize the makespan
and improve the average cloud utilization [23].

The Heterogeneous Earliest Finish Time First (HEFT)
and Critical Path on a Processor (CPOP) are the two most
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popular ranking algorithms. Each task rank is calculated
based on computation and average communication cost
between current task and successor in HEFT ranking algo-
rithms. In the CPOP algorithm, task ranking is done through
upward and downwards task rank summation. The HEFT
ranking algorithm performs better than the CPOP rank-
ing algorithm. Immediate predecessor communication time
is not considered in the HEFT ranking algorithm. The
same two tasks that are dependent on each other might be
scheduled on different resources and increase the schedule
length [24], [25].

The author states that MHEFT “Modified Heterogeneous
Early Finish Time for task scheduling in cloud environ-
ments.” In this algorithm, the load balancing task schedul-
ing finds the order in which the activity is completed. The
next step is mapping the resources and tasks after that task
is submitted for their completion to the cloud [26]. This
proposed scheduling solved the load balancing problem.
As this author proposed, the resources are to be allocated to
appropriate tasks to decrease the execution time and increase
resource utilization. Scheduling of tasks is the best approach
to achieve maximum utilization of resources and economic
efficiency [27].

The author presents a Generalized Critical Task Anticipa-
tion (GCA) algorithm in a heterogeneous computing environ-
ment for weighted directed acyclic graph (DAG) scheduling.
This scheduling CA algorithm employs processor selection
based on heterogeneous communication cost with task priori-
tization method [28]. The GCA algorithm is effective in terms
of reduced scheduling cost and better performance [29].

Since load balancing refers to dealing with resources
currently utilized below their defined minimum capacity,
the computing resources get wasted due to not being utilized
up to their optimal limit. When VMs are overloaded, the time
is taken to complete allotted tasks increases, i.e., makespan
increases. If VMs are less utilized, makespan decreases, and
resource utilization cost increases because VMs are not exten-
sively utilized [30]. Table 1 presents a concrete summary of
the related work. Synthesis of the state-of-the-art has revealed
that most of the resource provisioning and load balancing
heuristic results in low resource utilization and load imbal-
ance. Thus load balancing across VMs required to control
makespan, usage, and energy consumption parameters.

IV. PROPOSED METHODOLOGY

Cloud users and cloud providers are two main cloud comput-
ing entities with their objectives about task execution through
cloud resources. The cloud provider focuses on the utilization
factor of resources and tries to achieve maximum. In contrast,
the cloud user focuses on resources’ performance and tries
to achieve less makespan time. A task in a cloud environ-
ment has various characteristics, i.e., task length, expected
execution time, priority, and emergency execution constraints
over other tasks in the queue. For the understanding of the
proposed model, all the variables and constants are listed
in Table 2. The scheduling mechanism’s load balancing is
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TABLE 1. Summary of the related work.

an important task execution parameter to achieve optimal
utilization of cloud resources [51].

The proposed approach is based on the Prediction of load
demand rate and emergency of cloud request. This novel
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Heuristics Strengths Weaknesses

EPRD [31] Effectively improve VM utilization and No fairness in energy consumption and
scheduling performance security issues not handled

ECOS [32] The cost minimization without comprising Poor resource utilization and load
the deadline constraint and light-weight imbalance

F-MRSQN [33]
DPLS [34]
DRP [35]
SIF-MMB [36]
ACOPS [37]
MHEFT [38]
AMS [39]
HLBZID [40]

DHSJF [41]

MRLBI[4]

RALBA [42]

SLA-RALBA [43]

IWRR [44]

FLASDIWA [45]
CBLBCC [46]
GRP-HEFT [47]
ACM [48]
THPCAPC [49]

HALO [50]

complexity algorithm

Improves the resource  scheduling
efficiency and reduces the response time
Minimize the makespan of the job and
effectively reduce the scheduling length
Improve power efficiency, throughput and
system fairness over memory partitioning
Optimal in a heavy loaded

and highly dynamic environment

Fair treatment of load balancing in a
dynamic environment

Minimize makespan, communication cost
and reduces energy consumption

Obtain better task completion time and
achieve load balancing

Higher resource utilization,
makespan and low costs

For heterogeneous cloudlets it gives better
results in terms of CPU utilization, energy
efficiency and total execution time.
Provide better results for Service Level
Agreement (SLA), response time, energy
consumption and load balancing

Minimum

Reduced makespan, increased resource
utilization, and higher throughput produces
for compute intensive, non-preemptive and
independent tasks using a load balanced
distribution of workload.

