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ABSTRACT The sampling of the near-field radiated by a planar source observed over a finite planar aperture
is addressed. To this end, we employ the warping method that amounts to properly change the observation
variables and finding the sampling points as those that allow to approximate the singular values of the
radiation operator up to the so-called number of degrees of freedom. In particular, thewarping transformations
allow to approximate the kernel function of the relevant operator as a band-limited function and hence the
sampling theorem is adopted to devise the discretization scheme. Here, we generalize the warping method
to the full vector case and introduce a spatially varying oversampling strategy that allows to deal with
measurement apertures which are larger than the source. It is shown that the sampling points need to be
non-uniformly arranged across the measurement aperture but their number is generally much lower than
classical half-wavelength sampling. A numerical analysis is included to support the theoretical arguments.
Finally, numerical experiment-based results concerning the radiation pattern estimation of a planar array
antenna are presented. To this end, experimental data collected under a uniform half-wavelength sampling
scheme are first interpolated over the required non-uniform grid and then processed to obtain the radiation
pattern.

INDEX TERMS Antenna measurements, near-field far-field (NFFF) transformation, sampling methods,
antenna radiation patterns, non-uniform sampling.

I. INTRODUCTION
Near-field techniques [1], [2] have become a standard tool in
antenna testing because of their high reliability. They basi-
cally consist in collecting near-field measurements and then,
in order to evaluate the radiation pattern, processing them by
some near-field to far-field transformations [2]–[6].

In this paper, we are concerned with planar measurement
systems. In this case, a probe usually scans the measurement
aperture with a sampling step of half the free-space wave-
length [7]. Such a spatial step complies with the plane-wave
spectrum bandwidth within the so-called visible domain.
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Also, the resulting uniform sampled data naturally match the
input required by standard FFT algorithms which are used
to compute the corresponding radiation pattern. However,
this strategy can lead to a large number of measurement
points, depending on the electric size (in terms of the wave-
length) of the measurement aperture, which in turn depends
on the radiating system size. Of course, this badly affects
the overall time required to perform the antenna testing,
especially when on-the-fly acquisition cannot be accepted,
due to the complexity of the radiating system. For instance,
for an advanced multi-beam radar, the probe has to stop at
each measurement position to test a great deal of sum and
difference beams which point at different directions in a large
angular sector, within the whole operation frequency band.
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Therefore, the question of reducing the number of spatial
measurements naturally arises and has theoretical and practi-
cal interest [8]–[10].

The mathematical rationale which entitles to look for a
data reduction, with respect to the half-wavelength sampling
strategy, is the compactness of the radiation operator [11].
Roughly speaking, compactness entails that the range of the
radiation operator, that is the set of radiated fields, can be
approximated by a finite dimensional space whose dimension
depends, in general, on the required degree of accuracy [12].
In particular, since the probe and the antenna under test
are usually located a few wavelengths apart to reduce cou-
pling, the singularity of the Green function, which is the
kernel of the radiation operator, is avoided. Therefore, such
a kernel behaves nearly as an entire function of exponential
type [13]. This leads the singular values of the radiation
operator to nearly exhibit a step-like behaviour, i.e., they
abruptly decay, according to an exponential law, beyond a
certain critical index. The latter is the so-called number of
degrees of freedom (NDF) of the radiated field and identifies
the dimension of the field space. TheNDF, of course, depends
on the geometrical configuration parameters. However, for
compactly supported sources, the NDF is always finite, even
for unbounded observation domains [14], and, what is more,
it is lower (sometimes much lower) than the number of
measurement points required by the half-wavelength sam-
pling. More in detail, by only assuming that the source has
bounded energy (i.e., the source current is a square integrable
function), then the first NDF singular functions provide an
extremal set, i.e., the one of dimension equal to the NDF
which yields the lowest representation error [15]. Accord-
ingly, finding the sampling strategy can be cast as the deter-
mination of the nodes of some interpolation scheme which
best approximates such a space.

