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ABSTRACT Complex fuzzy coverings (CFCs) are the natural mixture of the complex fuzzy sets (CFSs)
and coverings, which are the modified versions of the coverings by replacing crisp sets with CFSs. This
manuscript aims to explore the complex fuzzy neighborhood operators (CFNOs) by introducing the notions
such as β-neighborhood system (β-NO), complex fuzzy β-minimal description (CFβ-MND), and complex
fuzzy β-maximal description (CFβ-MXD). First, we explore the complex fuzzy β-covering approximation
space (CFβ-CAS) and then we propose the above notions and investigate their properties. Additionally,
we construct the CFNOs based on the complex fuzzy β-coverings (CFβ-Cs). Finally, the CFβ-Cs were
derived by using CFNOs, and their properties are considered. These all notions are also verified with the help
of suitable examples to show that the presented approaches are extensive, reliable, and proficient techniques.

INDEX TERMS Complex fuzzy β-coverings, complex fuzzy neighborhood operators, complex fuzzy sets,
rough sets.

I. INTRODUCTION
Decision-making is a proficient technique to manage awk-
ward and unreliable information in numerous realistic issues.
The decision-making procedure is received extensive atten-
tion from different scholars and various scholars have uti-
lized it in the environment of separated areas. In a genuine
decision-making technique, a significant issue is how to com-
municate the characteristic worth all the more effectively
and precisely. In reality, in light of the multifaceted nature
of decision-making issues and the fuzziness of decision-
making rules, it isn’t sufficient to communicate trait esti-
mations of options by precise qualities. For this, the theory
of fuzzy set (FS) was discovered by Zadeh [1] contains the
truth degree in the form of the element of the unit interval.
Numerous scholars have utilized the FS theory in separated
fields [2]–[5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangcun Shan .

As the FS thinks about just the truth degree yet doesn’t
weigh on the phase term bit of the information substances,
which similarly expect an equivalent part in evaluating
the article in the decision-making technique. Nonetheless,
in reality, it is consistently difficult to communicate the
assessment of the truth degree by a careful incentive in an FS.
In such cases, it very well may be simpler to portray dubious-
ness and vulnerability utilizing two-dimensional data rather
than a single one. Subsequently, an expansion of the current
speculations may be incredibly significant to portray the
vulnerabilities due to his/her hesitant judgment in complex
decision-making issues. For this, the theory of complex fuzzy
set (CFS) was discovered by Ramot et al. [6] contains the
truth degree in the form of complex numbers whose real and
imaginary parts are belonging to the unit interval. By pre-
senting this subsequent measurement, the total data can be
extended in one set, and thus, loss of data can be maintained
a strategic distance from. To outline the criticalness of the
stage term, consider an illustration of a specific organiza-
tion that chooses to put in new information preparing and
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examination programming. For this, the organization coun-
sels a specialist who gives the data concerning (a) alternate
choices of programming (b) relating programming adapta-
tion. The organization needs to choose the most ideal alter-
native(s) of programming with its most recent form at the
same time. Here, the issue is two-dimensional, to be specific,
to choose the ideal option of programming and its most adap-
tation. This issue can’t be demonstrated precisely utilizing the
customary FS hypothesis. So themost ideal approach to speak
to the entirety of the data given by the master is by utilizing
the CFS hypothesis. The adequacy terms in CFSmight be uti-
lized to give an organization’s choice concerning the elective
programming and the stage terms might be utilized to speak
to an organization’s choice concerning programming form.
Numerous scholars have utilized the CFS theory in separated
fields [7]–[11].

The theory of rough set (RS) was initially discovered by
Pawlak [12] as a genuine method for information revelation
and data handling, in which the central technique comprises
of relations that show to data frameworks or decision-making.
In RS, two principal factors influence the description capacity
of data frameworks or decision-making tables: set approx-
imation and information reduction. From one perspective,
given a subset of the universe, two perceptible sets called
lower and upper approximations are explored to approxi-
mate the subset. Then again, under the rule of keeping the
set approximations unaltered, information reduction is led
to eliminating the excess credits from the data framework
or decision-making table to get some less complex stan-
dards than the first data framework or decision-making table.
Numerous scholars have utilized the RS theory in separated
fields [13]–[19].

Let = { 1, 2, . . . , m} with i ∈ F
( )

(i =
1, 2, . . . ,m) expresses the family of the fuzzy power set of
is called fuzzyβ− C of if for each β ∈ (0, 1] such that(
∪
m
i=1 i

)
( ) = 1 for each ∈ . The pair

(
,
)
expresses

the fuzzy β−Covering approximation spaces. Additionally,
If set = { 1, 2, . . . , m} with i ∈ F

( )
(i =

1, 2, . . . ,m) expresses the family of the fuzzy power set of
is called fuzzy β− Covering of if for each β ∈ (0, 1]

such that
(
∪
m
i=1 i

)
( ) ≥ β for each ∈ . The pair

(
,
)

expresses the CFβ−CAS. Additionally, we will explore two
covering based rough sets, which was elaborated by:

( ) =
{
∈ : ( ) ≥ β

}
Further, for any covering approximation space

(
,
)
,

the minimal description of is elaborated by:

Md ( ) =

{
∈ : ∈ ∧(
∀S ∈ ∧ ∈ S ∧ S ⊆ H⇒ = S

)}
Similarly, the maximal description of is elaborated by:

MD ( ) =

{
∈ : ∈ ∧(
∀S ∈ ∧ ∈ S ∧ S ⊇ H⇒ = S

)}

The geometrical expressions of the elaborated approaches
are discussed in the form of Figure 1.

FIGURE 1. Graphical expressions of the explored approaches.

The CFS is a simplification of the FS in which the
amplitude term offers the degree of belongings of an object
while the phase term explains the periodicity. These phase
terms differentiate the CFS from the traditional FS theories.
In FS theory, the data are accomplished with the reimburse-
ment of only the degree of the belongings while the part
of periodicity is completely ignored. Hence, this may result
in the loss of knowledge through the decision-making pro-
cedures based on certain cases. To additional demonstrate
the theory of phase terms, we take an example. Suppose a
person wants to purchase a car under crucial factors such as
its model and its production dates. Since the model of each
car moves with the evolution of the production dates and
hence to select or decision regarding choosing the optimal
car is a decision-making process under these two factors
simultaneously.

Also, such types of problems cannot bemodeled accurately
with traditional theories. However, CFS theory is well suited
for such classes of problems where the amplitude terms may
be used to provide a decision about the model of a car while
the phase terms concerning its production dates. Henceforth,
a CFS is a more generalized continuation of the existing
theories such as FSs. Additionally, D’eer et al. [8] explored
some neighborhood operators and their derived coverings,
we use these operators is to elaborate on some new six types
of operators and also utilized their coverings such as maximal
and minimal β−coverings are to show the reliability con-
sistency of the investigated approaches. When we consider
complex fuzzy types of information’s then the existing types
of operators in [8] are not able to manage with it. But when
we consider the existing fuzzy types of information’s then
the explored types of operators can manage with it due to its
structure. The main objectives of this article are summarized
as follow:

1. To explore the CFNOs by introducing the notions such
as β-NS, CFβ-MND, and CFβ-MXD. First, we explore

VOLUME 9, 2021 73507



T. Mahmood et al.: Interdependency of Complex Fuzzy Neighborhood Operators and Derived CFCs

the CFβ-CAS and then we propose the above notions and
investigate their properties.

2. Additionally, we construct the CFNOs based on
the CFβ-Cs.

3. Finally, the CFβ-Cs were derived by using CFNOs, and
their properties are considered.

4. These all notions are also verified with the help of suit-
able examples to show that the presented approaches are
extensive reliable and proficient techniques.

The main structure of this manuscript is discussed in
the following way: In section 2, we recall some theories
like covering-based rough sets and complex fuzzy sets.
In section 3, we present the idea of CFβ− C, CFβ−MND,
and CFβ−MXD, and β−NS in CFβ−CAS. In section 4,
we present the idea of complex fuzzy neighborhood operators
in the environment of rough sets theory based on the mod-
ifications such as β−neighborhood system, CFβ−MND,
CFβ−MXD. Additionally, and the CFNOs are discussed
below. In section 5, the complex fuzzy β-coverings were
derived by using complex fuzzy neighborhood operators and
their properties are considered. These all notions are also
verified with the help of suitable examples to show that the
presented approaches are extensive reliable and proficient
techniques.

II. PRELIMINARIES
In this study, we recall some theories like covering-based
rough sets and complex fuzzy sets. The NO [13] is elaborated
by N : → P

( )
, where P

( )
shows the family of the

subsets of fix set . Additionally, some properties for N are
followed as a NO N is reflexive i.e. ∈ N ( ) for each ∈ ;
a NON is symmetric if ∈ N

(
′
)
⇔

′
∈ N ( ) ,∀ , ′ ∈ ; a

NON is transitive if ∈ N
(
′
)
⇔ N ( ) ⊆ N

(
′
)
,∀ , ′ ∈ .