Reduced execution time and cost along with
resource utilization enhancement.

Under varying load patterns, it gives high
performance along with VMs better
utilization.

Minimum makespan and maximization in
average cloud utilization

Improved waiting time, execution time,
turnaround time and throughput
Minimizing the makespan and budget
constraint cost model

Efficient proactive load balancing and
provide stability

Reduce execution time and support
dynamic load balancing
Across various load and cluster

configurations, it reduces the response time
without additional resource or energy
overhead

Privacy-aware resource scheduling is not
considered
Load balancing is not considered

Limited to single ISA systems and poor
resource utilization
System efficiency is not considered

Poor memory management
Load imbalance and

complexity not improved
More scheduling overhead

implementation

Virtual Machine live migration and
energy factors are not considered.

Service Level Agreement violations are
not considered

More scheduling overhead due to sorted,
reordered task queue in each scheduling
decision and workload prediction is not
considered.

SLA aware scheduling is not considered.

Communication cost is not considered

SLA aware scheduling and load balancing
are not considered

Dynamic load balancing is not considered

SLA and energy being consumed is not
considered

Energy consumption, Load balancing and
SLA are not considered

System efficiency is not considered

SLA violation is not considered

Limiting scalability and SLA violation are
not considered

approach will apply for cloud computing task requests for
load balancing, and this load request will always be in work-
ing condition due to the PMHEFT algorithm. Figure 2 rep-
resents the block diagram of the proposed system. Cloud
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TABLE 2. Notations and description.

Notation Description

LRj(t) Load demand rate

LE Allow more request to get load
according to Prediction Priority
Queue load request

LNe Total loading emergency request

LP(j) Loading load request at index j in
Priority Queue

L o Variable factor (0< L o<1)

LNr The Serial number of Prediction
Priority Queue load

LT Loading of the workload request

LTi Prediction Priority Queue arrival
time for workload request j

LTremain | Prediction Priority Queue
remaining length

LN Total load request

Tn Time when queue arrives at load
request LN

LN Loading time for Prediction
Priority Queue load

Vm Time to load requests in a
Prediction based Queue

LEth Load request threshold

LB Control factor (0<L B <1)

c Loading rate of load request

Ln PMHEFT capacity

Ew Prediction Priority Queue full load

gm Load consumed

Lead Indicates the Prediction Priority
Queue load has sufficient load i.e.
Adaptive load threshold

Les Prediction-based Priority Queue
load full efficiency

ELN Represent adoptive load loading

Emth Load request threshold

LE(t) Residual load of Predictive
Priority Queue at time t

computing, communication will help to render convenience
to the load balancing system and distribute loads from within
the cloud platform. Our proposed approach will predict load
demand rate, emergency of cloud request, and the predic-
tion that our Prediction-based Priority Queue framework will
work. The real-time dynamic change of load demand on the
network would adopt this framework.

Proposed Model Scheme Steps

Step 1: Calculate load demand rate for cloud request in
Prediction Scheme.

Step 2: Add load request into the Prediction Priority Queue
based on load demand rate and emergency request.

Step 3: Calculate loading demand queue load and loading
threshold for Prediction-based Priority Queue.

Step 4: Calculate loading demand queue predicted based
priority loading sequence based on emergency or highest
demand request.
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We will discuss the prediction-based priority algorithm in
this segment. First, we assumed a threshold for the efficient
load to avoid the deadlock situation, and then we discussed
the algorithm based on prediction-based priority in detail.

Priority Based Loading Scheme for Scheduling

In this section, we will present PMHEFT to solve the
above-mentioned issues of the prediction priority-based load-
ing scheme. The scheme mainly comprises three parts,
the next location of the loading DAG Prediction Priority
Queue Load for the inclusion in the list, potential loading
criterion conditions, and the efficient loading load threshold.