From a general perspective, devising the sampling scheme
can be addressed by a sensor selection procedure [16]. This
way, the problem is phrased as the search for a finite number
of measurement positions, among candidates available over a
dense grid, by optimizing somemetrics related to the singular
values of the radiation operator [17]–[21]. Another approach
takes into account the mathematical features of the Green
function that suggests the field can be approximated by a
band-limited function, once a suitable parametrization for the
observation variables is employed and a proper demodulat-
ing exponential term is singled-out [22]. As a consequence,
the field can be approximated by a sampling expansion and
the measurement points are set accordingly.

Recently, we have introduced an approach that is somehow
in between the two mentioned ones. Basically, we cast the
determination of the sampling points as the ones that allow to
approximate the kernel function of the operator consisting of
the composition of the radiation operator and its adjoint [23].
In particular, thanks to suitable variable transformations, that
warp the spatial observation variables, such a kernel function
is approximated as a band-limited function and then the
Shannon sampling theorem is used for the discretization. This

method, unlike sensor selection procedures, does not require
to run iterative optimization algorithms. Also, it generalizes
the point of view of band-limited approximation approaches,
since it does not require splitting the 2D problem into two 1D
problems, along the so-called meridian and azimuth curves,
since the outset. Indeed, it was shown that the sampling
can be factorized (i.e., independently achieved along each
dimension) only when the size of the measurement aperture
is at most equal to the one of the source [23].

Unfortunately, in order to control the truncation error while
estimating the radiation pattern, measurement apertures are
often larger than the source. In these cases, the factorized
approach tends to under-sample the aperture regions that
are beyond the size of the source. To cope with this issue,
suitable warping transformations can be determined, which
is a feasible but actually complex task. Therefore, one can
still consider using the factorized approach by introducing an
oversampling factor that allows for a finer grid of points. This,
however, decreases the amount of data that can be saved (as
compared to the half-wavelength sampling) and leads to over-
sampling part of the measurement aperture that actually does
not need that.

The first contribution of this paper is the generalization of
the warping procedure, that in [23] has been derived only for
magnetic source currents, to any type of currents. In partic-
ular, in the case of electric currents, there are some further
technical difficulties to be tackled.

Secondly, we aim at introducing a simple method to find a
balance between the more complex warping transformations
and the need for oversampling. In particular, we propose a
simple procedure in which the oversampling factor is set
according to a spatially varying law. The very basic idea is
to increase the sample density only where it is needed by the
factorized approach.

Finally, the warping approach is validated by computing
the radiation pattern (both the sum and the difference ones)
of a planar array antenna of a tracking radar. It is shown that
the warping approach requires much fewer sampling points
than the ones required by the half-wavelength sampling (our
benchmark). In this regard, we point out that the experimental
data collected under a uniform λ/2 scheme are first interpo-
lated over the required non-uniform grid and then processed.

The rest of the paper is organized as follows. Section II is
devoted to giving themathematical description of the problem
and of thewarpingmethod. In Section III the spatially varying
oversampling strategy is detailed, whereas Section IV reports
the sampling scheme validation. Finally, Conclusions end the
paper.

II. PROBLEM FORMULATION AND THE
WARPING APPROACH
In this section, we introduce the mathematical formulation
and the related notation to be used throughout the paper. Also,
the field sampling scheme based on the warping transforma-
tions, presented in [23], is briefly detailed in order to establish
the starting point from which to proceed ahead.
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FIGURE 1. Geometry of the problem.

A. MATHEMATICAL FORMULATION
Consider a planar current J (electric or magnetic) spatially
supported over SD = [−Xs,Xs] × [−Ys,Ys] (i.e., the source
domain) located at z = 0. The source domain, being finite and
planar, naturally fits the case that the transmitting antenna is
a planar array. The radiated field is measured over a planar
observation domain, OD = [−X0,X0] × [−Y0,Y0], located
in front of the source at z = zo (see Fig. 1).We assume towork
at single frequency, ω, with the time dependence understood
as ejωt .
The radiated field is linked to the radiating source through

the following radiation operator,

G : J ∈ L2(SD3)

→ E(ro) =
∫
SD
G(ro, r) · J(r)dr ∈ L2(OD2)) (1)

where ro ∈ OD, G(ro, r) is the free-space dyadic Green
function (electric or magnetic depending on the type of the
source under concern) and · denotes the inner product. It is
noted that all the vector functions are assumed to belong to
square integrable functional sets. In particular, E ∈ L2(OD2)
means that only the two tangential field components are
considered. Also, we remark that in (1) the probe response
has not been considered. Probe antennas usually have a wide
plane-wave spectrum, hence their effects can be considered
negligible. Moreover, as argued in literature [24], the mea-
surement operator can introduce a further smoothing on the
field data.