Definition 1 ([16]): Let be the family of the subsets of
fix set . If θ /∈ and ∪ = , then is called covering
of , and the pair

(
,
)
is called covering approximation

space (CAS).
Definition 2 ([17]): For any CAS

(
,
)
, the neighborhood

of is elaborated by:

N ( ) = ∩
{
∈ : ∈

}
, ∈ (1)

Definition 3 ([18]): For any CAS
(
,
)
, the complemen-

tary neighborhood of is elaborated by:

M
(
′
)
=

{
∈ :

′
∈ N ( )

}
(2)

From the above hypothesis, we get if ∈ N ( ) and
∈ M ( ), then the relation between neighborhood and

complimentary neighborhood is discussed is follow as: for
any CAS

(
,
)
and for any , ′ ∈ , ∈ M

(
′
)
⇔

′
∈

N ( ).

Definition 4 ([17]): For any CAS
(
,
)
, the minimal

description of is elaborated by:

Md ( ) =

{
∈ : ∈ ∧(
∀S ∈ ∧ ∈ S ∧ S ⊆ H⇒ = S

)}
(3)

Similarly, the maximal description of is elaborated by:

MD ( ) =

{
∈ : ∈ ∧(
∀S ∈ ∧ ∈ S ∧ S ⊇ H⇒ = S

)}
(4)

Definition 5 ([19]): For any CAS
(
,
)
, the indiscernible

neighborhood of is elaborated by:

Friends ( ) = ∪
{
∈ : ∈ ∈

}
, ∈ (5)

Similarly, the close friends of is elaborated by:

CFriends ( ) = ∪
{
M ( )

}
, ∈ (6)

Additionally, based on the covering with ∈ , we
choose three neighborhoods systems for . First, we choose
the N ( ) =

{
∈ : ∈

}
, and further, we choose

the Md ( ) and MD ( ). By using these neighbor-
hoods, Yao and Yao [13] discovered four neighbor-
hood operators based on the covering are discussed
below:

N1 ( ) = ∩
{
∈ : ∈Md ( )

}
= ∩

{
∈ : ∈ N ( )

}
(7)

N2 ( ) = ∪
{
∈ : ∈Md ( )

}
= CFriends ( ) (8)

N3 ( ) = ∩
{
∈ : ∈MD ( )

}
(9)

N4 ( ) = ∪
{
∈ : ∈MD ( )

}
= ∪

{
∈ : ∈ N ( )

}
= Friends ( ) (10)

The Eq. (7) to Eq. (10) is reflexive, the Eq. (10) is sym-
metric, and the Eq. (7) and Eq. (9) are transitive. By using
the covering , six types of coverage were also presented by
Yao and Yao [13], which are discussed below:

1
= ∪

{
Md ( ) : ∈

}
(11)

2
= ∪

{
MD ( ) : ∈

}
(12)

3
=

{
∩Md ( ) : ∈

}
=

{
∩ N ( ) : ∈

}
=

{
N1 ( ) : ∈

}
(13)

4
=

{
∪MD ( ) : ∈

}
=

{
∪ N ( ) : ∈

}
=

{
N4 ( ) : ∈

}
=

{
Friends ( ) : ∈

}
(14)

73508 VOLUME 9, 2021



T. Mahmood et al.: Interdependency of Complex Fuzzy Neighborhood Operators and Derived CFCs

5
= −

{
∈ :

(
∃
′
⊆ −

{ }) (
= ∩

′

)}
(15)

6
= −

{
∈ :

(
∃
′
⊆ −

{ }) (
= ∪

′

)}
(16)

Definition 6 ([6]): A CFS A is a function defined
form fix set to the unit disc in a complex plane i.e.
A ( ) = ARP ( ) .ei2π

(
AIP

( ))
with the condition that is

ARP ( ) ,AIP ( ) ∈ [0, 1]. The family of all complex fuzzy
subsets of is expressed by F

( )
is called the power set

of . Additionally, if we choose the A,B ∈ F
( )

, then
A ⊆ B if A ( ) ⊆ B ( ) H⇒ ARP ( ) ⊆ BRP ( ) and
AIP ( ) ⊆ BIP ( ) ,A = B if A ( ) = B ( ) H⇒ ARP ( ) =

BRP ( ) and AIP ( ) = BIP ( ). Additionally, the union,
intersection, and compliment of any two complex number is
elaborated by:

A ∪B = A ( ) ∪B ( )

= max (ARP ( ) ,BRP ( )) .ei2π
(
max

(
AIP

( )
,BIP

( )))
(17)

A ∩B = A ( ) ∩B ( )

= min (ARP ( ) ,BRP ( )) .ei2π
(
min

(
AIP

( )
,BIP

( )))
(18)

Ac
= 1−A ( ) = 1−ARP ( ) .ei2π

(
1−AIP

( ))
(19)

III. COMPLEX FUZZY β− COVERING, COMPLEX FUZZY
β− MINIMAL COVERING, AND COMPLEX FUZZY
β− MAXIMAL COVERING
This study aims to present the idea of complex fuzzy
β−covering (CFβ−C), complex fuzzy β−minimal descrip-
tion (CFβ−MND), complex fuzzy β−maximal description
(CFβ−MXD), and β−neighborhood systems (β−NS) in
complex fuzzy β−CAS (CFβ−CAS).

A. RELATIONSHIP BETWEEN β−NEIGHBORHOOD
SYSTEM, COMPLEX FUZZY β− MINIMAL DESCRIPTION,
AND COMPLEX FUZZY β− MAXIMAL DESCRIPTION
Find the relationships between these notions and their prop-
erties are also discussed. Finally, we discovered which two
CFβ−C generates the same (CFβ−MND), CFβ−MXD, and
β−NS for any ∈ . The notion of CFβ−C is discussed
below.
Definition 7: A set = { 1, 2, . . . , m} with i ∈

F
( )

(i = 1, 2, . . . ,m) expresses the family of the complex

fuzzy power set of is called CFβ− C of if for each β =
βRPei2π(βIP) where βRP, βIP ∈ (0, 1] such that

(
∪
m
i=1 i

)
( ) ≥

β for each ∈ . The pair
(
,
)
expresses the CFβ−CAS.

Additionally, we will explore the β−NS, which is presented
below.

Definition 8: For any CFβ−CAS
(
,
)
, the β−NS of is

elaborated by:

( ) =
{
∈ : ( ) ≥ β

}
(20)

For any complex fuzzy covering must be CF β− C based
on any β = βRPei2π(βIP) where βRP, βIP ∈ (0, 1]. For any

∈ , there is C
(
,
)
=

∐
β = βRPei2π(βIP),
βRP, βIP ∈ (0, 1]

( ),

where C
(
,
)
=

{
∈ : ( ) ≥ β

}
. On other hand, based

on any β = βRPei2π(βIP) where βRP, βIP ∈ (0, 1] such that

C
(
,
)
=

︷︸︸︷
N

β

( ), for any ∈ . Then we recall ( )

covers C
(
,
)
for suitable values of β = βRPei2π(βIP) where

βRP, βIP ∈ (0, 1]. If we choose the values of βRP = βIP =

1, then ( ) ⊆ C. For example, we choose a fixed set

= { 1, 2, 3} based on the complex fuzzy covering of
i.e., = { 1, 2, 3}, where 1 =

0ei2π(0)

1
+

0.1ei2π(0.11)

2
+

1ei2π(1)

3
, 2 =

1ei2π(1)

1
+

0.5ei2π(0.51)

2
+

0.7ei2π(0.71)

3
, and 3 =

0ei2π(0)

1
+

1ei2π(1)

2
+

0ei2π(0)

3
. From the above analysis, it is

clear that C
(
, 1

)
= { 2} ,C

(
, 2

)
= { 1, 2, 3}, and

C
(
, 3

)
= { 1, 2}. For any β = βRPei2π(βIP) where

βRP, βIP ∈ (0, 1], is a CFβ−Con . If we choose the values
of βRP = βIP = 0.1, then C

(
, 1

)
= { 2} ,C

(
, 2

)
=

{ 1, 2, 3}, and C
(
, 3

)
= { 1, 2}. If we choose the

values of β = βRPei2π(βIP) where βRP, βIP ∈ (0, 0.1], then

( i) = C
(
, i

)
, i = 1, 2, 3.

Additionally, by using the idea of CFSs and CFβ−C is
to explore the CFβ−MND, CFβ−MXD, and the new kind
of complex fuzzy covering-based rough set model, which are
discussed below.
Definition 9: For any CFβ−CAS

(
,
)

with =

{ 1, 2, . . . , m}, the CFβ−MND M̃d
β
( ) is elaborated by:

M̃d
β
( )

=

{
∈ : ( ( ) ≥ β)

∧

(
∀D ∈ ∧D ( ) ≥ β ∧D ⊆ H⇒ = D

)}
(21)

Similarly, the CFβ−MXD M̃D
β
( ) is elaborated by:

M̃D
β
( )

=

{
∈ : ( ( ) ≥ β)

∧

(
∀D ∈ ∧D ( ) ≥ β ∧D ⊇ H⇒ = D

)}
(22)
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By using the Def. (8), the CFβ−MND M̃d
β
( ) and the

CFβ−MXD M̃D
β
( ) are elaborated by:

M̃d
β
( ) =

{
∈ ( ) : ∀D ∈ ( )

∧D ⊆ H⇒ = D

}
(23)

M̃D
β
( ) =

{
∈ ( ) : ∀D ∈ ( )

∧D ⊇ H⇒ = D

}
(24)

For example, we choose a fixed set = { 1, 2, 3, 4, 5, 6}

based on the complex fuzzy covering of i.e., =

{ 1, 2, 3, 4, 5} then see Table 1.