We’ll discuss this in detail below.

DAG Prediction Priority Queue Add Load Request
Selection

When we receive multiple requests for loading, the work-
load request selects a predictive queue, and this loading
scheme will work according to the predictive priority scheme.
In this scheme, we consider the demand rate of workload
and emergency as the two important factors to select the
loading DAG Prediction Priority Queue Load for added into
the queue. Firstly, we are proposing the prediction model of
load demand rate for cloud requests. Then we would present
the method for loading DAG Prediction Priority Queue Load
selection add into the queue.

In this section we are describing the scheme given below-

A. LOAD DEMAND RATE FOR CLOUD REQUEST IN
PREDICTION SCHEME

If the request workload is below the predetermined LEth
level, our scheme sends a request for loading to attach a
request thread. The request loading order includes the load
request-id and load usage of the respective prediction priority
queue. The workload priority list load demand rate of the
prediction base request and current load demand rates are
determined depending on the workload request. The work-
load request load demand rate is assumed to be LRj. As seen
in equation (1), we present a prediction of workload usage
in two states: load and no load. L_« is a variable factor in
the equation (0 < L_a < 1). When the workload request
is not loaded, it has to contend with other queue requests.
Therefore, to measure the loading sequence, we can use the
cloud request load usage average of any single time. When
the Load request is in loading mode, the workload series is
calculated, and instead of measured very fairly, can use the
current actual load demand rate. When the loading period
is finished, repeat the equation (1). The equation estimates
the current loading Prediction Priority Queues Load Demand
Rate until the next loading Load request is chosen.

LRj(t + A) = (L_a) LRj (t) + (L_a)LEj (t — A)

—LEj(t) ALEj (t — A) — LEj() A (1)
B. ADD INTO PREDICTION PRIORITY QUEUE FOR LOAD
REQUEST ALGORITHM

It is necessary to remember that our proposed workload
usage prediction model relies on the time taken to adjust
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FIGURE 2. Proposed system block diagram.

the VM load for each workload request at various times
and add it into the prediction priority queue for the loading
request algorithm. The algorithm input and output informa-
tion are given below, along with adding a load request into
the Prediction Priority Queue based on load demand rate and
emergency request. In this algorithm, LN is the total workload
request LRj(t) based on a load demand rate. We calculate
the minimum weight corresponding load request. According
to the sn, the second condition for emergency-based cloud
requests into the prediction priority queue in ascending order
is a sequence number. Total Load request LN, validate the
LRj(t), LNe(j) condition based on-demand rate LRj(t) are
marked.

LP (j) = L_B * LNe(j) + LNt(j) 2)

After that we calculate the condition values and according
to that we calculate the minimum weight for loading load
request. We evaluate this requirement prediction base

if (min LP(j))

{

Load Request Prediction Priority Queue Load correspond-
ing t, the least LP(j) is added into the queue.

}

Prediction Priority Queue Load for adding into a queue.
After checking the condition LN 0. In our pro-
posed model we calculate the user request load according
to the emergencies that will be calculated by LP(j) using
equation (2).
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According to the emergency request value that represents
LP(j), the actual load sequence queue of the load request is
calculated. The sampling effects of the above two variables,
decide the importance of LP(j). We will therefore obtain
LP(j). A control factor L_g (0 < L_g to 1) was introduced
to neutralise the impact of the emergency load, given the
assumption that the emergency is relatively higher in the
current situation than the load consumption rate. This will
be calculated by formula. Here j is the index of the priority
queue.

C. ALGORITHM FOR SELECTION OF LOAD REQUEST FOR
ADDING INTO THE PREDICTION PRIORITY QUEUE
DESCRIPTION

As defined above, when the workload request load demand
rate is forecast, and a prediction priority queue load is
loaded after deciding the Prediction Priority Queue scheme,
the emergency between all requests from other loading cloud
requests to the current queue request variant is considered.

i Loading demand Queue Calculation

In the load algorithm, all workload requests are in a priority
queue based on prediction. We denote LT as the loading
of the workload request, and LTi is the prediction priority
queue arrival time for workload request j. LTremain is the
remaining prediction priority queue length. Assume there are
LN requests that need to be loaded into the loading queue,
then the loading cycle LT can be calculated by equation (3),
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in which LTn is the time when queue arrives at workload
request LN, LN is the loading time for the prediction priority
queue load and n is the emergence in the queue. LNe (LN, 0)
is the time for the queue, returning from the last load request
n to load. The period that queue arrives at prediction-based
priority queue load calculation is done by equation (4).