B. WARPING METHOD
In order to devise the sampling scheme, in [23] we considered
finding a discrete approximation of the following eigenvalue
problem

(GG†un)(ro) = σ 2
n un(ro) (2)

with G† being the adjoint of G and σ 2
n and un the rele-

vant n-th eigenvalue (i.e., the squared singular value) and

eigenfunction. In particular, the kernel function of the opera-
tor in (2) is given by

K (ro, r′o) =
∫
SD
G(ro, r) · GH (r′o, r)dr (3)

where H means conjugation and transposition and K (ro, r′o)
is a 2× 2 matrix of functions, since only the field tangential
components are assumed to be collected. Once the exponen-
tial term of the Green function is singled-out, its n,m entry
can be written as

Kn,m(ro, r′o) =
∫
SD
Hn,m(ro, r′o, r)e

j[8(ro,r)−8(r′o,r)]dr (4)

where Hn,m(ro, r′o, r) are the amplitude terms whereas
8(ro, r) = k|ro − r| and k is the free-space wavenumber.
The main idea of the warping method is to recast the phase
term as

8(ro, r)−8(r′o, r) =
∫ ν1

ν0

∇p8(p(ν), r, )
dp(ν)
dν

dν (5)

where ∇p denotes the gradient with respect to p and p(ν) is a
curve whose starting and ending points coincide with r′o and
ro, respectively. The curve p(ν) can be conveniently chosen
to let the phase term resemble a Fourier kernel. For example,
in [23], we considered a polygonal line with nodes in r′o =
(x ′o, y

′
o), r̃o = (xo, y′o) and ro = (xo, yo). Accordingly,

8(ro, r)−8(r′o, r) = w(ro, r′o, r) · (ro − r′o) (6)

with w = (wx ,wy) given by

wx(xo, r′o, r) =
∫ 1

0

∂8(px , y′o, r, )
∂px

∣∣∣∣
px=x ′o+ν(xo−x ′o)

dν (7)

wy(ro, y′o, r) =
∫ 1

0

∂8(xo, py, r)
∂py

∣∣∣∣
py=y′o+ν(yo−y′o)

dν (8)

Since the transformation w : r → w(ro, r′o, r) is injective
and the corresponding Jacobian matrix full rank ∀ro, r′o, (4)
can be rewritten as

Kn,m(ro, r′o) =
∫
�(ro,r′o)

H̃n,m(ro, r′o,w)e
jw·(ro−r′o)dw (9)

where

�(ro, r′o) = {(wx(xo, r
′
o, r),wy(ro, y

′
o, r)) : r ∈ SD} (10)

is the corresponding integration domain under the w variable
and H̃n,m(ro, r′o,w) includes the Jacobian determinant asso-
ciated to the adopted transformation.

Eq. (9) highlights the kernel functions somehow as spa-
tially varying band-limited functions with band given by
�(ro, r′o). In general, �(ro, r′o) does not have a canon-
ical shape. However, one can simplify a little bit the
matter by considering the smallest rectangular domain
that includes it. Denote as �R(ro, r′o) = wm(ro, r′o) +
[−1wx (ro, r

′
o),1wx (ro, r

′
o)] × [−1wy (ro, r

′
o), r

′
o),1wy (ro,

r′o)] such a rectangular domain, with wm(ro, r′o) being its

VOLUME 9, 2021 62257



M. A. Maisto et al.: Efficient Planar Near-Field Measurements for Radiation Pattern Evaluation by Warping Strategy

centre of mass. Accordingly, w = wm + w̄ and (9) can be
rewritten as

Kn,m(ro, r′o) ' ejwm·(ro−r
′
o)

×

∫ 1wx

−1wx

∫ 1wy

−1wy

H̃n,m(ro, r′o,w)e
jw̄·(ro−r′o)dw̄ (11)

where the dependence on (ro, r′o) of wm, 1wx and 1wy has
been understood for the sake of notation simplicity.

