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ABSTRACT Hypertension is a global health problem and a leading factor in severe and life-threatening
cardiovascular diseases (CVD) and stroke. The onset is dependent on individual lifestyle choices, and no
single root cause of the condition exists. Various machine learning solutions are proposed for the early
diagnosis of hypertension and its prediction, but they are based on standard guidelines and do not provide
personalized solutions. Current models mainly rely on batch learning methods and do not readily learn the
new incoming data. There is also a lack of an intelligent technique for handling anomalies in data, which leads
to unreliable prediction results. In this paper, an integrated multi-agent-based hypertension risk prediction
system is proposed that detects and computes missing values in the time series and provides personalized
hypertension risk predictions. The proposed solution incorporates Gaussian mixture models for enhancing
the input data, and an Online Infinite Echo State Gaussian Process (OIESGP) is used to obtain real-time
prediction distribution of blood pressure. The prediction system readily absorbs new incoming data, and
the model is updated to learn any new patterns in the data. The hypertension risk score is estimated using
the Framingham hypertension risk estimator, and a 4-year hypertension risk is computed. The prediction
performance of the proposed model is evaluated on blood pressure data gathered from the Malaysian
population using mean absolute error, mean square error, and root-mean-square errors. The experimental
results indicate that the proposed prediction model exhibits greater prediction accuracy than existing state-
of-the-art online prediction methods.

INDEX TERMS Blood pressure, Gaussian mixture models, hypertension, online infinite echo state Gaussian

process, personalised prediction model.

I. INTRODUCTION

High blood pressure is a global health problem. It directly
contributes to various chronic diseases such as stroke, car-
diac arrest, memory loss, renal function failure, and multiple
other disabilities [1]-[3]. In the year 2008, around the globe,
an estimated 1 billion adults suffered from hypertension.
According to statistics, the number of hypertensive patients
is expected to rise to 1.56 billion by 2025 [4]. The number
of hypertensive adults in Malaysia alone rose from 33.6%
in 2011 to 35.3% in 2015. 36% of mortality in Malaysia is
due to cardiovascular diseases (CVD) and is a significant
factor in premature death [5], [6]. This growing prevalence
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can be associated with varying lifestyle choices that act as
behavioral risk factors, such as smoking, unhealthy eating
habits, inadequate physical activity, harmful use of alcohol,
and stress. Even though high blood pressure causes almost
6% fatalities worldwide, it is in fact a preventable disease
and can be controlled with preventive measures [4]. Table 1
shows a brief classification of blood pressure value ranges
(in mm Hg) for optimal and hypertension scenarios.

There is no single root cause of hypertension due to mul-
tiple unique risk factors related to genetics, environment and
lifestyle for each individual [7]. This makes early diagnosis
and prevention of the disease difficult for clinicians. One
solution for controlling the disease is early diagnosis, which
depends on constant monitoring of blood pressure. Constant
monitoring helps in defining an individualized blood pressure
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TABLE 1. Blood pressure classification.

Category Systolic Diastolic
Optimal < 120 & < 80
Prehypertension 120 - 139 &/or 80 - 89
Hyperyension

Stage 1 140 - 159 &lor 90 - 99
Stage 2 160 - 179 &lor 100 - 109
Stage 3 >= 180 &/or >= 110

profile and develop a personalized treatment plan for that
patient. However, in real life, this is impractical and quite
inconvenient for the patients to visit hospitals so frequently,
and the traditional cuff-based measurement method using
mercury is not easy to operate at home. Hence, the clinicians
are left with incomplete or missing blood pressure readings.
Due to the complexity associated with disease prediction,
clinicians are prone to make errors, especially in these cases
where the data is incomplete or noisy.

Recent advancements in telemedicine and neuro-
computing have enabled researchers to bridge the gap
between computer science and medicine. Machine learning,
in particular, is being applied in the medical field to accurately
analyze medical images and serve as medical diagnostic
systems [8], [9]. A combination of genetic algorithms (GA)
and k-nearest neighbours (KNN) is utilised in the prediction
of paroxysmal atrial fibrillation [10] and feedforward neural
networks are used in the diagnosis of diabetes mellitus [11].
Classifier systems are developed that allow early diagno-
sis of congestive heart failure using k-nearest neighbors,
linear discriminant analyses, multilayer perceptron, support
vector machines, and radial basis function artificial neural
network [12]. Linear regression models, recurrent neural
networks (RNN) and artificial neural networks (ANN) are
extensively applied in blood pressure analysis [13]-[15]
however, most of these solutions use a standard universal
approach for all individuals, and there is no consideration for
personalization. The models often require a large amount of
input data for training, need a continuous input time series
in order to make accurate predictions, and do not update the
model as new input data is received. The effect of missing
values in the input data is not considered, and no intelligent
technique is used to handle missing values in the time series.
Furthermore, no complete system exists for hypertension risk
prediction in the Malaysian population.

Our study focuses on the implementation of a multi-agent
architecture for real-time risk prediction of hypertension
in the Malaysian population. The proposed system han-
dles missing records in the blood pressure timeseries,
besides identifying and removing abnormalities from the
data set. A comprehensive data set is gathered from the
Malaysian population, and their hourly blood pressure and
heart rate are collected. A user agent is designed that is
responsible for managing blood pressure and risk factors
from the user. A data processing agent employs Gaussian
mixture models (GMM) for cleaning the data and converting
it into a complete-time series. A prediction agent uses an
enhanced recurrent neural network combined with Gaussian
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estimation known as the Online infinite echo state Gaussian
process (OIESGP) for hourly predictions. The blood pressure
status agent evaluates the risk of hypertension with the help
of the Framingham classifier and presents a 4-year risk of
Hypertension. There is no research focusing on the real-time
risk prediction of hypertension in a multi-agent environment
to the best of our knowledge,. The prediction performance
of the proposed model is evaluated using blood pressure data
gathered under the supervision of medical practitioners from
the Malaysian population at public hospitals.

The rest of the paper is organized as follows: in section II,
we briefly discuss the existing state of the art work on
hypertension prediction. Section III describes the proposed
multi-agent system and our methodology. In section IV,
we explain our experiments for the system’s evaluation.
Section V presents the results, followed by the discussions
in section VI, and finally, the conclusion and future work in
Section VII.