TABLE 1. Represents the values of three neighborhood systems.

where,

1 =
0.71ei2π(0.72)

1
+

0.11ei2π(0.12)

2
+

0.31ei2π(0.32)

3

+
0.51ei2π(0.52)

4
+

0.31ei2π(0.32)

5
+

0.61ei2π(0.62)

6
,

2 =
0.51ei2π(0.52)

1
+

0.11ei2π(0.12)

2
+

0.81ei2π(0.82)

3

+
0.61ei2π(0.62)

4
+

0.41ei2π(0.42)

5
+

0.71ei2π(0.72)

6
,

3 =
0.21ei2π(0.22)

1
+

0.71ei2π(0.72)

2
+

0.21ei2π(0.22)

3

+
0.11ei2π(0.12)

4
+

0.21ei2π(0.22)

5
+

0.31ei2π(0.32)

6
,

4 =
0.41i2π(042)

1
+

0.61ei2π(0.62)

2
+

0.41ei2π(0.42)

3

+
0.81i2π(0.82)

4
+

0.71ei2π(0.72)

5
+

0.41ei2π(0.42)

6
,

5 =
0.91ei2π(0.92)

1
+

0.41ei2π(0.42)

2
+

0.71ei2π(0.72)

3

+
0.91ei2π(0.92)

4
+

0.61ei2π(0.62)

5
+

0.61ei2π(0.62)

6
.

where β = 0.5ei2π(0.51) where 0 < βRP, βIP ≤ 0.73,

then
︷︸︸︷
N

0.5ei2π(0.51)

( i) , M̃d
0.5ei2π(0.51)

( ), and M̃D
0.5ei2π(0.51)

( ) (i = 1, 2, 3, 4, 5, 6) are listed in Table 1. It is easy

to examine that
︷︸︸︷
N

0.5ei2π(0.51)

( i) = M̃d
0.5ei2π(0.51)

( ) ∪

M̃D
0.5ei2π(0.51)

( ), for any i = 1, 2, 3, 4, 5, 6. By using the
Def. (9), we conclude the following theories. The complex
fuzzy minimal and complex fuzzy maximal descriptions are
elaborated below.

Md
(
,
)
=

{
∈ C ( , ) : (∀S ∈ C ( , ))(

S ( ) = ( )
)
, S ⊆ H⇒ S =

}
(25)

MD
(
,
)
=

{
∈ C ( , ) : (∀S ∈ C ( , ))(

S ( ) = ( )
)
, S ⊇ H⇒ S =

}
(26)

By using the Def. (8), the CFβ−MND M̃d
β
( ) and the

CFβ−MXD M̃D
β
( ) are elaborated by:

M̃d
β
( ) =

{
∈ ( ) : ∀D ∈ ( )

∧D ⊆ H⇒ = D

}
(27)

M̃D
β
( ) =

{
∈ ( ) : ∀D ∈ ( )

∧D ⊇ H⇒ = D

}
(28)

It is not difficult to verify that ( ) = D ( ) is not necessary
to the idea of CFβ−MND and the CFβ−MXD. Form the
above analysis, it is clear that the above four definitions are
different from each other.
Example 1: We choose a fix set = { 1, 2} based

on the complex fuzzy covering of i.e., =

{
1, 2, 3,

4, 5

}
, where 1 =

1ei2π(1)

1
+

0.91ei2π(0.92)

2
, 2 =

0.7ei2π(0.72)

1
+

0.11ei2π(0.12)

2
. 3 =

0.71ei2π(0.72)

1
+

0.5ei2π(0.51)

2
, 4 =

0.71ei2π(0.72)

1
+

0.21ei2π(0.22)

2
, and 5 =

0ei2π(0)

1
+

0.51ei2π(0.52)

2
.

From the above analysis, it is clear that C
(
, 1

)
=

{ 1, 2, 3, 4}, C
(
, 2

)
= { 1, 2, 3, 4, 5},

Md
(
, 1

)
= { 1, 4} ,Md

(
, 2

)
= { 2, 4, 5},

MD
(
, 1

)
= { 1, 2} ,MD

(
, 2

)
= { 1, 2, 4}.

In fact, 4 ⊆ 1, 4 ⊆ 2, and 5 ⊆ 2. For choosing the value
of β = 0.21ei2π(0.22), where 0.21, 0.22 ∈ (0, 1]. Then︷︸︸︷

N
0.21ei2π(0.22)

( 1) = { 1, 2, 3, 4} ,
︷︸︸︷
N

0.21ei2π(0.22)

( 2) = { 1, 2, 3, 4, 5},

M̃d
0.21ei2π(0.22)

( 1) = { 4} , M̃d
0.21ei2π(0.22)

( 2) = { 4, 5},

M̃D
0.21ei2π(0.22)

( 1) = { 1, 2} , M̃D
0.21ei2π(0.22)

( 2) =

{ 1, 2}.

To examine the relationships between ( ) , M̃d
β
( ),

and M̃D
β
( ) are discussed with the help of the following

propositions.
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Proposition 1: For any CFβ−CAS
(
,
)

with ∈

( ), then there exists 1 ∈ M̃d
β
( ) and 2 ∈ M̃D

β
( ),

such that 1 ⊆ ⊆ 2.
Proof: When ′

6⊆ , for any ′
∈ M̃d

β
( ) − { },

then from ( ) ≥ β that ∈ M̃d
β
( ), therefore there exists

1 ∈ M̃d
β
( ) such that 1 ⊆ . Similarly,

′′

6⊆ , for any
′′

∈ M̃D
β
( )− { }, then from ( ) ≥ β that ∈ M̃D

β
( ),

therefore there exists 2 ∈ M̃D
β
( ) such that ⊆ 2.

Proposition 2: For any CFβ−CAS
(
,
)
, then

M̃d
β
( ) ⊆ ( ) and M̃D

β
( ) ⊆ ( ) for any ∈ ,

are hold obviously by using the Def. (8) and Def. (9).
Proposition 3:For anyCFβ−CAS

(
,
)
, then∩M̃d

β
( ) =

∩ ( ) and ∪M̃D
β
( ) = ∪ ( ) for any ∈ .

Proof: Based on Proposition 1, for any ∈ ( ), then

there exists 1 ∈ M̃d
β
( ) and 2 ∈ M̃D

β
( ), such that

1 ⊆ ⊆ 2. Then∩M̃d
β
( ) ⊆ ∩ ( ) and∪M̃D

β
( ) ⊇

∪ ( ) for any ∈ . Similarly, based on Proposition 2,

M̃d
β
( ) ⊆ ( ) and M̃D

β
( ) ⊆ ( ) for any ∈ .

Then ∩M̃d
β
( ) ⊆ ∩ ( ) and ∪M̃D

β
( ) ⊆ ∪ ( ) for

any ∈ . For any ∈ , we have

∩M̃d
β
( ) = ∩

{
∈ ( ) : ∀D ∈ ( )

∧D ⊆ H⇒ = D

}
= ∩

︷︸︸︷
N

β

( ) ;

∪M̃D
β
( ) = ∪

{
∈ ( ) : ∀D ∈ ( )

∧D ⊇ H⇒ = D

}
= ∪

︷︸︸︷
N

β

( ) .

Hence, ∩M̃d
β
( ) = ∩ ( ) and ∪M̃D

β
( ) = ∪ ( )

for any ∈ .
By the proof of proposition 2, the necessary and sufficient

condition for ( ) = M̃d
β
( ) = M̃D

β
( ) for any ∈

is explored. Additionally, we can explore the complex fuzzy
β−approximation space.
Definition 10: For any CFβ−CAS

(
,
)
, then we call a

semi-reduced complex fuzzy β−covering if 1, 2 ∈ and
1 ⊆ 2, then 1 = 2.
Additionally, for any CFβ−CAS

(
,
)
, then for any ∈

, ( ) = M̃d
β
( ) = M̃D

β
( ) iff a semi-reduced

complex fuzzy β−covering. Or, For any CFβ−CAS
(
,
)
,

if for any ∈ ,

∣∣∣∣∣︷︸︸︷N
β

( )

∣∣∣∣∣ = 1 then ( ) = M̃d
β
( ) =

M̃D
β
( ). For any CFβ−CAS

(
,
)
, if 0 < β1 ≤ β2 ≤ β,

then

︷︸︸︷
N

β2

( ) ⊆
︷︸︸︷
N

β1

( ) , for any ∈ (29)

M̃d
β2
( ) ⊆ M̃d

β1
( ) , for any ∈ (30)

M̃D
β2
( ) ⊆ M̃D

β1
( ) , for any ∈ (31)

B. INTERDEPENDENCY OF β− NEIGHBORHOOD SYSTEM
For any two CFβ−Cs 1, 2 on fix set by using the value
of parameters β = βRPei2π(βIP) where βRP, βIP ∈ (0, 1].