The spatially varying nature of the bandwidth can be
removed if the observation variables are properly warped.
As shown in [23], this is quite simple when OD ⊆ SD, i.e., if
the measurement aperture’s size does not exceed the one of
the source. In particular, in this case it has been shown that
1wx (xo, x

′
o) and 1wy (yo, y

′
o), that is the band edges, depend

separately on the two observation Cartesian coordinates. This
has suggested adopting the following transformations

ξ : ro→ ξ = (ξx , ξy) (12)

with

ξx(xo) =
k
2
[
√
(xo + Xs)2 + z2o −

√
(xo − Xs)2 + z2o]

ξy(yo) =
k
2
[
√
(yo + Ys)2 + z2o −

√
(yo − Ys)2 + z2o]

and

γ : (xo, yo)→ γ = (γx , γy) (13)

with

γx(xo) =
k
2
[
√
(xo + Xs)2 + z2o +

√
(xo − Xs)2 + z2o]

γy(yo) =
k
2
[
√
(yo + Ys)2 + z2o +

√
(yo − Ys)2 + z2o]

that allows to rearrange eq. (11) as

Kn,m(ro, r′o) ' ej[(γ−γ
′)·(x̂+ŷ)]

×

∫ 1

−1

∫ 1

−1
Ĥn,m(ξ , ξ ′, ŵ)ejŵ·(ξ−ξ

′

)dŵ (14)

where x̂ and ŷ are Cartesian direction vectors, γ = γ (ro),
γ ′ = γ (r′o), ξ = ξ (ro), ξ

′
= ξ (r′o), ŵ = w̄ · (1/1wx , 1/1wy )

and Ĥn,m(ξ , ξ ′, ŵ) now includes the scaling factor of the
transformation from w̄ to ŵ.
The case of magnetic currents was addressed in [23].

In such a case, the amplitude term Ĥn,m(ξ , ξ ′, ŵ) is very
weakly dependent on ξ and ξ ′. Therefore, the kernel (14)
is practically a band-limited function. As a consequence,
the sampling approach can be used to obtain a finite dimen-
sional approximation of GG† [25]. In particular, adapting
the results reported in [25] to the case at hand, entails that
the eigenfunctions, and hence the field components, can be
expanded according to a sampling series (see [23] for the
mathematical details). Thus, the n-th field component (i.e.,
along x̂ or ŷ) can be expressed as

En(ξx , ξy) = ejγx (ξx )ejγy(ξy)
∑
m,l

En(ξxm, ξyl)

× e−jγx (ξxm)e−jγy(ξyl )sinc(ξx−ξxm)sinc(ξy − ξyl)
(15)

where the sampling points are given by

ξxm(xom) = mπ

ξyl(yol) = lπ (16)

In (16), (xom, yol) are the sampling points in the usual
coordinates, and their indices run as long as they belong to
the measurement aperture. Therefore, as we have pointed out
in the introduction, (15) is actually a truncated series which
is asked to approximate the field well as long as it belongs to
the set spanned by the first NDF singular functions.

In the case of electric currents, Ĥn,m(ξ , ξ ′, ŵ) cannot
be considered nearly constant with ξ and ξ ′. Nonetheless,
the previous field expansion can still be considered to hold.
This is because the amplitude term is usually a slowly vary-
ing function, so that the exponential factor actually plays
the major role. This statement can actually be cast under
more rigorous roots, as done in [26] for a scalar problem,
by resorting to the pseudosampling series theory introduced
by Horiuchi [27]. Indeed, according to [27], the kernel func-
tion in (14) admits a pseudosampling series expansion. This
is not exactly a sampling expansion since the coefficients are
not the function’s samples but rather functions that depend
on observation variable ξ . However, since the latter ones are
slowly variant functions, they can be approximated by their
value around the function’s sample and hence the classical
sampling series structure is restored. These arguments have
been thoroughly detailed in [26] and hence are not repeated
here.