Il. RELATED WORK

Artificial intelligence is playing a significant role in digital-
izing health care, and existing studies extensively discussed
hypertension risk prediction.

Ambika et al. [16] developed a personalised decision sup-
port system based on a support vector machine (SVM) and
fuzzy association rule mining (ARM) to predict the probabil-
ity of acquiring hypertension. The missing values in the data
are substituted using mean and mode value substitution and
the interquartile range (IQR) technique is used to remove the
outliers. The model enhanced the data using AdaBoost and
predicted various stages of hypertension using boosted SVM.
The model also took into account personal behavioral factors
along with medical history for prediction. The model reported
a prediction accuracy of 91.8%.

Mohammadi et al. [17] developed models based on logistic
regression and recurrent neural networks (RNN), namely
the long short term memory (LSTM), to predict the risk of
uncontrollable hypertension in the upcoming 3-months. The
developed model was evaluated on electronic health data
from 17,000 patients, and any missing values in the data set
were replaced with the average value of that variable. Patient
data containing fewer than two entries were excluded from
the analysis. The model achieved an area under the curve
of 0.714 and 0.696 precision.

Kanegae et al. [18] proposed a prediction model for the
onset of new hypertension. The model was tested on clinical
data of hypertensive patients. Any missing values in the data
were imputed using last observation carried forward, mean
and mode substitutions. The model was a combination of
logistic regression, random forest and XGBoost technique
combined with the help of bagging technique. The model
achieved 0.992 AUC.

Melin et al. [19] proposed a hybrid model based on a
modular neural network with fuzzy inference for hyperten-
sion diagnosis. Each module in the neural network received
systolic, diastolic, heart rate and age values respectively as

75091



IEEE Access

S. Abrar et al.: Multi-Agent Approach for Personalized Hypertension Risk Prediction

input variables and the neural network was trained using
the backpropagation algorithm. Two fuzzy inference sys-
tems (FIS) handled nocturnal hypertension and heart rate,
and a third FIS classified hypertension. The system classified
blood pressure range and hypertension with 90% accuracy in
each module.

Ye et al. [20] used a large dataset extracted from elec-
tronic health repositories (EHR) to predict essential hyper-
tension for the upcoming year. Missing values in the dataset
were imputed using k-nearest neighbours (KNN), and feature
reduction is applied using the Cochran-Armitage trend test
and logistic regression. The data is then fed to XGBoost,
and the model is trained with the data of the previous 1-year
consisting of chronic and medical history, health conditions,
clinical utilization history, and social determinants. The pre-
diction model achieved an accuracy of 0.971 and 0.87 in
retrospective and validation, respectively.

LaFreniere et al. [15] developed a hypertension diagnosis
system based on an ANN. The model used various risk fac-
tors affecting hypertension, which were identified based on
the patient’s health status, medical history, and geographical
location. Eleven risk factors were identified and set as input
nodes for the ANN with seven hidden nodes and two output
nodes. The records with the majority missing entries were
excluded from the analysis, and recordings with few miss-
ing lab entries were set to 0. The outliers were identified
by evaluating z-scores, and data with extreme scores were
excluded from the analysis. The model classified individuals
as hypertensive or non-hypertensive with reported 82.3%
accuracy and was trained on a sufficiently large data set,
therefore capable of handling various test cases.

Wang et al. [21] the use of simple demographic data
and lifestyle choices, contributing significantly to the onset
of hypertension. They proposed a hybrid model for hyper-
tension diagnosis based on logistic regression and ANN.
A binary logistic regression model determines the factors
affecting hypertension and identified 13 risk factors. The
identified risk factors are then used by a neural network with
back-propagation as input parameters to predict the onset of
hypertension. The performance of the model was evaluated
using questionnaire surveys. The records with missing data
entries were excluded from the analysis. The model achieved
an accuracy of 72.12% with minimal standard variations.

A brief comparison of the works mentioned above has been
summarized in Table 2. To summarize the above discussion,
existing approaches towards hypertension risk prediction:

1) Do not present a concrete system for personalized

hypertension risk prediction.

2) Mostly ignore missing values in historical records, and

noisy or anomalous data is not appropriately handled.

3) Do not perform online update of the prediction model

and thus present potentially outdated models.
The main contributions of this research work are:
1) An integrated multi-agent-based architecture for per-
sonalized hypertension risk estimation in a mobile
application.
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2) A data preprocessing technique that can estimate miss-
ing values and remove outliers in the time series before
the prediction process.

3) A personalized online prediction model that is capable
of learning new patterns in the input data.

4) A 4-year hypertension risk predictor using the Fram-
ingham risk calculator

Ill. MULTI-AGENT FRAMEWORK

The goal of this research was to develop a personalized
hypertension risk prediction system. The proposed solution
can gather user blood pressure periodically and perform its
prediction for the next 24 hours. It also estimates the 4-year
risk of hypertension for the user to avoid the onset of hyper-
tension. The system is developed using a multiagent approach
such that the tasks are divided and distributed to four agents,
with each agency responsible for a specific job. The agents
communicate with each other on various steps to make the
system more robust and scalable. The architecture diagram is
given in Figure 1.

The user agent runs on the user device and collects all
user-specific data (age, weight, height, gender, smoking sta-
tus, and BMI) to build a personalized profile. It collects blood
pressure and heart rate data hourly from the user and passes
them on to the data processing agent. The data processing
agent is responsible for preprocessing the data and saving
it securely for further analysis. The blood pressure predic-
tion agent requests the data processing agent for the hourly
readings for the past 24 hours and the updated user profile to
perform BP predictions for the next 24 hours. The prediction
agent is also responsible for notifying the blood pressure
status agent about the prediction results. The blood pressure
status agent requests the results from the data processing
agent and calculates the risk of hypertension. The results
are communicated to the user agent, converting them into a
user-readable format and presenting them.

The following section discusses details of each agent and
its dedicated responsibilities. The algorithms used for com-
puting missing values in the time series and the prediction of
blood pressure are also explained below.

A. USER AGENT

The user agent is responsible for all interactions associated
with the end-user. It has three main tasks: (1) collect user
profile information, (2) collect hourly blood pressure and
heart rate data, and (3) pass user data to the data processing
agent.