If
︷︸︸︷
N

β

1
( ) =

︷︸︸︷
N

β

2
( ), for any ∈ , then 1 is not

necessarily equal to 2. These laws are also verified with the
help of Example 2, which is discussed below.
Example 2: For any CFβ−CAS

(
,
)
in Example 1, and

′
= ∪ { 6}, where

6 =
0.41ei2π(0.42)

1
+

0.31ei2π(0.32)

2
+

0.31ei2π(0.32)

3

+
0.41ei2π(0.42)

4
+

0.21ei2π(0.22)

5
+

0.11ei2π(0.12)

6
,

From the above analysis, it is clear that the is a CFβ−C

on fix set , (0 < β ≤ 0.73), then
︷︸︸︷
N

0.5ei2π(0.51)

( i) , i =
1, 2, 3, 4, 5, 6, are discussed in the form of Table 2.

We easily find that,
︷︸︸︷
N

0.5ei2π(0.51)

( i) =
︷︸︸︷
N

0.5ei2π(0.51)

( i),
for any i = 1, 2, 3, 4, 5, 6, but 6= . For two CFβ−Cs
for fix set by using the conditions to generate some
β−neighborhood system. For this, we present some ideas
of CFβ−CAS.
Definition 11: For any CFβ−CAS

(
,
)
and ∈ .

If ( ) ( ) < β for each ∈ , β = βRPei2π(βIP) where
βRP, βIP ∈ (0, 1], then expresses the β−independent ele-
ment of , otherwise, expresses the β−dependent element
of .
Example 3: For anyCFβ−CAS

(
,

)
in Example 2, then

6 expresses the 0.5ei2π(0.51)−independent element of ,
otherwise, i (i = 1, 2, 3, 4, 5) expresses the 0.5ei2π(0.51) −
thedependent element of .

Additionally, for any CFβ−CAS
(
,
)
, if expresses the

β−independent element of , then −{ } is also CFβ−C of
fix set . Similarly, for any CFβ−CAS

(
,
)
, if expresses

the β−independent element of , and 1 ∈ − { }, then 1
expresses the β−independent element iff it is β−independent
element of − { }.
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TABLE 2. Representation of the values of the N
0.5E2π(0.51) (

i
)
, I = 1,2,3,4,5,6.

TABLE 3. Representation of the values of the above β− covering neighborhood systems.

Definition 12: For any CFβ−CAS
(
,
)
and

︷︸︸︷
B ⊆ ,

if −

︷︸︸︷
B is the set of β−independent element of , then︷︸︸︷

B expresses the β−basis of , and expressed by Bβ
( )

.

Definition 13: For any CFβ−CAS
(
,
)
, if each element

of is a β−dependent element i.e., Bβ
( )
= , then is

β−dependent; otherwise, is β−independent.
Example 4: For any CFβ−CAS

(
,

)
in Exam-

ple 2, then B0.5ei2π(0.51)
( )

= { 1, 2, 3, 4, 5}. Hence,

is 0.5ei2π(0.51)−independent. Furthermore, For any
CFβ−CAS

(
,

)
in Example 1, then B0.5ei2π(0.51)

( )
=

{ 1, 2, 3, 4, 5} = . Hence, is 0.5ei2π(0.51)−dependent.
Additionally, based on the following theories, we show that
there is no influence on the β−neighborhood system after
ignoring the β−independent element from the CFβ−C. For
any CFβ−CAS

(
,
)
with for any ∈ , then

( ) =
︷︸︸︷
N

β

Bβ

( )
( ) (32)

M̃d
β
( ) = M̃d

β

Bβ

( ) ( ) (33)

M̃D
β
( ) = M̃D

β

Bβ

( ) ( ) (34)

For any two CFβ−CAS 1 and 2 based on , then for

any ∈ ,
︷︸︸︷
N

β

1
( ) =

︷︸︸︷
N

β

2
( ) iff Bβ

(
1

)
= Bβ

(
2

)
.

Based on the above theory, we get the following three differ-
ent theories.

1. For any two β−independent CFβ−Cs 1 and 2 based on

, if for any ∈ ,
︷︸︸︷
N

β

1
( ) =

︷︸︸︷
N

β

2
( ) iff 1 = 2.

2. For any two CFβ−Cs 1 and 2 based on , if for any
∈ , Bβ

(
1

)
= Bβ

(
2

)
, then M̃d

β

1

( ) = M̃d
β

2

( ).

3. For any two CFβ−Cs 1 and 2 based on , if for
any ∈ , Bβ

(
1

)
= Bβ

(
2

)
, then M̃D

β

1

( ) =

M̃D
β

2

( ).

The reverse processes of Eq. (2) and Eq. (3) are not
held. For this, we illustrate Example 5, which is discussed
below.
Example 5: For anyCFβ−CAS

(
,
)
in Example 1, =

∪ { 7} and = ∪ { 8}, where

7 =
0.41ei2π(0.42)

1
+

0.81ei2π(0.82)

2
+

0.31ei2π(0.32)

3

+
0.41ei2π(0.42)

4
+

0.41i2π(0.42)

5
+

0.11ei2π(0.12)

6
,

8 =
0.11ei2π(0.12)

1
+

0.71ei2π(0.72)

2
+

0.21ei2π(0.22)

3

+
0.31i2π(0.32)

4
+

0.11i2π(0.12)

5
+

0.11ei2π(0.12)

6
,

From the above analysis, it is clear that the and
are the CFβ−Cs for fix set , (0 < β ≤ 0.73), then

Bβ
( )

= and Bβ
( )

= . Furthermore,︷︸︸︷
N

0.5ei2π(0.51)

( i) , M̃d
0.5ei2π(0.51)

( i),

M̃D
0.5ei2π(0.51)

( i) ,
︷︸︸︷
N

0.5ei2π(0.51)

( i) , M̃d
0.5ei2π(0.51)

( i), and

M̃D
0.5ei2π(0.51)

( i) , i = 1, 2, 3, 4, 5, 6. are discussed in the

form of Table 3.
We easily find that, M̃d

0.5ei2π(0.51)
( i) = M̃d

0.5ei2π(0.51)
( i)

and M̃D
0.5ei2π(0.51)

( i) = M̃D
0.5ei2π(0.51)

( i) for any

i = 1, 2, 3, 4, 5, 6.
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TABLE 4. Representation of the values of the M̃d0.5 ei2π(0.51) (
i
)
, i = 1,2,3,4,5,6.

C. INTERDEPENDENCY OF COMPLEX FUZZY β− MINIMAL
DESCRIPTION
For any two CFβ−Cs 1, 2 on fix set by using the value
of parameters β = βRPei2π(βIP) where βRP, βIP ∈ (0, 1].
If M̃d

β

1

( ) = M̃d
β

2
( ), for any ∈ , then 1 is not

necessarily equal to 2. These laws are also verified with the
help of Example 6, which is discussed below.
Example 6: For any CFβ−CAS

(
,
)
in Example 1, and

= ∪ { 6}, where

6 =
0.41ei2π(0.42)

1
+

0.31i2π(0.32)

2
+

0.31i2π(0.32)

3

+
0.41ei2π(0.42)

4
+

0.21ei2π(0.22)

5
+

0.11ei2π(0.12)

6
,

From the above analysis, it is clear that the is a CFβ−C
on fix set , (0 < β ≤ 0.73), then M̃d0.5e

i2π(0.51)
( i) , i =

1, 2, 3, 4, 5, 6, are discussed in the form of Table 4.
We easily find that, M̃d0.5e

i2π(0.51)
( i) = M̃d0.5e

i2π(0.51)
( i),

for any i = 1, 2, 3, 4, 5, 6, but 6= . Additionally,
we present some ideas of β−reduct of a CFβ−C.
Definition 14: For any CFβ−CAS

(
,
)
and ∈ , if one

of the following rules holds:

1. is the β−independent element of .
2. For ( ) ( ) ≥ β for each ∈ implies there exists

′
∈ − { } such that ′

⊆ and
(
′
)
( ) ≥ β,

then is a β−reduecable element of , otherwise, is
a β−irreducible element of

Example 7: Let = { 1, 2, 3, 4, 5} with =

{ 1, 2, 3, 4} are discussed below for examining
expresses CFβ−C of fix set , (0 < β ≤ 0.53).

1 =
0.61ei2π(0.62)

1
+

0.81ei2π(0.82)

2
+

0.41ei2π(0.42)

3

+
0.61ei2π(0.62)

4
+

0.31ei2π(0.32)

5
,

2 =
0.41ei2π(0.42)

1
+

0.81 i2π(0.82)

2
+

0.41ei2π(0.42)

3

+
0.61 i2π(0.62)

4
+

0.11ei2π(0.12)

5
,

3 =
0.51ei2π(0.52)

1
+

0.31ei2π(0.32)

2
+

0.51ei2π(0.52)

3

+
0.21ei2π(0.22)

4
+

0.71ei2π(0.72)

5
,

4 =
0.61ei2π(0.62)

1
+

0.61ei2π(0.62)

2
+

0.11ei2π(0.12)

3

+
0.31ei2π(0.32)

4
+

0.31ei2π(0.32)

5
,

where β = 0.51ei2π(0.52) where 0 < βRP, βIP ≤

0.53, then 1 ( i) ≥ 0.51ei2π(0.52), (i = 1, 2, 4), j ⊆

1, j = 2, 4, and 4 ( 1) ≥ 0.51ei2π(0.52), 2 ( 2) ≥

0.51ei2π(0.52) and 2 ( 4) ≥ 0.51ei2π(0.52). Then 1 is a
0.51ei2π(0.52)−reduecable element of . − { 1} is also
CFβ−C of fix set , (0 < β ≤ 0.53).
Proposition 4: For any CFβ−CAS

(
,
)
, if is a

β−reduecable element of , then − { } is also a CFβ−C
of fix set .
Proof: Consider = { 1, 2, 3, . . . ., m}, where , i ∈

F
( )

, (i = 1, 2, 3, . . . ,m), if is a β−reduecable element

of , then we discussed the following two cases:
Case 1: is β−independent element of .
Case 2: For ( ) ( ) ≥ β for each ∈ , then there exists

r ∈ { 1, 2, 3, . . . ., m} such that r ⊆ and ( r ) ( ) ≥ β.
For case 1, we choose for any CFβ−CAS

(
,
)
, if

expresses the β−independent element of , then − { } is
also CFβ−C of fix set .