III. SPATIALLY VARYING OVERSAMPLING
According to previous arguments, the sampling points can be
found by solving eqs. (16) for xom and yol . Therefore, while
the sampling is uniform along the warped variables ξx and ξy,
it is actually non-uniform in the (xo, yo) domain. In particular,
the sampling along xo and yo is factorized, that is it can be
independently performed. As remarked, this is a consequence
of the assumption OD ⊆ SD. However, the measurement
aperture is often larger than the source in order to control the
truncation error while computing the radiation pattern. Then,
while previous developments can be still adopted, the warp-
ing transformations become more complex to be derived and
the sampling scheme results no longer factorized.

To avoid this technical difficulty, one can use the same
sampling as in (16) but, as noted in [23], the field in the
spatial regions of OD which exceed the size of SD can be
under-sampled. An obvious way to deal with this issue is to
introduce a certain degree of oversampling. Oversampling,
indeed, is generally beneficial since it allows to mitigate the
truncation error due to the finiteness of the measurement
aperture, and after all, it is in general required since the near-
field is not exactly a band-limited function.

Accordingly, say [−1ξx ,1ξx] × [−1ξy,1ξy] the obser-
vation domain in the warped domain, which corresponds to
OD, and αx and αy the uniform oversampling factors along
x and y, respectively, then the number of samples becomes
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FIGURE 2. Behaviour of ξ̃x as a function of xo for different values of
uniform oversampling factor αx ∈ {1,1.2,1.4}. The geometrical
parameters are Xs = 8λ, Ys = 4λ, X0 = 30λ, Y0 = 15λ and zo = 7λ.

N = NxNy, with Nx = [2αx1ξx/π ], Ny = [2αy1ξy/π ] and
[·] being the operator that takes the integer part.

The point is that a uniform oversampling strategy is not the
best way to tackle the problem since it leads to an increased
number of samples even for measurement aperture regions
that are already properly sampled. An intuitive and more
suited strategy is to devise the warping transformations in
order to obtain a finer sampling grid only for the points
(xo, yo) outside SD. This can be achieved by a non-uniform
oversampling factor.

The previous arguments can be put into an algorithmic
form by introducing new warping transformations as follows,

ξ̃x = αx(xo)ξx
ξ̃y = αy(yo)ξy (17)

from which the spatial sampling points can be found by
solving

ξ̃xm(xom) = mπ

ξ̃yl(yol) = lπ (18)

and hence (15) rewrites as

En(ξ̃x , ξ̃y) = ejγx (ξ̃x )ejγy (̃ξ y)
∑
m,l

En(ξ̃xm, ξ̃yl)

×e−jγx (ξ̃xm)e−jγy(ξ̃yl )sinc(ξ̃x − ξ̃xm)sinc(ξ̃y − ξ̃yl)

(19)

If αx and αy are constant with respect to xo and yo, clearly
(19) refers to a uniform oversampling. Fig. 2 depicts ξ̃x (sim-
ilar behaviour of course occurs for ξ̃y) for different degrees
of uniform oversampling. As can be seen, the behaviour of
the warping transformation is non-linear, which entails a non-
uniform sampling in xo. Moreover, the effect of the oversam-
pling factor is to increase its slope and hence to reduce the
sampling step, as required. However, even for low values of
xo (where the behaviour is nearly linear) there is a reduction
of the sampling step, roughly of 1/αx . Since in the latter

region oversampling is not needed, a better way to set αx is to
allow it to be non-constant, i.e., αx = αx(xo), and assuming
larger value for high xo. While doing that, however, one must
make sure that the resulting ξ̃x = αx(xo)ξx and αy = αy(yo)
are monotonic functions, which is necessary to uniquely pass
from xo and yo to the warped variables. A possible simple
choice for the oversampling factor, which complies with all
the previous requirements, is for example

αx(xo) = 1− (1− ν)sinp(
π

2X0
xo) (20)

which is a function ranging (within the measurement aper-
ture) from 1 (xo = 0) to ν (xo = X0) with the sin term and the
parameter p controlling the transition. The behaviour of (20)
along with the corresponding warping transformations are
shown in Fig. 3. As can be seen, αx(xo) actually complies with
the expected behaviour. In particular, in the next examples we
will consider p = 4.
Finally, it is noted that for a given ν, since the intervals

in ξ̃x (resp. ξ̃y), as well as the sampling steps in the warped
domains, are the same for both the uniform and the non-
uniform oversampling strategies, the number of the required
samples coincides: what changes is their deployment across
the measurement aperture.