LT = LTn+ tLN + LNe (LN, 0) arrive + LTremain (3)
LTi = LT —1+7ti— 1+ LNe(i—1,1) 4

As with the LNe indicating the load request sequence,
equation (2) can be represented by the period that Predic-
tion Priority Queue consumes on loading cloud request, in
equation (4). The LNe loading emergency sequences are
calculated according to equation (5) and vm is the time to load
requests in a prediction-based queue.

LT =LNe>kvm+Zj= 1% Ln * tj 4+ LTremain (5)
LNe = Zj = 1nLne (j — 1, k) + Lne (sn, 0) (6)

All requests are in a prediction-based queue, and our scheme,
ensuring the request’s regular activity in each loading request
queue. The residual load of request is calculated by equation
(7), in which LRj is the load demand rate of the next workload
request to add into the queue. Using the prediction, we also
add the workload request and the load expended by the fore-
cast priority queue load during the waiting time (LTj—LRj)
is not more than the workload request threshold LEth. This
scheme will prevent the workload cloud request would never
die due to workload loss.

LEth — LRj x (LTj — LRj) > 0 7

As the Prediction based priority queue is full. Therefore, the
relation between the load LEs of the request satisfies the
equation (8). The loading rate of workload request is c, and
1n is the PMHEFT capacity.

LEs = LEth — LRi x (LTi-LRi) + Lti x Inp x ¢ (8)

Next, we can identify the specifications that Predictive Prior-
ity Queue full load algorithm Ew needs to satisfy. To ensure
that the Prediction Priority Queue scheme effectively com-
pletes the loading activities and ultimately returns to the
queue in the last order, the total algorithm load of the
Prediction-based Priority Queue is not less than the total
load assigned to the request and total load consumed. The
condition that Ew should satisfy is shown in equation (9),
in which qm is the load consumed.

EchxZi:l*nri+exqm )

ii Loading Threshold Calculation

The LEad states that the adaptive load threshold means
that the prediction-based priority queue load has ample loads.
The submission shall be made to the queue in compliance
with the threshold values. The importance of LEad falls
between the prediction-based priority queue load full effi-
ciency LEs and the load request threshold LEth. Using a
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forecasting-based priority queue submission, we agree on an
adaptive load threshold. Equation (10) is the calculation of
the load threshold. The prediction-based priority queue load
begins changing the LEth stage, which causes an emergency
forecast priority queue load to be demanded.

LEad = (LEs — LEth) x LN — LN \/JLN/ + LEth (10)

D. ALGORITHM FOR PRIORITY-BASED LOADING

The Algorithm is based on the Prediction Model and the
Sensitive Cloud’s request. The next prediction priority queue
load selection for the priority information queue is provided
in the load request algorithm. In this algorithm, the prediction
is for the next workload request of the algorithm. Here the
system will detect whether the load level is below or less
than the pre-set threshold value or not for the workload cloud
request. It is a center-based priority system, where request
queue loading information is stored in the cloud-id of the
corresponding workload request and its load demand rate.
This algorithm gives the highest importance to the emer-
gency or high demand cloud request, which prevents the
deadlock condition when the request is overloaded, such
as high demand rate priority. In this algorithm, a priority
queue will be maintained using the mathematical model for
prediction-based contemplation. Our algorithm worked on all
types of cloud request load based on a prediction priority.
In the proposed model, the loading interval will commence
when the request value is below the threshold level, and the
model load is at the predicted level. Here we demonstrate how
to measure the threshold value.

ELN = this reflects an adaptive load

The Prediction-based Priority Queue Load has ample load
to operate.

Emth = Load request threshold.

The ELN capacity value is between maximum algorithm
capacity and threshold.