For case 2, for ( ) ( ) ≥ β for each ∈ , then ( r ) ( ) ≥ β

i.e.,
∐m

j=1
(

j
)
( ) ≥ ( r ) ( ) ≥ β. Therefore, − { } is also

a CFβ−C of fix set .
Proposition 5: For any CFβ−CAS

(
,
)
, if is a

β−reduecable element of , then 1 ∈ − { }, then 1 is
a β−reduecable element of iff it’s β−reduecable element
of − { }.
Proof: We assume that 1 is a β−reduecable element

of , then to prove that it’s β−reducible element of −

{ }. Consider = { 1, 2, 3, . . . ., m}, where , i ∈

F
( )

, (i = 1, 2, 3, . . . ,m), if is a β−reduecable element

of , then we discussed the following two cases:
Case 1: is β−independent element of .
Case 2: For ( ) ( ) ≥ β for each ∈ , then there exists

r ∈ { 1, 2, 3, . . . ., m} such that r ⊆ and ( r ) ( ) ≥ β.
For case 1, we choose for any CFβ−CAS

(
,
)
, if

expresses the β−independent element of , and 1 ∈ −

{ }, then 1 expresses the β−independent element iff it’s
β−independent element of − { }.

For case 2, if 1 is β−reduceable element of , then
( 1)

(
′
)
< β for any ′ ∈ . If ( 1)

(
′
)
≥ β, then there exists

′
∈ such that ′ ⊆ 1 and

(
′
) (
′
)
≥ β. If ( 1)

(
′
)
< β
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for any ′
∈ , then obviously 1 is β−reduecable element

of − { }. For any ′
∈ , if

(
′
) (
′
)
≥ β and ′

=

, then there exists r ∈ { 1, 2, 3, . . . ., m} such that
r ⊆

′
⊆ 1 and ( r )

(
′
)
≥ β, then 1 is β−reduecable

element of − { }. If ′
6= , then it’s also obviously 1

is β−reduecable element of − { }. We assume that it’s
β−reducible element of − { }, then to prove that 1 is a
β−reduecable element of , which is straightforward, hence
the proof of the result is completed.
Definition 15: For any CFβ−CAS

(
,
)
and D̃ ⊆ , if

− D̃ is the set of all β−reducible element of , then D̃ is
called β−reduet of , and it is expressed by Rβ

( )
.

Example 8: For any CFβ−CAS
(
,
)
in Example 7, then

R0.51ei2π(0.52)
( )
= { 2, 3, 4}.

Definition 16: For any CFβ−CAS
(
,
)
, if every element

of is β−irreduecable element i.e., Rβ
( )
= , then is

called β−irreducible; otherwise β−reducible.
The following proposition state that, when we deleting the

β−reducible element from CFβ−C in CFβ−MND, so it has
no influence.
Proposition 6: For any CFβ−CAS

(
,
)

and for

any ∈ , then

M̃d
β
( ) = M̃d

β

Rβ

( ) ( ) (35)

Proof: Consider = { 1, 2, . . . , m} with , i ∈

F
( )

(i = 1, 2, . . . ,m) and is a β−reduecable

element . Then by using the Proposition 4 state that −{ }
is also a CFβ−C of fix set , then we discussed the following
two cases:

Case 1: is β−independent element of .
Case 2: For ( ) ( ) ≥ β for each ∈ , then there exists

r ∈ { 1, 2, 3, . . . ., m} such that r ⊆ and ( r ) ( ) ≥ β.
For each ∈ and by using the Eq. (33), M̃d

β
( ) =

M̃d
β

Rβ

( ) ( ) is holds obviously. Additionally, for each ∈

, we express the CFβ−MND of generates by CFβ−C as
M̃d

β
( ) express the CFβ−MND of generates by CFβ−C

−{ } as M̃d
β

−{ }
( ). If ( ) ( ) ≥ β byCase 2, there exists

r ∈ { 1, 2, 3, . . . ., m} such that r ⊆ and ( r ) ( ) ≥ β.
It’s clear that /∈ M̃d

β
( ), thus M̃d

β
( ) = M̃d

β

−{ }
( )

holds for each ∈ . Then we choose the following two steps:
Step 1: If − { } is β−irreducible, then Rβ

( )
=

− { } = Rβ
(
−

)
and M̃d

β
( ) = M̃d

β

−{ }
( ) =

M̃d
β

Rβ

( ) ( ) = M̃d
β

Rβ

(
−

) ( ) for each ∈ .

Step 2: If − { } is β−reduceable, then there exists
i1 , i2 , . . . , is ∈ − { } , (i1, i2, . . . , is ∈ {1, 2, . . . ,m})

such that i1 , i2 , . . . , is is β−reduceable element of −

{ }, then −
{

i1 , i2 , . . . , is
}
is β−irreducible. There-

fore, Rβ
(
−

)
= −

{
i1 , i2 , . . . , is

}
, then by using

Proposition 5,
{
, i1 , i2 , . . . , is

}
is β−reduceable element

of . Therefore, Rβ
( )

= −
{
, i1 , i2 , . . . , is

}
=

Rβ
(
−

)
, in other hand, we have M̃d

β
( ) =

M̃d
β

−{ }
( ) = M̃d

β

−
{
, i1

} ( ) = β

M̃d
−
{
, i1 , i2

} ( ) =
M̃d

β

−
{
, i1 , i2 ,..., is

} ( ) = M̃d
β

Rβ

( ) ( ) = M̃d
β

Rβ

(
−

)
( ) for each ∈ . Hence, M̃d

β
( ) = M̃d

β

Rβ

( ) ( ) holds
for each ∈ .

From the above analysis, we get the result, for any 1, 2
are two CFβ−Cs of fix set , then M̃dβ

1

( ) = M̃dβ

2

( ) iff

Rβ
(

1

)
= Rβ

(
2

)
. Additionally, for any 1, 2 are two

irreducible CFβ−Cs of fix set , then M̃dβ

1

( ) = M̃dβ

2

( )

iff 1 = 2.

D. INTERDEPENDENC OF COMPLEX FUZZY β− MAXIMAL
DESCRIPTION
For any two CFβ−Cs , on fix set by using the value
of parameters β = βRPei2π(βIP) where βRP, βIP ∈ (0, 1].
If M̃D

β

1

( ) = M̃D
β

2

( ), for any ∈ , then 1 is not

necessarily equal to 2. These laws are also verified with the
help of Example 6, which is discussed below.
Example 9: For any CFβ−CAS

(
,
)
in Example 1, and

= ∪ { 6}, where

6 =
0.41 i2π (0.42)

1
+

0.31ei2π(0.32)

2
+

0.31ei2π(0.32)

3

+
0.41ei2π(0.42)

4
+

0.21ei2π(0.22)

5
+

0.11ei2π(0.12)

6
,

From the above analysis, it is clear that the is a CFβ−C
on fix set , (0 < β ≤ 0.73), then M̃D0.5ei2π(0.51) ( i) , i =

1, 2, 3, 4, 5, 6, are discussed in the form of Table 5.
We easily find that, M̃D0.5ei2π(0.51) ( i) = M̃D0.5ei2π(0.51) ( i),

for any i = 1, 2, 3, 4, 5, 6, but 6= .
Definition 17: For any CFβ−CAS

(
,
)
and ∈ , if one

of the following rules holds:

3. is the β−independent element of .
4. For ( ) ( ) ≥ β for each ∈ implies there exists ′

∈

− { } such that ′ ⊆ , then is a β−dispensable
element of , otherwise, is a β−indispensable element
of
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TABLE 5. Representation of the values of the M̃D0.5ei2π(0.51) (
i
)
, I = 1,2,3,4,5,6 .

Example 10: Let = { 1, 2, 3, 4, 5} with =

{ 1, 2, 3, 4} are discussed below for examining
expresses CFβ−C of fix set , (0 < β ≤ 0.53).