IV. SAMPLING SCHEME VALIDATION
In this section we apply the proposed data sampling scheme
in order to verify its effectiveness. First, we run numerical
simulations in order to appreciate if the proposed sampling
scheme (both with uniform and non-uniform oversampling)
succeeds in approximating the eigenvalues of GG†, for which
it was actually conceived. Then, we address the radiation
pattern estimation using measured data.

A. EIGENVALUE COMPUTATION
In order to compute the eigenvalues of GG† we need to
numerically solve eq. (2). To this end, the singular functions
are expanded as in (19) so that the equivalent matrix ver-
sion of GG† is obtained. Say Gνp the corresponding matrix,
with p specified as above (in particular, p = 0 means uni-
form oversampling) and ν denotes the degree of oversam-
pling. In general, according to the mathematical framework
described above, Gνp ∈ C2N×2N , with N = NxNy. For the
sake of simplicity of computation, here we consider the case
of a planar magnetic current having only x and y components.
In such a case, the vector problem splits into two identical
scalar problems and the corresponding discrete version of the
pertinent operators is a matrix ∈ CN×N [23].
The estimation of the eigenvalues ofGG† is shown in Fig. 4.

In particular, panel (a) refers to the case OD = SD. As antic-
ipated, in this case the sampling scheme in (16) (i.e., with
ν = 1 and hence without oversampling) already allows
to approximate the eigenvalue behaviour very well, though
it requires Nν=1 = 1764 measurement points instead of
Nλ/2 = 3136 of the half-wavelength sampling. In panel
(b) the measurement aperture is larger than SD and requires
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FIGURE 3. Illustrating the spatially varying oversampling due to (20). Panel a) shows the
behaviour of αx in terms of xo for different values of p and ν = 1.4, whereas panel b) reports
the behaviour of ξ̃x . The geometrical parameters are the same as Fig. 2.

FIGURE 4. Eigenvalue estimation of GG† for Xs = Ys = 13.78λ and zo = 8.2λ. Panel a) refers to the case OD = SD
whereas panel b) to the case X0 = Y0 = 25.1λ.

Nλ/2 = 10404 points. As can be seen, the uniform oversam-
pling with ν = 1 and ν = 1.2 requires much fewer samples
than Nλ/2 (i.e., Nν=1 = 2809 and Nν=1.2 = 3969) but fail
to approximate well the eigenvalues until the oversampling
factor reaches ν = 1.7, for which Nν=1.7 = 7981. There-
fore, in these cases the data saving allowed by the uniform
oversampling strategy is strongly reduced. Instead, the same
level of accuracy in predicting the eigenvalues as the uniform
oversampling for ν = 1.7 is already reached by the proposed
non-uniform oversampling strategy for ν = 1.2 and by
setting p = 4. Since, the number of sampling points depends
only on ν, the non-uniform oversampling requires 3969 mea-
surement points instead of 7981 required by the warping

uniform sampling. Moreover, such a number is much lower
than Nλ/2; indeed, more than 60% of measurement points are
saved.

B. RADIATION PATTERN EVALUATION
In this section, we check the proposed sampling strategy for
radiation pattern evaluation.

To this end, a planar array enclosed within a square domain
SD = [−Xs,Xs] × [Ys,Ys] is considered, with Xs =
Ys = 13.78λ, whereas the measurement aperture is OD =
[−XO,XO]× [YO,YO] with XO = YO = 25.1λ. Note that this
is exactly the same case addressed in the previous numerical
example concerning the eigenvalue computation.
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FIGURE 5. Amplitude of the sum radiation pattern for the broad-side direction. In panel a), the radiation pattern is
obtained by employing the near-field data according to the proposed non-uniform sampling scheme
(ν = 1.2,p = 4) and then interpolated over a λ/2 grid. In panel b), the radiation pattern is obtained by directly
employing the near-field data collected over a uniform λ/2 grid. Panels c) and d) show the cut-views passing
through the main-beam maximum along kx and ky , respectively, and the related ERR in dB. The representation
errors are REAdB = −31dB and REPdB = −33dB.