If an algorithm hits ELN instead, it will interrupt the
loading phase and contribute to the loading period for certain
requests with incredibly high load crises. The adaptive load
threshold measurement is provided, and the prediction-based
priority queue load starts loading when the load exceeds Emth
(Maximum value) threshold value.

ELN = (Emth — Ereq) x N —n— /N — /+ Ereq (11)

The next phase is the predictions-based time estimate with
PMHEFT. For results, we adopt the Min-Min principle and
predict VM status when it is available and usable for other
tasks. Figure 3 represents the flow diagram of the proposed
system.

V. SIMULATION RESULTS AND DISCUSSION

We have used NetBeans, Java, and WorkflowSim soft-
ware’s for simulation. The WorkflowSim extends the exist-
ing CloudSim simulator by providing a higher layer of
workflow management. A general-purpose framework is
needed to support workflow-based research that can execute

62659



IEEE Access

M. Sohani, S. C.

Jain: Predictive Priority-Based Dynamic Resource Provisioning Scheme

Begin Prediction
Priority Based - NMHEFT

[ Create a Prediction Priority

Queunue for All the Submitted
Task T; in Cloud

v

Set the Emergency of
Computation Tasks T;

v

between the Processor /

Create Communication Edges
Resources Rj using Equation 1-1

v

According to Finish Time

Requirements of Tasks T;

)

Determines Workload ]

E:'rediction Bases Task Orderingj *

Predict Calculate Finish
Time and Calculate
Average Time

Sort the Task list with
Finish Time and Prediction
is Estimated by Equation

from 1-11

Check Tasks
for Minimurm
the Prediction
Based Task

Predict Calculate the
Wirtual Machine Wait
Time for Assigning the

Predict Calculate the Virtual

Machine Makespan Based on
Equations and Compare with
Finish Time from Task List

v

Arrange Tasks in a List in
Decreasing Manner on the
Basis of Task Order using

Equation 1-11

Prepare Prediction Base Priority
Queue using Equation 1-11 and
Map Task with the Processor
"Which have the Minimum
Execution Time

YES ¢

Task

Zero

FIGURE 3. Proposed system flow diagram.

all workflows, features, and optimization techniques widely
accepted. The CloudSim/GridSim simulators fail to sup-
port workflow simulation up to fine granularity, and these
simulators only support static scheduling algorithms. Work-
flowSim supports dynamic workflow algorithms. The con-
sistent and perfect job-level execution model provided by
WrokflowSim relies on CloudSim and improves simulation
accuracy [52].

This simulation’s system configuration is the 64-bit
operating system- Windows 10, CPU- Intel(R) Core(TM)
i3, 2.20 GHz speed, and RAM- 8 GB. The proposed
algorithm developed using the Java language. The Work-
flowSim simulator is used to evaluate the proposed
algorithm’s performance because workflowsim simulator
supports large-scale scheduling, clustering, and provision-
ing studies. The outcomes of the HEFT, Modified HEFT,
Cluster HEFT, Dynamic HEFT, and proposed Prediction
based Priority MHEFT algorithm are discussed under three
parameters, namely: length of time, speed, and effectiveness
of the algorithm.

Comparison of the Algorithms Based on Below Perfor-
mance Parameter:

1. Schedule Duration: The duration of the sched-

ule (makespan) is the length of the schedule.
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Finish List is

Provision Resource and
Execute Task

2. Total time of operation of an application.

Makespan = EFT- EST
Where EFT: Execution Finish Time
EST: Execution Start Time

3. Efficiency: Speedup is divided by the number of pro-
cessors on each run.

4. Power Consumption: Total power used to execute a
group of tasks.

For simulation, first, we set the standard for all algorithms
in simulation. The Cloud Environment, VM, and Host spec-
ifications are given below in respective Tables 3,4,5 used for
simulation of algorithms.

The Table 6 is showing the description about the perfor-
mance factors that are improved from existing to proposed
algorithms.