The profile information consists of age, weight, height,
gender, smoking status, and body mass index (BMI). The
user agent also keeps track of updates in the profile data.
It is also responsible for collecting the user’s vitals (heart
rate and blood pressure in this case) periodically and ensure
this information is secured until it is passed on to the data
preprocessing agent. The user agent achieves its tasks with the
help of a mobile application, and Bluetooth low energy (BLE)
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TABLE 2. Summary of existing research work on hypertension prediction.

Author Year Method Personalised ~ Online Advantages Disadvantages
Ambika [16] 2020  Support vector machine v X
Learns from imbalanced data Unintelligent schemes for
Introduces personalised pre- data processing (mean/mode
diction substitution)
Mohammadi [17] 2019  Logistic regression, recur- X X
rent neural networks Large dataset to train the pre- Missing values replaced with
diction model averages
Includes blood profile along Ignores relevant clinical data
with BP data during analysis
Kanegae [18] 2019  Logistic regression, Ran- X X
dom Forest, XGBoost Large dataset used for model Clinical BP unable to iden-
training tify white-coat hypertension
Identifies effective BP mea- Imputation of missing data
surement for prediction introduces bias
Age and BMI incorporated
for BP prediction
Ye [20] 2018  XGBoost, KNN X X
Used large feature set used KNN based for imputation
for model training can cause bias for patients
Real time predictive model with large number of missing
data
Directly using EHR data did
not capture all related risk
factors
Melin [19] 2018  Artificial neural networks, X X
Fuzzy System Fuzzy systems handles BP Dataset assumed to be a
variability complete time series
BP variation during the night Insufficient data samples to
taken in account capture blood pressure trend
LaFreniere [15] 2016 ANN X X
Use large dataset to train Do not account for be-
model havioural information
Wang [21] 2015 Logistic Regression and X X

ANN

Lifestyle factors effecting
hypertension are identified
and used for prediction

Removes records with miss-
ing entries, thus resulting in
loss of data

enabled wrist band worn by the user. The mobile app provides
a visual interface for the collection of profile data.

The wrist band measures the user blood pressure and heart
rate periodically. After receiving the reading, the user agent
then passes the complete data, including the user profile and
the physiological data, to the data processing agent. The other
agents use this data to perform prediction and estimate the
risk of hypertension. The user agent receives the prediction
results and the risk score, which displays them to the user
in the mobile application. Fig. 2 shows the working of the
mobile app. In this way, the user is provided with an overview
of his physical health condition, enabling him to take preemp-
tive measures to avoid any health risk.

B. DATA PROCESSING AGENT

The data processing agent manages the data set used for
training the prediction model and storing prediction results.
It receives data from all the other agents and stores it in a

VOLUME 9, 2021

database for further processing. The main tasks of the agent
are below:

b
2)

3)

Preprocessing: This comprises estimating missing data

entries and removal of outliers.

Storage: This comprises saving received data securely

for further analysis.

Communication: This comprises transmitting the data

to the relevant agent.

Data preprocessing is a computationally expensive task
and requires a significant amount of time. Recent advance-
ments in cloud technology enabled researchers to shorten
this processing time by carrying out most of these tasks
in the cloud. The large storage capacity and faster pro-
cessing resources in the cloud system enable various
machine-learning algorithms for data cleaning, knowledge
discovery, and analysis to run simultaneously. The proposed
data preprocessing agent runs on the cloud and carries out
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FIGURE 1. Detailed flow chart of proposed framework. Data collection is performed with the help of smart wearables and a smartphone, whereas
data preprocessing and predictive analysis is performed on the cloud system. After the hypertension risk estimation, the results are communicated
back to the smartphone and presented in a user-friendly interface.
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FIGURE 2. Implemented mobile application showing blood pressure
prediction and 4-year hypertension risk score.

further processing in an AWS cloud instance. The cloud
system hosts a database and an app-server for performing the
respective preprocessing tasks.

The developed database contains three main tables: the
user profile containing all physiological details is stored in
a User table, the blood pressure and heart rate records are
stored in a Blood_Pressure table, and the prediction results
are stored in a Prediction table. The design of the database is
given in Fig. 3. All other agents request the data processing
agent for the historical blood pressure readings and user
profile values for blood pressure prediction and hypertension
risk score calculation.

75094

The physiological data readings received from the wrist
band have the potential to be plagued with erroneous values.
This can occur by an occasional device malfunction or human
error, e.g., it may happen that the user forgot to wear the
device after taking it off, or disposition of equipment that
might cause faulty measurement value. During the prediction
model’s training, this flawed data introduces uncertainty and
unreliability in the prediction results. For this reason, it is
of utmost importance that the input data is processed and
anomalies are removed.

In the general population, blood pressure is known to
exhibit a Gaussian (normal) distribution pattern [22] [23]
which makes Gaussian mixture models a suitable candidate
for modelling blood pressure behaviour. For this study,
we compute the missing records in the blood pressure histor-
ical data using Gaussian mixture regression (GMR) [24] and
identify outliers using Gaussian mixture models (GMM) [25].

1) MISSING DATA ESTIMATION

A significant responsibility of the data processing agent is to
ensure that the data stored in the database is a complete-time
series without any missing entries. This task is of utmost
importance because most of the learning algorithms expect
a continuous time series to make accurate predictions, and
the presence of missing values reduces the accuracy in the
results [26]. Values may be missing due to various rea-
sons depending upon the data source, such as human error,
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FIGURE 3. Structure of database used in the data processing agent: The
User table stores personal profile, whereas hourly readings are stored in
the Blood Pressure table, and hourly predictions are stored in the
Prediction table.

malfunctioning device, or environmental error. There are sev-
eral techniques to handle missing values in data. In most
situations, simple techniques such as mean/median/mode
substitution, complete case analysis and missing-indicator
method are used [27]. Most studies treat missing values by
complete removal of a specific signal, averaging observed
data, replacement or substitution constructed from previ-
ous information, normalization, and linear interpolation [28],
[29]. These methods may cause a biased model because
of the loss of information. Furthermore, they underestimate
standard deviation since they do not consider the uncertainty
in missing values.

The agent takes a two-step approach for missing data esti-
mation. The first step is the identification of missing values.
This is achieved by iterating through the received time series
and comparing the timestamps associated with each record.
Upon encountering non-consecutive time stamps, missing
data and the intermediate data records are inserted into the
time series with some initial value. Algorithm 1 presents
detailed steps for identifying the missing values.