1 =
0.61ei2π(0.62)

1
+

0.81ei2π(0.82)

2
+

0.41ei2π(0.42)

3

+
0.61ei2π(0.62)

4
+

0.31ei2π(0.32)

5
,

2 =
0.41ei2π(0.42)

1
+

0.81 i2π(0.82)

2
+

0.41ei2π(0.42)

3

+
0.61ei2π(0.62)

4
+

0.11ei2π(0.12)

5
,

3 =
0.51ei2π(0.52)

1
+

0.31ei2π(0.32)

2
+

0.51 i2π(0.52)

3

+
0.21ei2π(0.22)

4
+

0.71 i2π(0.72)

5
,

4 =
0.61ei2π(0.62)

1
+

0.61 i2π(0.62)

2
+

0.11 i2π(0.12)

3

+
0.31ei2π(0.32)

4
+

0.31ei2π(0.32)

5
,

where β = 0.51ei2π(0.52) where 0 < βRP, βIP ≤ 0.53, then
2 ( i) ≥ 0.51ei2π(0.52), (i = 2, 4), 2 ⊆ j, j = 1, 4,. Then

2 is a 0.51ei2π(0.52)−dispensable element of . − { 2} is
also CFβ−C of fix set , (0 < βRP, βIP ≤ 0.53).
Proposition 7: For any CFβ−CAS

(
,
)
, if is a

β−dispensable element of , then − { } is also a CFβ−C
of fix set .
Proof: Consider = { 1, 2, 3, . . . ., m}, where , i ∈

F
( )

, (i = 1, 2, 3, . . . ,m), if is a β−dispensable element

of , then we discussed the following two cases:
Case 1: is β−independent element of .
Case 2: For ( ) ( ) ≥ β for each ∈ , then there exists

r ∈ { 1, 2, 3, . . . ., m} such that r ⊆ .
For case 1, we choose for any CFβ−CAS

(
,
)
, if

expresses the β−independent element of , then − { } is
also CFβ−C of fix set .
For case 2, for ( ) ( ) ≥ β for each ∈ , then ( r ) ( ) ≥ β

i.e.,
∐m

j=1
(

j
)
( ) ≥ ( r ) ( ) ≥ β. Therefore, − { } is also

a CFβ−C of fix set .
Proposition 8: For any CFβ−CAS

(
,
)
, if is a

β−dispensable element of , then 1 ∈ − { }, then 1 is a
β−dispensable element of iff it’s β−dispensable element
of − { }.

Proof: We assume that 1 is a β−dispensable element of
, then to prove that it’s β−dispensable element of −

{ }. Consider = { 1, 2, 3, . . . ., m}, where , i ∈

F
( )

, (i = 1, 2, 3, . . . ,m), if is a β−dispensable element

of , then we discussed the following two cases:
Case 1: is β−independent element of .
Case 2: For ( ) ( ) ≥ β for each ∈ , then there exists

r ∈ { 1, 2, 3, . . . ., m} such that r ⊆ .
For case 1, we choose for any CFβ−CAS

(
,
)
, if

expresses the β−independent element of , and 1 ∈ −

{ }, then 1 expresses the β−independent element iff it’s
β−independent element of − { }.

For case 2, if 1 is β−dispensable element of , then
( 1)

(
′
)
< β for any ′ ∈ . If ( 1)

(
′
)
≥ β, then there exists

′
∈ such that ′ ⊆ 1 and

(
′
) (
′
)
≥ β. If ( 1)

(
′
)
< β

for any ′ ∈ , then obviously 1 is β−dispensable element
of − { }. For any ′

∈ , if
(
′
) (
′
)
≥ β and ′

= ,
then there exists r ∈ { 1, 2, 3, . . . ., m} such that r ⊆
′
⊆ 1 and ( r )

(
′
)
≥ β, then 1 is β−dispensable

element of − { }. If ′
6= , then it’s also obviously 1

is β−dispensable element of − { }. We assume that it’s
β−dispensable element of − { }, then to prove that 1 is a
β−dispensable element of , which is straightforward, hence
the proof of the result is completed.
Definition 18: For any CFβ−CAS

(
,
)
and D̃ ⊆ , if

− D̃ is the set of all β−dispensable element of , then D̃

is called the kernel of , and it is expressed by
β
( )

.

Example 11: For any CFβ−CAS
(
,
)
in Example 10,

then
0.51ei2π(0.52)

( )
= { 1, 3, 4}.

Definition 19: For any CFβ−CAS
(
,
)
, if every element

of is β−indispensable element i.e.
β
( )
= , then is

called β−indispensable; otherwise β−dispensable.
Example 12: For any CFβ−CAS

(
,
)
in Example 1,

then
0.5ei2π(0.51)

( )
= , i.e. is 0.5ei2π(0.51)−indispensable.

The following proposition state that, when we deleting the
β−dispensable element from CFβ−C in CFβ−MXD, so it
has no influence.
Proposition 9: For any CFβ−CAS

(
,
)
and for any

∈ , then

M̃D
β
( ) = M̃D

β
β
( ) ( ) (36)
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Proof: Consider = { 1, 2, . . . , m} with , i ∈

F
( )

(i = 1, 2, . . . ,m) and is a β−dispensable

element . Then by using the Proposition 7 state that −{ }
is also a CFβ−C of fix set , then we discussed the following
two cases:

Case 1: is β−independent element of .
Case 2: For ( ) ( ) ≥ β for each ∈ ,

then there exists r ∈ { 1, 2, 3, . . . ., m} such that
r ⊆ .
For each ∈ and by using the Eq. (33), M̃D

β
( ) =

M̃D
β
β
( ) ( ) is holds obviously. Additionally, for each ∈

, we express the CFβ−MXD of generates by CFβ−C as
M̃D

β
( ) express the CFβ−MXD of generates by CFβ−C

−{ } as M̃D
β

−{ }
( ). If ( ) ( ) ≥ β byCase 2, there exists

r ∈ { 1, 2, 3, . . . ., m} such that r ⊆ and ( r ) ( ) ≥ β.
It’s clear that /∈ M̃D

β
( ), thus M̃D

β
( ) = M̃D

β

−{ }
( )

holds for each ∈ . Then we choose the following two
steps:

Step 1: If − { } is β−indispensable, then
β
( )

=

− { } =
β
(
−

)
and M̃D

β
( ) = M̃D

β

−{ }
( ) =

M̃D
β
β
( ) ( ) = M̃D

β
β
(
−

) ( ) for each

∈ .
Step 2: If − { } is β−dispensable, then there exists

i1 , i2 , . . . , is ∈ − { } , (i1, i2, . . . , is ∈ {1, 2, . . . ,m})
such that i1 , i2 , . . . , is is β−dispensable element of
− { }, then −

{
i1 , i2 , . . . , is

}
is β−indispensable.

Therefore,
β
(
−

)
= −

{
i1 , i2 , . . . , is

}
,

then by using Proposition 8,
{
, i1 , i2 , . . . , is

}
is

β−dispensable element of . Therefore,
β
( )

= −{
, i1 , i2 , . . . , is

}
=

β
(
−

)
, in the other hand,

we have M̃D
β
( ) = M̃D

β

−{ }
( ) = M̃D

β

−
{
, i1

} ( ) =
M̃D

β

−
{
, i1 , i2

} ( ) = M̃D
β

−
{
, i1 , i2 ,..., is

} ( ) =

M̃D
β
β
( ) ( ) = M̃D

β
β
(
−

) ( ) for each ∈

. Hence, M̃D
β
( ) = M̃D

β
β
( ) ( ) holds for

each ∈ .
From the above analysis, we get the result, for any ,

are two CFβ−Cs of fix set , then M̃D
β
( ) = M̃D

β
( )

iff
β
( )

=
β
( )

. Additionally, for any , are

two indispensable CFβ−Cs of fix set , then M̃D
β
( ) =

M̃D
β
( ) iff = .

IV. COMPLEX FUZZY NEIGHBORHOOD OPERATORS B
ASED ON A COMPLEX FUZZY β COVERING
This study aims to present the idea of complex fuzzy neigh-
borhood operators in the environment of rough sets theory
based on the modifications such as β−neighborhood system,
CFβ−MND, CFβ−MXD. Additionally, and the complex
fuzzy neighborhood operators (CFNO) are discussed below.
Definition 19: A CFNO is elaborated by:︷︸︸︷

N : → F
( )

(37)

where ∈ such that
︷︸︸︷
N ( ) ∈ F

( )
.

Definition 20: For any CFβ−CAS
(
,
)
and for any

∈ with = { 1, 2, . . . , m}, then the CFβ−N ( ) is
elaborated by:

( ) = ∩
{

i ∈ : i ( ) ≥ β
}
= ∩ ( ) (38)

Definition 21: For any CFβ−CAS
(
,
)
and for any

∈ with = { 1, 2, . . . , m}, then the complex fuzzy
complementary β−neighborhood (CFCβ−N) M̃β ( ) is elab-
orated by:

M̃β ( )
(
′
)
=

(
′
)
( ) (39)

For all ′ ∈ . Furthermore, the relation between CFβ−MND
and CFβ−N is discussed below. For any CFβ−CAS

(
,
)

and for any ∈ , then ( ) = ∩M̃d
β
( ). The complex

fuzzy neighborhoods operators (CFNO) are discussed below.

A. COMPLEX FUZZY NEIGHBORHOODS OPERATOR
To explore the complex fuzzy modification for the operator˜̃
N

1
, where ˜̃N1

= ∩N ( ) = ∩Md ( ) for any ∈ . The

original idea is replacing byN ( )with ( ) andMd ( )

with M̃d
β
( ), where the F

( )
is contains the family of

complex fuzzy numbers. The first kind of CFNO
︷︸︸︷
FN

β

is
elaborated below.

Definition 22: For any CFβ−CAS
(
,
)
, then

︷︸︸︷
FN

β

:

→ F
( )

, →
︷︸︸︷
FN

β

( ) expresses the CFNO, for which

the CFN
︷︸︸︷
FN

β

( ) is elaborated by:︷︸︸︷
FN

β

( ) = ∩
{
∈ : ( ) ≥ β

}
= ∩ ( ) (40)

where the value of parameters β = βRPei2π(βIP) with
βRP, βIP ∈ (0, 1]. Moreover, based on the above analysis,
we get the following rules.