A. MAKESPAN COMPARISON CHART FOR FIVE DIFFERENT
ALGORITHMS

The makespan results show the comparison of Predictive
Priority-based Modified HEFT, HEFT, Modified HEFT,
Cluster-based HEFT, and Dynamic HEFT algorithms are
shown in Figure 4. It can even see that the total makespan
time of workflows lengthens with increases as per submitted
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Algorithm 1 Prediction Priority Based MHEFT

1. Build a Prediction Priority Queue for all the enrolled
tasks Ti in Cloud.

2. Set the emergency of computing the tasks.

3. Prepare communication edges between Rj proces-
sor/resources using equations 1 to 11.

4. Predict task load ordering bases according to the time
of completion.

5. Calculate finish time and the total time of task request.

6. Sort the task load list with a completion time of the task
and determine prediction by equations 1 to 11 until the
priority queue does not end.

7. Calculate virtual machine wait time for assigning the
task load.

8. Calculate virtual machine makespan and compare with
a finish time from the predictions-based priority queue.

9. Arrange prediction-based priority queue in decreasing
manner based on task order using prediction equations
1to11.

10. Prepare a prediction-based priority queue based on

equations 1 to 11 and then map workload with the
minimum execution time processor.

TABLE 3. Cloud environment specification.

Sr. Entities / Ranges /
No. Component Specification
1 Host Machines 100
2 Virtual Machines 40
(VM)
3 Number of User 01
4 | Virtual Machine Xen
Manager (VMM)
5 | Bandwidth 30 Mbps

several tasks, which represents in the experimental results
of Figure 4. It is clearly evident from the makespan graph
that the PMHEFT algorithm is more efficient than the other
four algorithms. According to workflow, our proposed algo-
rithm (PMHEFT) outperforms HEFT, DHEFT, CHEFT, and
MHEFT algorithms in terms of the average makespan of the
submitted tasks by 95.97%, 73.65%, 50.49%, and 50.02%,
respectively, as shown in Figure 4.

B. USAGE COMPARISON CHART FOR FIVE DIFFERENT
ALGORITHMS

The efficiency results show the comparison of Predictive
Priority-based Modified HEFT, HEFT, Modified HEFT,
Cluster-based HEFT, and Dynamic HEFT algorithms are
shown in Figure 5. It is clearly evident from the usage graph

VOLUME 9, 2021

TABLE 4. Virtual machine specification.

Sr. Entities / Ranges /

No. Component Specification
1 | RAM 1024 /2048 MB
2 | Bandwidth 12 /30 Mbps
3 | Number of CPU 01/02

4 | Operating System | Linux/ Windows /

Mac
5 | Storage 10/ 20 GB
TABLE 5. Host specification.
Sr. Entities / Ranges /
No. Component Specification
1 RAM 4096 / 8192 MB
2 | Bandwidth 12 /30 Mbps
3 | Number of CPU 02/04
4 | Processor Speed 1.80 GHz &
2.00 GHz
5 | Operating System | Linux/ Windows /
Mac
6 | Storage 20/40 GB
6000
5500

Makespan (s)
w
o
o
o

2000
1500
1000 I -
508 F— oo Blas. Ium IUiu
10 20 50 100 200

Number of Submitted Tasks

M HEFT M DHEFT MCHEFT = MHEFT ™ PMHEFT

FIGURE 4. Makespan v/s performance of different algorithms for
submitted task.

that the PMHEFT algorithm is more efficient than the other
four algorithms. According to workflow, our proposed algo-
rithm (PMHEFT) outperforms HEFT, DHEFT, CHEFT, and
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TABLE 6. Comparison between existing and proposed algorithm.

Algorithm | Prediction | Support Support Use Performance | Total Load | Mortality

Details Nature Static Dynamic | Emergency Speed Consumption

Load Load Factor (Based on
Balancing | Balancing Results)

HEFT NO YES NO NO Slower 4.022 Mw [May be Die
DHEFT NO NO YES NO Slower 0.567 Mw  |[May be Die
CHEFT NO YES NO NO Slower 0.326 Mw  |[May be Die
MHEFT NO NO YES NO Slower 0.323 Mw  |May be Die
Proposed YES YES YES YES Faster 0.320 Mw | Never Die

Algorithm
(PMHEFT)