The next step is to estimate values for the missing records.
We use Gaussian mixture regression [24] to estimate the miss-
ing heart rate, systolic, and diastolic blood pressure values.
A Gaussian distribution is modelled using the input data.
A Gaussian mixture comprises several Gaussians, with each
containing: a mean that defines the centre of the distribu-
tion and covariance that represents its width and weight that
determines the size of the Gaussian function. The data is
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Algorithm 1 Missing Value Detection

Global variable
D, Time series with missing values
X, Single record
x, feature in a record
d., Current record
dp, Previous record
dp, Value for Missing record
T, Time interval between two records
end Global variable
X = {x1,x2, .., X}
D = {Xo, .., Xt}
X>0
i<« 1
while i < Length (D) do
d. < Dlil, d, < D[i-1]
Ty < CalculateTimeDifference(d , dp)
if T; > 1 then:
forj < 010 Ty do:
X" <« NewRecord( d;)
D.InsertATIndex(j,X"")
d, < X"
end for
end if
i<—i+1
end while

sequentially scanned for missing values, and a buffer with
the continuous values is populated. A GMR then constructs a
sequence of Gaussian mixture models (GMM) from the time
series data to compute the joint probability density of the real
data. Then the conditional density and regression functions
for each model are constructed. The underlying joint density
Jx.y is given by Equation (1):

frr@y) = YK m o y: uig) ()

where 7; represents the weight of the j-#h mixture component
and D(x, y; u, ¢) is the probability density function (PDF)
of a multivariate Gaussian distribution with the mean p and
covariance ¢. Partitioning each component @; as in [24],
the joint density can be expressed as in Equation (2):

Sxy(x,y) = Zf:ﬂTj D(ylx; mj(x), sz) a(x; wix, &x)
(2)
2

The mean vector m;(x) and covariance matrix o; are calcu-
lated in Equation (3) and Equation (4): '

mi(x) = wjy + &rx €j}l(x — jx) 3)

2

j— o o _1 .
of = &yy — &yx £y EXY 4)

Then the conditional PDF Y'|X from the GMMs is generated,
which is given in Equation (5):

K
frix %) = D wix) 805 mjy. o) )

J=1
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where w;(x) is the mixing weight and is given in Equation (6):

T (x5 Wwix, &x)
K
Zj:ﬂ'lf/@()(; Hix, €jx)

(6)

wilx) =

Finally, the missing value is generated using the regression
function m(x) given in Equation (7):

K
m(x) = E[Y|X = x] = ij(x) mi(x) @)
j=1

Algorithm 2 presents the process of imputing the identified
missing values using GMR.

Algorithm 2 Missing Value Imputation Using GMR
Global variable
K, Complete time series
G, Array of Gaussian mixture models
d,, Missing value
W), Train data buffer
Sp, Size of prediction buffer
for j <— 0 to Length(K) do:
V < K[j]
if V = d,, then:
G.ComputeDensity(W),) {Equation. 5}
V" « G.PredictNextValue() {Equation. 7}
K[l < V"
else
Wp.insertX"
end if
if Length (W,,) > Sp then:
Wp.pop()
end if
end for

When a missing value is encountered in the time series,
the probability density is recomputed using the previous
available data and the next value is estimated. The missing
value is then replaced with this predicted value. To control
the influence of past values on the prediction, a buffer size is
maintained and the past data is flushed to make space of only
recent data which is used for prediction.

2) OUTLIER DETECTION

An outlier is a value of a variable different from the gen-
erally observed pattern for that variable. It arises when an
unexpected or inconsistent data point is observed where a
design or distribution was found previously. The leading
cause of outliers is the presence of anomalous data. There
may be an error in data transmission and its reception,
human error, system error, or instrumental error. In biomed-
ical data, a sudden spike can also be observed during a
workout or a physical tasking activity. These abnormally high
values are found for a short period before they reach back
to their original values. However, if recorded, these values
act as outliers in the actual trend of the biomedical series.
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FIGURE 4. Existence of outliers in time series data.

Fig. 4 shows the existence of anomalous values in blood
pressure values.

The presence of outliers or anomalies in the blood pres-
sure time series weakens the results in the prediction agent.
Therefore, the last step in the data processing is the removal
of any outliers. Healthy adults exhibit a rhythm in their blood
pressure in a period of 24-hours, with the highest blood pres-
sure during the day and the lowest during the night [30]. This
pattern is generally believed to be caused by the behavioural
triggers and daily variations in postures and physical activity
throughout the day [31], [32], and GMM detects seasonal
variations in time series data [25]. Therefore, we utilize the
same approach to model this seasonal variation in the blood
pressure data and detect any outliers in the time series.

The time series is divided into time bins corresponding to
the total number of seasonal variations that can be expected
in the time series. Let B = [B1,B2, ..., B,] represent
the total bins that the data is divided into, and each B, =
{T1, T>, .., T,}.For blood pressure data, we divided the
data into 24 time bins, with each bin corresponding to a single
hour of the day. Each T, contains all the physiological data
of the user for the hour value n. The next step is to compute
the density of each time bin using GMM.

Let the time series is represented by X = {xp, ..x;, ..x,}.
We can assume that X is generated by a GMM with K
number of components. The function f; (x;) is then the prob-
ability density function of the k-th component, representing
the probability of x; generated by the k-th component. So,
the PDF of the GMM is given by Equation (8) as below:

K
Pai) = ) mific(xi | i, ex) ®)
k=1
In the above Equation (8), 7y is the weight of the k-th com-
ponent; uy and g are the mean vector and covariance matrix
of the k-th component and P(x;) represents the probability of
x; generated by the GMM. Moreover, Z,?: 1t = 1. The
PDF of the k-th component is calculated using Equation (9):

1
exp(—(5 (i — w)” S — )

p 1
(2m)2 |ex|2

Jilxi | pk, &) =

©))
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For every data point in the time bin, its density is calculated
using Equation (9), and a score is assigned to it by examining
its distance from the other data points on the overall probabil-
ity density scale. The scores are calculated by taking the log
of probabilities as given in Equation (10):

0S = log(p(x)¥ (10)

Here p(x) represents the density function of x, and f is a
value used to scale the log values. The value of fis directly
proportional to the calculated score, and a larger value of f
would create a larger difference between the score values of
the outliers.