1. For the CFβ−C is a crisp and complex covering, then
the CFN of elaborated the Def. (22), coincides with
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the complex and crisp neighborhood of . If, for ∈ ,
( ) = 0 or 0 ei2π(0) and ( ) = 1 or 1 ei2π(1) i.e., /∈

or ∈ . Moreover, ∈ , ( ) ≥ β ⇔ ( ) = 1ei2π(1)

for any ∈ . Then︷︸︸︷
FN

β

( ) = ∩
{
∈ : ( ) ≥ β

}
= ∩

{
∈ : ( ) = 1ei2π(1)

}
= ∩

{
∈ : ∈

}
= N1 ( ) .

2. Consider = { 1, 2, . . . , m} is a CFβ−C of ,
then for any ∈ F

( )
, if β

=

{
∈ : ( ) ≥ β

}
and =

{
β

1 ,
β

2 , . . . ,
β
m

}
is a covering of . Then(

( )

)
β

= N ( ) for any ∈ . Hence,(︷︸︸︷
FN

β

( )

)
β

= N1 ( ) for any ∈ .

For any complex fuzzy covering with an implication J, then

N1 : → F
( )

, → N1 ( ) expresses the CFNO, for

which CFN N1 ( ) is elaborated by:

N1 ( ) : → RI [0, 1] , → inf
∈

J
(
( ) ,

(
′
))

(41)

with inf
∈

J
(
( ) ,

(
′
))
= inf

∈

(
J
(

RP ( ) , RP
(
′
))

e
i2π

(
J
(

IP
( )
, IP

(
′
))))

, where RI [0, 1] expresses the family

of complex numbers in a unit disc belonging to the complex
plane. If, β = 1ei2π(1) and J satisfies:

NP: J (1, a) ei2π(J(1,a)) = aei2π(a) for any a ∈ [0, 1], for
any ∈ , then︷︸︸︷

FN
1

( )
(
′
)
= inf
∈ ,

( )
=1ei2π (1)

(
′
)

= inf
∈ ,

( )
=1ei2π (1)

J
(
( ) ,

(
′
))

≥ inf
∈

J
(
( ) ,

(
′
))
= N1 ( )

(
′
)

Hence,N1 ( ) ⊆
︷︸︸︷
FN

1

( ) for any ∈ . For anyCFβ−CAS(
,
)
, then

︷︸︸︷
FN

β

( )
(
′
)
≥ β for each ∈ ; (42)

For any , ′,
′′

∈ , if
︷︸︸︷
FN

β

( )
(
′
)
≥ β and︷︸︸︷

FN
β (
′
) ( ′′)

≥ β, then
︷︸︸︷
FN

β

( )
(
′′
)
≥ β; (43)

If 0 ≤ β1 ≤ β2 ≤ β, then
︷︸︸︷
FN

β1

( )

⊆

︷︸︸︷
FN

β2

( ) for each ∈ ; (44)

For any , ′ ∈ ,
︷︸︸︷
FN

β

( )
(
′
)

≥ βiff
︷︸︸︷
FN

β (
′
)
⊆

︷︸︸︷
FN

β

( ) ,

similarly,
︷︸︸︷
FN

β (
′
)
( )

≥ βiff
︷︸︸︷
FN

β (
′
)
=

︷︸︸︷
FN

β

( ) . (45)

Further, for any , are two CFβ−CS of , then for each
∈ , we have

If Bβ
( )

= Bβ
( )

, then
︷︸︸︷
FN

β

( ) =
︷︸︸︷
FN

β

( ) ;

(46)

If Rβ
( )

= Rβ
( )

, then
︷︸︸︷
FN

β

( ) =
︷︸︸︷
FN

β

( ) ;

(47)

The reverse processes of Eq. (46) and Eq. (47) are not held.
For this, we illustrate Example 13, which is discussed below.
Example 13: Let = { 1, 2, 3, 4, 5} with =

{ 1, 2, 3, 4} and = { 1, 2, 3, 4, 5} are dis-
cussed below for examining expresses CFβ−C of fix set
, (0 < βRP, βIP ≤ 0.53).

1 =
0.51ei2π(0.52)

1
+

0.21ei2π(0.22)

2
+

0.71ei2π(0.72)

3

+
0.81ei2π(0.82)

4
+

0.31i2π(0.32)

5
,

2 =
0.71ei2π(0.72)

1
+

0.11ei2π(0.12)

2
+

0.31i2π(0.32)

3

+
0.41ei2π(0.42)

4
+

0.71ei2π(0.72)

5
,

3 =
0.61i2π(0.62)

1
+

0.71i2π(0.72)

2
+

0.61ei2π(0.62)

3

+
0.21ei2π(0.22)

4
+

0.51ei2π(0.52)

5
,

4 =
0.31i2π(0.32)

1
+

0.91i2π(0.92)

2
+

0.11ei2π(0.12)

3

+
0.71ei2π(0.72)

4
+

0.11i2π(0.12)

5
,

5 =
0.31ei2π(0.32)

1
+

0.81i2π(0.82)

2
+

0.11i2π(0.12)

3

+
0.71ei2π(0.72)

4
+

0.21ei2π(0.22)

5
.

The , are two CFβ−Cs of , (0 < βRP, βIP ≤ 0.53), for
β = 0.51ei2π(0.52), then︷︸︸︷

FN
0.51ei2π(0.52)

( 1)

=
0.51i2π(0.52)

1
+

0.11ei2π(0.12)

2
+

0.31i2π(0.32)

3
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+
0.21ei2π(0.22)

4
+

0.31i2π(0.32)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 2)

=
0.31ei2π(0.32)

1
+

0.71ei2π(0.72)

2
+

0.11ei2π(0.12)

3

+
0.21i2π(0.22)

4
+

0.11ei2π(0.12)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 3)

=
0.51ei2π(0.52)

1
+

0.21ei2π(0.22)

2
+

0.61 i2π(0.62)

3

+
0.21 i2π(0.22)

4
+

0.31ei2π(0.32)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 4)

=
0.31ei2π(0.32)

1
+

0.21ei2π(0.22)

2
+

0.11ei2π(0.12)

3

+
0.71ei2π(0.72)

4
+

0.11ei2π(0.12)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 5)

=
0.61ei2π(0.62)

1
+

0.11ei2π(0.12)

2
+

0.31ei2π(0.32)

3

+
0.21ei2π(0.22)

4
+

0.51ei2π(0.52)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 1)

=
0.51ei2π(0.52)

1
+

0.11ei2π(0.12)

2
+

0.31ei2π(0.32)

3

+
0.21ei2π(0.22)

4
+

0.31i2π(0.32)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 2)

=
0.31ei2π(0.32)

1
+

0.71i2π(0.72)

2
+

0.11i2π(0.12)

3

+
0.21i2π(0.22)

4
+

0.11ei2π(0.12)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 3)

=
0.51ei2π(0.52)

1
+

0.21ei2π(0.22)

2
+

0.61ei2π(0.62)

3

+
0.21ei2π(0.22)

4
+

0.31ei2π(0.32)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 4)

=
0.31ei2π(0.32)

1
+

0.21ei2π(0.22)

2
+

0.11ei2π(0.12)

3

+
0.71ei2π(0.72)

4
+

0.11i2π(0.12)

5
;

︷︸︸︷
FN

0.51ei2π(0.52)

( 5)

=
0.61ei2π(0.62)

1
+

0.11ei2π(0.12)

2
+

0.31ei2π(0.32)

3

+
0.21ei2π(0.22)

4
+

0.51ei2π(0.52)

5
;

Additionally, we have B0.51ei2π(0.52)
= { 1, 2, 3, 4} ,

B0.51ei2π(0.52)
= { 1, 2, 3, 4, 5} ,R

0.51ei2π(0.52)
( )

=

{ 1, 2, 3, 4} ,R
0.51ei2π(0.52)

( )
= { 1, 2, 3, 4, 5}.

By using the notion of Def. (22), the idea of complex fuzzy

complementary neighborhood operator
︷︸︸︷
FM

β

( ) is elabo-
rated by: ︷︸︸︷

FM
β

( )
(
′
)
=

︷︸︸︷
FN

β (
′
)
( ) (48)

By using the Eq. (48), we have, Let
︷︸︸︷
FM

β

( ) ( ′) =︷︸︸︷
FN

β (
′
)
( ) iff

︷︸︸︷
FN

β

is symmetric iff
︷︸︸︷
FM

β

is symmetric.