MHEFT algorithms in terms of the average usage for the

. 1800000
submitted tasks by 21.30%, 32.70%, 49.73%, and 51.41%,
respectively, as shown in Figure 5. 1600000
i 1400000
2.5 c
o
= 1200000
Q.
2 £
2 1000000
—_ o
X 1.5 o
> 5 800000
oo 2
3 1 3
- o 600000
0.5 MI I I | 400000
0 wailill IIHII II I 200000 I !
10 20 50 100 200 0 e Aluaa I“i“ I“I' Iui'
Number of Submitted Tasks 10 20 50 100 200

Number of Submitted Tasks
M HEFT ®MDHEFT MCHEFT ®MHEFT HPMHEFT

M HEFT HMDHEFT MCHEFT ®MHEFT ®PMHEFT
FIGURE 5. Usage v/s performance of different algorithms for submitted
task.

FIGURE 6. Power consumption v/s performance of different algorithms
for submitted task.

C. LOAD CONSUMPTION COMPARISON CHART FOR FIVE

DIFFERENT ALGORITHMS

The power consumption results show the comparison of other four algorithms. According to workflow, our proposed
Predictive Priority-based Modified HEFT, HEFT, Modified algorithm (PMHEFT) outperforms HEFT, DHEFT, CHEFT,
HEFT, Cluster-based HEFT, and Dynamic HEFT algorithms and MHEFT algorithms in terms of the average power con-
are shown in Figure 6. It can be seen that the total power con- sumption of the submitted tasks by 92.34%, 45.19%, 01.56%,
sumption of workflow execution increases as per submitted and 0.78%, respectively, as shown in Figure 6.

several tasks, which represents in the experimental results of This prediction scheme result establishes that the scheme
Figure 6. It is clearly evident from the power consumption has a better edge over the non-predictive algorithms. The high
graph that the PMHEFT algorithm is more efficient than the CPU utilization demands applications can be implemented
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using a prediction-based dynamic scheme and where the
application load’s stability is needed. Predicted demands can
be easily fulfilled by VMs allocation/deallocation. In this
paper, the results show that the studied scheduling algo-
rithms, PMHEFT unveils the best performance with the
lowest quadratic time complexity for the dynamic schedul-
ing of DAGs in heterogeneous platforms. Simulation results
outperform the benchmark methods while meeting the QoS
goal using workload traces on PlanetLab servers demonstrate
that the introduced method. However, this method focused on
improving cloud application’s performance by reducing the
number of overloaded hosts.

VI. CONCLUSION

This paper proposed a novel approach for prediction prior-
ity scheduling-based schemes. This paper is explored as a
new approach that is an efficient emergency priority aware
algorithm. In this scheme, we consider the emergency cloud
request, and priority is given to load that emergency cloud
request for execution. This will ensure the load request avail-
ability and longevity of more sophisticated requests.

This research proposed a new method for task scheduling
and loaded balancing to improve user response time and
incoming tasks. To our knowledge, PMHEFT is the algorithm
to outperform HEFT, DHEFT, CHEFT, and MHEFT with
maintaining the time complexity of O (v2.p), where v is the
number of tasks and p is the number of processors. Task
scheduling clusters are formed using the calculation of top
and bottom levels of tasks’ predictive priority values. MHEFT
algorithm is used for value calculation in which the average
time for each task is taken into account. The prediction-based
highest priority task for future procedures is selected and
delegated first. Task clusters and ratings increase the use of
resources in our work in comparison to existing methods.
The highest weight VM is selected for assigning task load
to reduce the user task’s response time. In our proposed
work, response time, makespan, use of resources, and service
reliability are considered. The developed PMHEFT model
works based on data harmonization across cloud services,
resource management during cloud formation, user data inte-
gration with the cloud, provisioning of resources and ser-
vices with improved performance. We proposed a predictive
model to predict the advanced resource demands from the
observed/historical database for efficient resource provision-
ing. This proposed PMHEFT model gives efficient resource
provisioning for end users according to their needs based on
an accurate workload prediction strategy. The calculations
observation for the proposed prediction approach gives more
accurate results as compared to the conversational approach.

Future work concerns particular mechanism deeper analy-
sis and tries different models for new proposals by incorpo-
rating the Internet of Things with cloud computing emerging
concepts. To develop a more efficient resource provisioning
system for end-users, other proactive resource provisioning
approaches might be addressed in future studies.
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