Algorithm 3 Outlier Detection Using GMM
Global variable
T,, Time bin containing records for an hour value x
P, Probability densities
0S8, Outlier score
G, Array of Gaussian mixture models
end Global variable
initialise;
P <« G.ComputeDensity(Ty)
for j < 0 to Length(P) do:
p=Pljl
OS <—CalculateScoreFor(p) {Equation 10 is used here}
if OS > 5:
T, [j].IsOutlier < true
end if
end for

Algorithm 3 gives an overview of the outlier detection
process. A scaled value of O or 1 indicates that the data
point in consideration is normal, whereas a scaled score
of 9 or 10 indicates extreme outlier points. For our exper-
iments, all scaled score values greater than 5 are classified
as outliers. The OS is further scaled to a value in a range
of 0 to 10 using Equation (11). Presenting outlier scores in
such a way helps in better visualization of the scores, and
comparison with other techniques becomes easy.

0S — min(0S) »
max(0S) — min(0S)

ScaledScore = 10 (11)

C. PREDICTION AGENT

The main task of the prediction agent is to perform blood
pressure prediction for the next 24-hours. It requests the
data processing agent for the past 24-hour readings and the
updated user profile and passes them to the machine learning
algorithm, which performs the prediction. The prediction
algorithm receives the time-series data in the form of 24-hour
windows, and the predicted output is, in turn, fed back to the
system to update the model. The prediction agent receives
new information about the blood pressure and user profile
continuously, updating the model for future predictions. The
constant updating of new information poses two potential
problems for the hypertension risk prediction system:
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1) As continuous biological data is infinite in nature, this
would lead to an infinite model size.

2) As the size of the model grows indefinitely, the com-
putation time for updates and predictions would also
increase.

To avoid an infinitely growing model and maintain a
shorter computation time, the proposed solution should have
the ability to perform online learning and somehow prevent
the model size from growing indefinitely. For this purpose,
we employ an online learning algorithm built on the echo state
networks (ESN) [33] called the Online Infinite Echo State
Gaussian Process (OIESGP) [34]. The following sections
explain the working of ESN and OIESGP algorithms in detail.

1) ECHO STATE NETWORKS

The echo state network is a recurrent neural network proposed
by Jaeger [33] that belongs to the Reservoir computing frame-
work. In this approach, the weights of the hidden layer neu-
rons and the reservoir are not trainable, and only the output
weights are trained. A randomly generated reservoir (which
is the RNN) is driven using input signals, and the output
is received by use of a combination of the reservoir units.
The inputs are connected to the reservoir with an activation
function, and the outputs have weights that are learned with
Linear Regression and are connected to the reservoir as well.
The state of the reservoir is updated during training using
Equation (12),

X1 = (1= y) h(Wx; + Wing 1 + Wpdy) +yx - (12)

where x; is the state of the reservoir at a given time ¢, y is
the leak rate, A(.) is the activation function, W represents the
reservoir weight matrix, W; is the input weight matrix, u; is
the input, W, is the output feedback weight matrix and d;
is the desired output. After training, the update equation is
represented as in Equation (13):

Xep1 = (1 — )h(Wxy + Wing 11 + Wpye) + yxe - (13)
The predicted outputs y; are obtained using Equation (14),
Yit1 = Wolyti (14)

In Equation (14), W, is the linear output weight matrix and
Y41 represents the augmented reservoir state and input vec-
tor, given in Equation (15) as,

Vir1 = [Xeg1s g ] (15)

2) ONLINE INFINITE ECHO STATE GAUSSIAN PROCESS

The OIESGP [34] is an online variant of echo state networks
combined with Bayesian learning for Gaussian processes.
The reservoir is assumed to have an infinite size, and the
recurrent kernel incorporates automatic relevance determina-
tion. The structure of the network is given in Fig. 5. In this
technique, the model performs fast successive updates just
as new incoming data arrives. The model size is maintained
by only storing unique neural states; non-unique states do
not affect the model size and do not affect the computation
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FIGURE 5. Online infinite echo state Gaussian process: learns from temporal sequences and
produces predictive distributions (Soh & Demiris, 2012).

time. The output is a predictive distribution with estimated
variances, which helps specify a possible range of predicted
values instead of a hard predicted value.

To model the OIESGP network, the ESN is updated using
Equation (12) and a new composite state ;41 is calculated.
Then Bayesian online learning for regular Gaussian processes
is applied to yield a posterior as shown in Equation (16),

PG lf W ))pe(F)
(P()71+1V(1/ft+1))l7t(f)>z

This posterior is then projected to the closest GP measured
via the Kullback-Leibler divergence [34], KL(p || ¢) and ¢
is the required approximation. To maintain the model size,
the number of reservoir states to be retained (also termed
as the basis vectors, b € ) is reduced. This is done so
by calculating a score presented by [35] for each state as in
Equation (17):

Y Wi41) = ket Yes) — Kbpyy Ko b kpst (17)

where k. (V;41, ¥r41) is the reservoir kernel function such as
the radial basis function, and kg ;41 = [k, (bi, Yira1)]pep
and Kﬁ_t1 = [k, (b, bj)]b,«,bjeﬁ- For a certain state 41,
if the computed score y (¥;41) is higher than some defined
threshold, then the reservoir is updated. The mean and vari-
ance of the predictive distribution are given in Equation (18)
and Equation (19) which are used to estimate the prediction
distribution:

e = kg (V)" 0 (18)
02 = ke (Yrsr Vis) + kg (W) Cr ke (Wrw)  (19)

P 1) = (16)

D. BLOOD PRESSURE STATUS AGENT

The blood pressure status agent is responsible for interpreting
the predicted results and generate user-readable responses.
After performing a prediction, the prediction agent passes the
prediction results to the data access agent and informs the
blood pressure status agent. After getting notified, the blood
pressure status agent can safely request all the predicted
results from the data access agent and interpret those results.
A popular means of explaining the risk of hypertension is the
Framingham risk calculator [36].
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1) FRAMINGHAM HEART STUDY

The Framingham Heart Study (FHS) is a long-term ongoing
study on the people of the town Framingham, Massachusetts,
USA [37]. The study aimed to identify the risk factors that
influence the development of cardiovascular diseases. The
investigation began in 1948 with 5,209 adults, which is now
on its third generation of participants. The participant’s ages
ranged from 30 to 62 years old, and none of them had any
history of cardiovascular diseases or accidents. With time,
the descendants of the original group also became a part of
the study.