FIGURE 6. Amplitude of the vertical difference radiation pattern for the broad-side direction. In panel a),
the radiation pattern is obtained by employing the near-field data according to the proposed non-uniform
sampling scheme (ν = 1.2,p = 4) and then interpolated over a λ/2 grid. In panel b), the radiation pattern is
obtained by directly employing the near-field data collected over a uniform λ/2 grid. Panels c) and d) show the
cut-views passing through the main-beam maximum along kx and ky , respectively, and the related ERR in dB. The
representation errors are REAdB = −29dB and REPdB = −31dB.

Available near-field data refer to a multi-beam track-
ing radar system able to radiate both sum, difference-over

azimuth and difference-over elevation patterns. The main y
linear component of the near-field has been provided at a
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FIGURE 7. Amplitude of the horizontal difference radiation pattern for the broad-side direction. In panel a),
the radiation pattern is obtained by employing the near-field data according to the proposed non-uniform
sampling scheme (ν = 1.2,p = 4) and then interpolated over a λ/2 grid. In panel b), the radiation pattern is
obtained by directly employing the near-field data collected over a uniform λ/2 grid. Panels c) and d) show
the cut-views passing through the main-beam maximum along kx and ky , respectively, and the related ERR
in dB. The representation errors are REAdB = −29dB and REPdB = −31dB.

FIGURE 8. Amplitude of the sum radiation pattern for the steering direction (φs, θs) = (−58.3◦,42.2◦).
In panel a), the radiation pattern is obtained by employing the near-field data according to the
proposed non-uniform sampling scheme (ν = 1.2,p = 4) and then interpolated over a λ/2 grid.
In panel b), the radiation pattern is obtained by directly employing the near-field data collected over a
uniform λ/2 grid. Panels c) and d) show the cut-views passing through the main-beam maximum along
kx and ky , respectively, and the related ERR in dB. The representation errors are REAdB = −23dB and
REPdB = −25dB.

single frequency and taken at the usual λ/2 step. Therefore,
measurements taken at the required non-uniform step were
not actually available. To mimic the non-uniform sampling,
data collected under the mentioned uniform sampling are

first interpolated and then re-sampled over the required non-
uniform grid. Of course, this last step is not required if the
measurement set-up is since the outset set to comply with
the non-uniform sampling. Moreover, this further step is not
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FIGURE 9. Amplitude of the vertical difference radiation pattern for the steering direction
(φs, θs) = (−58.3◦,42.2◦). In panel a), the radiation pattern is obtained by employing the near-field
data according to the proposed non-uniform sampling scheme (ν = 1.2,p = 4) and then interpolated
over a λ/2 grid. In panel b), the radiation pattern is obtained by directly employing the near-field data
collected over a uniform λ/2 grid. Panels c) and d) show the cut-views passing through the main-beam
maximum along kx and ky , respectively, and the related ERR in dB. The representation errors are
REAdB = −20dB and REPdB = −22dB.

an advantage for the non-uniform sampling since further
interpolation error could be added.

The radiation pattern has been then obtained by Fourier
transforming the measured field component. More in detail,
the radiation patterns are shown as functions of the spectral
variables kx = k sin θ cosφ and ky = k sin θ sinφ, with θ
and φ being the usual polar angles, and shown within the
so-called visible domain, that is for k2x + k2y ≤ k2. Also,
according to the arguments showed in the previous sections,
here we only compare the radiation pattern obtained by the
λ/2 sampling and the ones returned by the warping method
with non-uniform oversampling of parameters ν = 1.2 and
p = 4.. Hence, the corresponding data reduction is the same
as highlighted above.

It must be noted that, while the half-wavelength sampling
already returns data suited for FFT, the non-uniform sam-
pling requires the data to be first interpolated (according
to (19)) over a uniform λ/2 grid. We denote as Eλ/2 the
near-field data directly collected over the uniform λ/2 grid
and as Epν the field collected according to the non-uniform
sampling scheme (actually, re-sampled on the non-uniform
grid), of parameter ν and p, and then interpolated over a λ/2
uniform grid by (19).