V. COMPLEX FUZZY β− COVERING DERIVED FROM
COMPLEX FUZZY NEIGHBORHOOD OPERATORS
The purpose of this study is to discover six types of coverings
derived from based on CFSs. Additionally, modifications

of derived coverings
︷︸︸︷

1 ,

︷︸︸︷
2 ,

︷︸︸︷
3 ,

︷︸︸︷
4 ,

︷︸︸︷
5 , and

︷︸︸︷
6

are explored. The relationships among these operators are
coverings are also discussed.
Definition 23: For any CFβ−CAS

(
,
)
, then︷︸︸︷

1
= ∪

{
M̃dβ ( ) : ∈

}
(49)︷︸︸︷

2
= ∪

{
M̃D

β
( ) : ∈

}
(50)︷︸︸︷

3
=

{
∩M̃dβ ( ) : ∈

}
=

{
∩

︷︸︸︷
N

β

( ) : ∈

}

=

{︷︸︸︷
FN

β

( ) : ∈

}
(51)

︷︸︸︷
4
=

{
∪M̃D

β
( ) : ∈

}
=

{
∪

︷︸︸︷
N

β

( ) : ∈

}

=

{︷︸︸︷
RN

β

( ) : ∈

}
(52)

︷︸︸︷
5
= −

{
∈ :

(
∃
′

⊆ −

{ }) (
= ∩

′
)}

(53)︷︸︸︷
6
= −

{
∈ :

(
∃
′

⊆ −

{ }) (
= ∪

′
)}

(54)

By using the above analysis, we can resolve the following
example.
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Example 14: By using the information of Example 1,
with as shown at the bottom of the page, are discussed
below for examining expresses CFβ−C of fix set
, (0 < βRP, βIP ≤ 0.53).

︷︸︸︷
FN

0.51ei2π(0.52)

( 1)

=
0.51ei2π(0.52)

1
+

0.11ei2π(0.12)

2
+

0.31ei2π(0.32)

3

+
0.51ei2π(0.52)

4
+

0.31ei2π(0.32)

5
+

0.61ei2π(0.62)

5
,

︷︸︸︷
FN

0.51ei2π(0.52)

( 2)

=
0.21ei2π(0.52)

1
+

0.61i2π(0.62)

2

+
0.21ei2π(0.22)

3
+

0.31ei2π(0.32)

4
+

0.21ei2π(0.22)

5

+
0.11 i2π(0.12)

5
,

︷︸︸︷
FN

0.51ei2π(0.52)

( 3)

=
0.51i2π(0.52)

1
+

0.11i2π(0.12)

2
+

0.71ei2π(0.72)

3

+
0.61ei2π(0.62)

4
+

0.41ei2π(0.42)

5
+

0.61ei2π(0.62)

5
,

︷︸︸︷
FN

0.51ei2π(0.52)

( 4)

=
0.41ei2π(0.42)

1
+

0.11ei2π(0.12)

2
+

0.31ei2π(0.32)

3

+
0.51ei2π(0.52)

4
+

0.31ei2π(0.32)

5
+

0.41ei2π(0.42)

5
,

︷︸︸︷
FN

0.51ei2π(0.52)

( 5)

=
0.41i2π(0.42)

1
+

0.41ei2π(0.42)

2
+

0.41ei2π(0.42)

3

+
0.81ei2π(0.82)

4
+

0.61ei2π(0.62)

5
+

0.41ei2π(0.42)

5
,

︷︸︸︷
FN

0.51ei2π(0.52)

( 6)

=
0.51ei2π(0.52)

1
+

0.11ei2π(0.12)

2
+

0.31i2π(0.32)

3

+
0.51ei2π(0.52)

4
+

0.31i2π(0.32)

5
+

0.61ei2π(0.62)

5
,

︷︸︸︷
RN

0.51ei2π(0.52)

( 1)

=
0.91ei2π(0.92)

1
+

0.41ei2π(0.42)

2
+

0.81ei2π(0.82)

3

+
0.91ei2π(0.92)

4
+

0.61ei2π(0.62)

5
+

0.71ei2π(0.72)

5
,

︷︸︸︷
RN

0.51ei2π(0.52)

( 2)

=
0.41ei2π(0.42)

1
+

0.71i2π(0.72)

2
+

0.41ei2π(0.42)

3

+
0.81ei2π(0.82)

4
+

0.71ei2π(0.72)

5
+

0.41i2π(0.42)

5
,

︷︸︸︷
RN

0.51ei2π(0.52)

( 3)

=
0.91ei2π(0.92)

1
+

0.41ei2π(0.14)

2
+

0.81i2π(0.82)

3

+
0.91ei2π(0.69)

4
+

0.61ei2π(0.46)

5
+

0.71ei2π(0.72)

5
,

︷︸︸︷
RN

0.51ei2π(0.52)

( 4)

=
0.91 i2π(0.92)

1
+

0.61ei2π(0.62)

2
+

0.81 i2π(0.82)

3

+
0.91ei2π(0.59)

4
+

0.71ei2π(0.72)

5
+

0.71ei2π(0.72)

5
,

︷︸︸︷
RN

0.51ei2π(0.52)

( 5)

=
0.91 i2π(0.92)

1
+

0.61 i2π(0.62)

2
+

0.71ei2π(0.87)

3

+
0.91ei2π(0.59)

4
+

0.71ei2π(0.72)

5
+

0.61ei2π(0.62)

5
,

= { 1, 2, 3, 4, 5} and = { 2, 3, 4, 5} ,︷︸︸︷
5 = { 1, 2, 3, 4, 5} ,

︷︸︸︷
6 = { 1, 2, 3, 4, 5} ,

︷︸︸︷
3 =


︷︸︸︷
FN

0.51ei2π(0.52)

( 1) ,
︷︸︸︷
FN

0.51ei2π(0.52)

( 2) ,
︷︸︸︷
FN

0.51ei2π(0.52)

( 3) ,︷︸︸︷
FN

0.51ei2π(0.52)

( 4) ,
︷︸︸︷
FN

0.51ei2π(0.52)

( 5) ,
︷︸︸︷
FN

0.51i2π(0.52)

( 6)


︷︸︸︷

4 =


︷︸︸︷
RN

0.51i2π(0.52)

( 1) ,
︷︸︸︷
RN

0.51ei2π(0.52)

( 2) ,
︷︸︸︷
RN

0.51ei2π(0.52)

( 3) ,︷︸︸︷
RN

0.51ei2π(0.52)

( 4) ,
︷︸︸︷
RN

0.51ei2π(0.52)

( 5) ,
︷︸︸︷
RN

0.51ei2π(0.52)

( 6)


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︷︸︸︷
RN

0.51ei2π(0.52)

( 6)

=
0.91 i2π(0.92)

1
+

0.41i2π(0.42)

2
+

0.81 i2π(0.82)

3

+
0.91 i2π(0.59)

4
+

0.61ei2π(0.62)

5
+

0.71ei2π(0.72)

5
.

Theorem: For any CFβ−CAS
(
,
)
, then

︷︸︸︷
j , j =

1, 2, 3, 4, 5, 6 are CFβ−Cs .

Proof: The proof of the
︷︸︸︷

j are stated below:

1. For any ∈ , then ( ) ( ) ≥ β for all ∈ M̃dβ ( )

implies that

(
∪

︷︸︸︷
1

)
( ) ≥

(
∪M̃dβ ( )

)
( ) ≥ β.

Hence,
︷︸︸︷

1 are CFβ−Cs .
2. For any ∈ , then ( ) ( ) ≥ β for all ∈ M̃D

β
( )

implies that

(
∪

︷︸︸︷
2

)
( ) ≥

(
∪M̃D

β
( )

)
( ) ≥ β.

Hence,
︷︸︸︷

2 are CFβ−Cs .

3. For any ∈ , then
︷︸︸︷
FN

β

( ) ( ) ≥ β implies that(
∪

︷︸︸︷
3

)
( ) ≥

(︷︸︸︷
FN

β

( ) ( )

)
≥ β. Hence,

︷︸︸︷
3 are

CFβ−Cs .

4. For any ∈ , then
︷︸︸︷
RN

β

( ) ( ) ≥ β implies that(
∪

︷︸︸︷
4

)
( ) ≥

(︷︸︸︷
RN

β

( ) ( )

)
≥ β. Hence,

︷︸︸︷
4 are

CFβ−Cs .
5. Let = { 1, 2, 3, . . . , m} where , i ∈ F

( )
,

then ⊆ − { } such that ∩ = , then((∐m
j=1

(
j
))
∪

)
( ) ≥

∐m
j=1

(
j
)
( ) ≥ β. Therefore,

− { } is also a CFβ−C of fix set . Hence,
︷︸︸︷

5 are
CFβ−Cs .

6. Omitted.

VI. CONCLUSION
A complex fuzzy set is the modified version of the fuzzy
set to cope with awkward and inconsistent information in
guanine life troubles. The complex fuzzy set contains the
grade of truth in a complex number that has real and unreal
parts belong to the unit interval. Based on the advantages of
the structure of the complex fuzzy set, in this manuscript,
we compute the theory of CFCs are the natural mixture of
the CFSs and coverings, which are the modified versions of
the coverings by replacing crisp sets with CFSs. The goals
of this paper are summarized in the following points:

1. We explore the CFNOs by introducing the notions such as
β-NS, CFβ-MID, and CFβ-MXD.

2. First, we explore the CFβ-CAS, and then we propose the
above notions and investigate their properties.

3. We construct the CFNOs based on the CFβ-Cs.
4. The CFβ-Cs were derived by using CFNOs, and their

properties are considered. These all notions are also
verified with suitable examples to show that the pre-
sented approaches are extensive, reliable, and proficient
techniques.

In future work, we will extend these ideas into bi-polar soft
sets [20], q-rung orthopair fuzzy sets [21]–[23], and complex
q-rung orthopair fuzzy sets [24]–[29] to improve the quality
of the research approaches.
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