2) FRAMINGHAM RISK SCORE FOR HYPERTENSION

The Framingham risk-score-calculator estimates the risk of
coronary heart diseases for 10 years based on several risk
factors that include age, gender, smoking history, previous
treatment of hypertension, BMI, and last blood pressure val-
ues. These risk factors are termed cardiovascular risk factors
in the Framingham Heart Study. The study uses the regression
model [38] for the risk calculation, and the result is called the
Framingham risk score.

The score represents the risk of developing any cardiovas-
cular disease in a period of 4-years at any given time. The
input parameters for the risk calculator would be age, sex,
systolic and diastolic blood pressure, smoking habit, if par-
ents had hypertension, and body mass index. The complete
scoring system is explained in Fig. 6. In order to determine a
user’s risk of developing hypertension, the BP status agent
makes use of the Framingham risk calculator, which is in
Equation (20),

In (4) —22.94954 + > "X B

FHS =1 —exp 08769

—exp

(20)

where,

B = the coefficient of regression,

X = the level of each variable

If the gender is male, the variable is assigned a 0, if it is
female then it is assigned a value of 1.
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Variable Beta** p-value Hazard Ratio 95% Cl
Age -0.15641 <0.001 1.195 (1.089, 1.312)
Sex -0.20293 0.004 1.260 (1.091, 1.456)
SBP -0.05933 <0.001 1.070 (1.060, 1.080)
DBP -0.12847 <0.001 1.158 (1.087, 1.234)
Smoking -0.19073 0.013 1.243 (1.058, 1.460)
Parental -0.16612 0.014 1.209 (1.047, 1.395)
Hypertension*
BMI -0.03388 <0.001 1.039 (1.025, 1.054)
Age times DBP 0.00162 0.005 0.998 (0.997,0.999)
interaction
(Scale = +0.87692, Intercept = +22.94954)

FIGURE 6. Standard Framingham risk score parameters [38].

The risk calculator evaluates the input variables and
presents a 1, 2- and 4-year risk of hypertension for the said
user. These results are passed on to the user agent which
displays them in user readable format.

E. PERSONALISED PREDICTION MODEL

The global burden of hypertension increased drastically over
the past few years [4]. The main factors leading to this
increase are population growth, unhealthy lifestyles, obesity
and ageing. It also does not come as a surprise that hyper-
tension is controlled by less than 20% of the population that
is suffering from the disease [39]. Early diagnosis is key to
controlling hypertension and, if treated correctly, can act as a
modifiable risk factor for other cardiovascular diseases.

Evidence suggests that the causes and, in turn, the effect
of hypertension are unique for every individual. The blood
pressure level and extent of organ damage in individuals
depend not only on the environmental factors (such as dietary
intake, physical inactivity, mental health) but also on the
individual genetic structure [40]. Hence any single method
dedicated to treating hypertension or the relevant organ dam-
age may not be effective for all hypertensive patients. To date,
most solutions for managing hypertension utilise standard
universal guidelines that do not take into account personal
and environmental factors in the control of the disease [41].
There is a need for personalised data modelling and a more
personalised approach to study patients with hypertension to
develop an effective solution.

The advanced learning and prediction abilities of Al can
be leveraged to achieve the goal of personalised prediction.
As detailed in Section II, Al is mainly used to investigate
risk factors instead of managing the disease. There is no
study on estimating the personalised risk of hypertension in
individuals to the best of our knowledge. The proposed model
provides personalised blood pressure predictions for the next
24-hours and a 4-year hypertension risk score. All this is
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presented in an interactive mobile application to promote self-
awareness, empowerment, a healthy lifestyle and medication
adherence.

IV. EXPERIMENTAL SETUP

To evaluate the performance of the proposed system, we per-
formed three experiments; the first was to assess the missing
data estimation in the blood pressure time series. The second
experiment removes the outliers in the data set. The third
experiment evaluates the predicted systolic, diastolic, and
heart rate values for the next 24-hours and calculates the
4-year hypertension risk score. The input data is divided
into training and testing data and further divided into 24-
hour windows representing the blood pressure recordings of a
single day. The prediction algorithm accepts a window of data
and predicts the successive 24-hour blood pressure window.
The algorithms were coded in Python programming language
and ran in a Linux environment.

A. DATA DESCRIPTION AND FORMULATION

The dataset for this study was gathered from the Malaysian
population through clinical pilot programs held at the Univer-
sity Malaya Medical Centre (UMMC). Their basic physiolog-
ical profile and their systolic, diastolic and heart rate readings
for six months were collected. Their initial physiological
readings were measured by a medical health professional who
served as a baseline for future readings. The recorded data
included systolic pressure, diastolic pressure, heart rate, age,
BMI and smoking status. Table 3 and Table 4 show the data
structure and the detail data types of each item in the data set.

To ensure continuous blood pressure monitoring, the
patients used a mobile application and wrist bands that mea-
sure blood pressure and pulse rate every hour. The wrist band
used photoplethysmography [42], which is a process of using
light waves to measure blood flow. The wrist band emitted a
burst of green light on the subject’s wrist for a short interval
and captured the refracted response. This information, along
with the user’s position and motion information gathered
from the device’s accelerometer, determined the heart rate
and blood pressure reading. After successfully recording a
reading, it was transmitted to the mobile device for further
processing.

In case the user took off the wrist band at the time of
measurement of the reading, an option to manually store their
BP reading in the mobile application is also available. The
mobile app passed this data to the data processing agent for
further processing. The system handled each patient data set
separately to obtain reliable personalized predictions. For this
research, a patient was selected at random, and their blood
pressure data set was used for further experiments. If the total
duration of data collection is denoted by ¢, and the number
of daily readings is denoted as d, then the total number of
records for each patient, denoted by L can be determined as
in Equation (21):

L=dxt @21)
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TABLE 3. Data values collected from the user.

Variable
Systolic Blood Pressure
Diastolic Blood Pressure

Description
Continuous Variable (mmHg)
Continuous Variable (mmHg)

(DBP)
Age Continuous Variable (year)
Gender Binary Variable (Male:1 / Female:0)

Body Weight
Body Mass Index
Smoking Status

Continuous Variable (kg)
Continuous Variable (kg/m2)
Binary Variable (Yes:1 / No:0)

Pulse Rate Continuous Variable (bpm)

Date Time Continuous Variable (dd/MM/yy
hh:mm:ss)

TABLE 4. Detail of data types.