In order to compare the two different sampling strategies,
we consider different error metrics. The first one measures
the representation error over the aperture and is defined as

REAdB(X0,Y0, ν, p) = 20 log10
||Epν − Eλ/2||
||Eλ/2||

, (21)

where ‖ · ‖ is the Frobenius norm. The second one, is the
analogous of (22) referred to the radiation pattern, that is

REPdB(X0,Y0, ν, p) = 20 log10
||Fpν − Fλ/2||
||Fλ/2||

, (22)

where Fpν and Fλ/2 denote the radiation patterns obtained by
the two sampling schemes under comparison. Finally, as a
further way to assess the difference between the two sam-
pling schemes we display the punctual error ERR(kx , ky) =
|Fpν−Fλ/2|
|Fmaxλ/2 |

, withFmaxλ/2 being themaximumofFλ/2 in the visible
domain. This last metrics is suited for the case at hand since
the radiation patterns consists basically of a single beam.

We run the comparison for many pointing directions.
Herein, for the sake of brevity, we keep showing only a few
cases that, however, refer to both the sum and difference
beams. Anyway, the results corresponding to other pointing
directions show similar quality as the one here reported.

Figs. 5 to 7 show the comparison for the different types of
beam under the broad-side direction. As expected, the radia-
tion patterns exhibit a unique focused beam with a very low
relative side-lobe level. Moreover, in spite the proposed non-
uniform sampling requires less than the 60% samples com-
pared to the standard uniform approach, both the representa-
tion error are very low and around −30 dB for all the cases.
Also, the radiation patterns show an excellent agreement with
the benchmark as can be appreciated by the curves concerning
ERR which show the behaviour, along the cut-views, of the

VOLUME 9, 2021 62263



M. A. Maisto et al.: Efficient Planar Near-Field Measurements for Radiation Pattern Evaluation by Warping Strategy

FIGURE 10. Amplitude of the horizontal difference radiation pattern for the steering direction
(φs, θs) = (−58.3◦,42.2◦). In panel a), the radiation pattern is obtained by employing the near-field data
according to the proposed non-uniform sampling scheme (ν = 1.2,p = 4) and then interpolated over a
λ/2 grid. In panel b), the radiation pattern is obtained by directly employing the near-field data collected
over a uniform λ/2 grid. Panels c) and d) show the cut-views passing through the main-beam maximum
along kx and ky , respectively, and the related ERR in dB. The representation errors are REAdB = −20dB
and REPdB = −23dB.

normalized local error. As can be seen, this error is much
lower the side-lobe level.

Figs. 8 to 10 instead refer to the case the beam is steered
at (φs, θs) = (−58.3◦, 42.2◦). This is a more complex case,
compared to the previous one, since the near-field presents
relevant projections onto high order singular functions. This
is reflected in the representation error (reported once again in
the pertinent captions) which actually is increased. Nonethe-
less, it is still very low, around −20dB. Moreover, the nor-
malized local error is still well below the side-lobes.

Eventually, according to the previous examples, it can
be concluded that the proposed near-field sampling scheme
allows to achieve performance that is similar to the classical
λ/2 sampling but with a much lower number of measurement
points.

V. CONCLUSION
In this paper, the problem of sampling the field radiated by
a planar source and observed over a finite planar aperture
located in the near-field has been addressed. The problem
has been cast as the determination of the measurement spatial
positions for which the singular values of the radiation oper-
ator are well-approximated. In particular, in order to deter-
mine the sampling points we adopted the warping approach
introduced in [23]. More in detail, such an approach has been
improved by introducing a spatially varying oversampling
strategy. This allowed us to overcome the limitations of the
previous version and to deal with measurement apertures that
are larger than the source.

The theoretical arguments have been validated by numer-
ical experiment based examples. It was shown that the
proposed approach retains almost the same quality as the
classical λ/2 sampling but requires much fewer measurement
points. For the considered examples, more than 60% of the
sampling points were saved.

As future developments, our commitments concern differ-
ent directions. One is the expansion of the theory in order
to find more general warping transformations that allow to
rigorously deal with the cases addressed herein. Also, it is
of sure interest to consider the cases when the radiation
system is not planar [28] or amplitude only measurements are
available [29].
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