Data Item Detail

Subject Information Age
Birthday
Gender (Male/Female) Smoking (Yes
/ No)

Measurement date and Time

Systolic Blood Pressure (SBP)
Diastolic Blood Pressure (DBP)
Heart Rate(HR)

Measurement date and time Body
Weight

Body Mass Index (BMI)

Blood Pressure

Body Composition

For our experiments, the data was collected for 180 days.
Data was stored in the form of hourly records for a day, then
the total number of data records, L = 4320. Each record
was a collection of systolic pressure, diastolic pressure and
heart rate. These values were further combined with patient
profile data, i.e. age, gender, BMI and smoking status, to cre-
ate an input matrix X with the above features. If the total
features are denoted by p = 8, then X can be expressed as in
Equation (22):

xl,l "'-xl,p
X = Do, (22)

-xL,l o -xL,p

B. EVALUATION CRITERION
Among the most popular metrics available for prediction
accuracy comparison in time series analysis, we chose Mean
Absolute Error (MAE), Root-Mean-Square Error (RMSE)
and Mean Square Error (MSE) to evaluate the prediction per-
formance. These are the most common metrics for measuring
the errors in continuous variables.

The mean absolute error [43] for the prediction model is
given by the following formula,

1 & ~
MAE = - ZA,—A, (23)

t=1

A lower MAE vale indicates better fit for the prediction
model thus indicating superior prediction accuracy. Root
mean square error or root-mean-square deviation [44] is
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represented by the following equation,

> = w2

RMSE = |*=4L 4)

Mean square error [45] is the average of the square error
which is denoted by the following formula,

_ln )2
MSE = =% (i = 3) (25)

i=1

V. RESULTS
In this section, we present the experimental results to test the
personalized blood pressure prediction system.

A. MISSING VALUE IMPUTATION

To maintain data integrity and ensure no bias in data is
introduced, we used Gaussian mixture models to estimate
missing values in the original data set. As shown in Fig. 7,
missing values of pulse rate, systolic and diastolic blood
pressure record are predicted by GMR. Further experiments
were conducted to verify the performance of the algorithm.
The number of missing values was gradually increased in the
test data set, and the MAE, MSE, and RMSE were recorded.
The results are presented in the Fig. 8. The increase in error
rate is quite low, which indicates that the algorithm stability
even in the presence of missing values.

B. OUTLIER DETECTION

The outlier score for each data point in the systolic, diastolic
and heart rate time series is calculated using Equation (10).
Fig. 9 shows the outlier scores calculated for each value in the
sample data set. Outliers are identified based on these scores.
A higher score indicates an outlier, whereas a lower score
indicates a correct reading. The results show that the system
assigns extreme values a higher score, and normal values
are assigned lower scores. Thus the outliers are correctly
identified and later removed.

As part of further experimentation, we introduced varying
outliers in systolic, diastolic and heart rate data and inves-
tigated how accurately our system detected those outliers.
Table 5 shows results of detected outliers.

C. BLOOD PRESSURE PREDICTION

The continuous blood pressure and heart rate for 24 hours of
a random day were selected from the completed time series
to predict the next 24 hours. Fig. 10 depicts the prediction
distribution of systolic, diastolic and heart rate values pre-
dicted using the OIESGP algorithm. The shaded region in
the graph represents the prediction probability distribution.
It shows that the actual and predicted values lie within the pre-
diction probability distribution, hence proving the proposed
algorithm to be a reasonable estimate for blood pressure
prediction.
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FIGURE 7. Incomplete time series is estimated using Gaussian mixture regression. The figures above show the missing data estimation in (a) Systolic,

(b) Diastolic, (c) Heart rate data.

TABLE 5. Introduced outliers in data and detection with GMM.

Outliers Introduced  Outliers Detected  Outliers Removed

Systolic
6 5 5
8 8 8
10 9 9
Diastolic
5 5 5
8 8 8
9 9 9
Heart Rate
4 4 4
6 6 6
7 7 7

For further verification, prediction for consecutive days
was also performed. Blood pressure data for five days was
selected at random, and the prediction results of the next
consecutive five days were recorded. Each day is consid-
ered a window, and the prediction error in each window
was recorded. Fig. 11 shows the prediction error in each
successive window. It is observed that with each successive
window, the error value decreases, indicating an increase
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in the prediction accuracy of the algorithm. The following
section presents a comparison of the prediction results with
state of the art offline and online prediction algorithms.

1) COMPARISON OF RESULTS

We conducted three experiments to further verify the supe-
riority of the proposed technique. The prediction perfor-
mance was compared against three existing state of the art
online methods namely: passive-aggressive regressor [46],
online recurrent extreme learning machine (OR-ELM) [47]
and fully online sequential extreme learning machine (FOS-
ELM) [48]. These algorithms were selected based on their
recurrent nature and online learning ability. Systolic, diastolic
and heart rate values of each user were predicted separately,
and the average prediction errors were recorded as given
in Table 6. The results show higher accuracy for OIESGP
predictions as compared to the other online methods.

To demonstrate the superiority of the proposed online
prediction scheme, we compared the prediction results with
existing batch learning algorithms currently used in medical
time series and hypertension risk prediction. We compare
the results with Artificial neural networks [15], [19] namely
the Long Short Term Memory (LSTM) [49], Baysian based
Gaussian regression [50], [51] and Support Vector Machine
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FIGURE 8. Analysis result of prediction error when missing values are introduced in (a) Systolic, (b) Diastolic, (c) Heart rate data. The model
shows minor deviation when predicting an increasing number of missing values and still observes the trend in the data.

(SVM) [16]. The data set was divided into training and testing
sets. The algorithms were trained with data of 24-hours,
and the prediction results for the next five consecutive days
were recorded. Table 7 shows a comparison of the predic-
tion results. The batch learning methods cannot update their
models, and it was observed that the prediction accuracy does
not improve over time. The proposed method is online and
capable of learning new patterns from the new input, thus
showing higher accuracy.

VI. DISCUSSION

Gaussian mixture models provide an adequate representation
of the blood pressure time series [50]. Fig. 8 shows that the
impact of missing values on the accuracy of data is low as
the Gaussian mixture model can infer the missing values.
Moreover, experimental results in Table 5 demonstrate that
the same modelling technique performs very well in detecting
outliers in the blood pressure time series. However, these
techniques are used only for data processing, and further
experimentation is required to validate the accuracy of these
methods, which is out of the scope of this research. From
Table 6 and Table 7 it is evident that the prediction accuracy
of the proposed model is higher than existing online as well
as batch learning (offline) prediction techniques. Commonly
used methods such as ANNs require a large amount of
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TABLE 6. Prediction Error Comparison with state of the art online
methods .

FOS- OR- Passive OIESGP
ELM ELM Aggressive
Regressor
Systolic
MAE 0.73386 0.41339 0.45065 0.00671
MSE 2.19977 1.54252 0.203621 0.00011
RMSE 1.48316 1.24198 0.45124 0.0109
Diastolic
MAE 0.59165 0.27813 0.79348 0.01071
MSE 0.78848 0.24843 0.63258 0.00043
RMSE 0.88797 0.49843 0.79535 0.02091
Heart Rate
MAE 0.49871 0.20071 0.57029 0.00927
MSE 0.64315 0.12736 0.32765 0.00018
RMSE 0.80197 0.35687 0.57240 0.01350

training data for the most accurate results and are often prone
to overfitting. The accuracy is also dependant on hyperpa-
rameter tuning, which can be time-consuming. SVM can
learn from smaller datasets, but upon updating them with
larger datasets, the model size increases many folds. This is
because the kernel matrix requires memory that scales with
the number of data points, and the training time increases
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within which the predicted value lies.

linearly with model size. Online methods such as FOS-ELM,
OR-ELM and passive-aggressive regressor update the model
rather than entirely retraining; however, the prediction per-
formance is still not par with OIESGP. However, the low
prediction performance of FOS-ELM is attributed to the fact
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that it cannot be used to train recurrent neural networks. Upon
updating the input weights in FOS-ELM, the entire weight
distribution in the hidden layer also changes, which results
in lower performances and instability in results. OR-ELM
shows some improvement due to its recurrent structure,
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FIGURE 11. Prediction error in successive windows in (a) Systolic, (b) Diastolic, (c) Heart rate. With each successive window the model updates itself

and after successive iterations, reduced prediction error is observed.

TABLE 7. Prediction Error Comparison with state of the art offline
methods .

Deep Gaussian SVM OIESGP
Learning Regression
(LSTM)
Systolic
MAE 0.014279 0.03364 0.01841 0.00671
MSE 0.000855 0.890052 0.00083 00011
RMSE 0.029239 0.943425 0.02887 0.0109
Diastolic
MAE 0.033859 0.03313 0.04552 0.01071
MSE 0.003157 0.00400 0.00367 0.00043
RMSE 0.056188 0.06328 0.06054 0.02091
Heart Rate
MAE 0.019802 0.01890 0.01886 0.00927
MSE 0.001279 0.00417 0.00140 0.00018
RMSE 0.035761 0.06462 0.03746 0.01350

and the model enhances as generated output is fed back
to the network for computation of the subsequent output.
Passive-aggressive regressor is suitable for large scale data,
and the model updates only when a significant change in the
input is observed, thus conserving the model size and ensur-
ing stability. However, the most stable results are received
using the proposed approach based on OIESGP. The proposed
scheme enhances the data before performing any predictions,
which decreases the chances of any bias or loss of information
in the input data. Secondly, as the model updates with new
incoming data, the online learning ability of OIESGP further
improves the prediction accuracy. The reservoir structure
maintains the intermediate states, which are also connected.
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Thus, the generated results are much more stable. Fur-
thermore, the reservoir only takes the most relevant states
while training the model, which, given the infinite nature
of biomedical time series data, ensures the model does not
grow uncontrollably. The prediction algorithm takes the input
data of a specific user, and the system generates a unique
model for that user. In this way, each user of the system
has a dedicated prediction model for their personalized blood
pressure prediction.

VIi. CONCLUSION

Hypertension is a complex disease with various risk factors,
including individual lifestyle, genetic structure, and blood
pressure history. Personalized blood pressure prediction pro-
vides an efficient means to diagnose hypertension in an indi-
vidual in its early stages. However, the prediction accuracy
is highly dependent on the input data, and it is of paramount
importance that this data is in its purest form possible. This
research work contributes to hypertension risk prediction in
the Malaysian population:

1) Integrated multi-agent architecture for personalized
hypertension risk prediction

2) Estimation of missing values and outliers in the input
data using Gaussian mixture models,

3) Personalized prediction of blood pressure using online
echo state Gaussian process

4) Calculation of a 4-year risk of hypertension using the
Framingham risk calculator

In this research work, we proposed an integrated multi-
agent-based system for personalized hypertension risk
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prediction. A user agent is designed, which collects biomed-
ical data from users for training and presents the predicted
blood pressure results. A data processing agent receives the
data from the user agent and uses Gaussian mixture regres-
sion to evaluate missing values in the historical time series.
To further enhance the input data, an outlier detection mech-
anism is applied that employs Gaussian mixture models to
identify and remove outliers in the data. The prediction agent
receives the complete time series and feeds it to the OIEGSP
prediction model, which produces blood pressure predic-
tive distribution. The algorithm processes the time series by
dividing it into 24-hour windows and takes a single win-
dow to predict the next window. The predictive distributions
determine the range in which the blood pressure lies, which
helps generate alerts for the user in dangerously high blood
pressure predictions. The model is updated as new incom-
ing data is recorded, which further improves the prediction
accuracy. The Framingham risk calculator uses the average
predicted blood pressure to estimate the 4-year risk of Hyper-
tension, and the results are presented to the user in a mobile
application.

The proposed system presents itself as a unique modular
system, with each module responsible for a single task and
operating independently. However, some research challenges
remain to be addressed. The data set used in this research
has been collected from the Malaysian population, and the
prediction algorithm requires at least one window of data,
i.e., 24 values, to be present before performing any prediction.
This limitation can be overcome by generating a pool-data
prediction scheme that identifies users based on the physical
profile and uses an initial blood pressure profile from the
collected data. The prediction results from this initial step can
serve as a baseline, and the algorithm will further improve
itself as the system receives actual values. The research can
be further extended to include other chronic diseases such as
diabetes, which can further improve the long term hyperten-
sion risk prediction.
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