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ABSTRACT Compared to the injection of a transient fault, time synchronization and accuracy are not
required for the injection process of a persistent fault. However, the known persistent fault analyses (PFAs) do
not work on SM4 implementations because the linear transformation layer hides the position where an error
occurs during the encryption process. We present the first persistent fault analysis against SM4 implemented
with an S-box by combining the inverse linear transformation with differential techniques. In addition,
we propose a locating algorithm to figure out not only where an error occurs during the encryption process
but also where a fault is inserted in the lookup table. Consequently, the locating algorithm helps break
SM4 implemented with a T-table. We validate our PFA on two open-source implementations of SM4 –
Crypto++(v8.3) and GMSSL(v1.0.0). The experiments are performed on a PC and the analysis codes are
written in C language. The experimental data shows that the probability of successfully recovering the
encryption key approximates 1 when the number of normal-and-faulty-ciphertext pairs is 3000 on average.
Namely, PFA can break the encryption system of SM4 in practice once valid faults are inserted. Finally,
we apply the attack to protected SM4 implementations and prove that the E-and-Dmode of the dual modular
temporal redundancy (DMTR) can defeat our PFA.

INDEX TERMS SM4, persistent fault analysis, fault attack, Crypto++, GMSSL.

I. INTRODUCTION
Sm4 is designed to support the Chinese national standard
for wireless LAN WAPI (wired authentication and privacy
infrastructure) and is officially published by China as the
commercial block cipher standard in 2012 [1]. A comprehen-
sive analyses of SM4 have been proposed, such as such as
linear attacks [2], [3], differential attacks [4], [5] and cache
attack [6].

Fault analysis was firstly proposed by Boneh et al. [7]
in 1996 and they pointed out that sensitive information may
be leaked by accidentally or intentionally injecting faults
during the execution of a cryptographic algorithm. One year
later, Biham and Shamir [8] proposed a differential fault
analysis (DFA) against theData Encryption Standard (DES).
They exploited the faults induced in the 14th,15th, and 16th
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rounds separately to disclose the encryption key of DES.
Many DFAs against SM4 implementations have been pub-
lished as well [9]–[11]. Zhang and Wu [9] firstly described
a DFA against SM4 in 2006. A single-byte fault is injected
at the intermediate state just before the last four rounds, and
theoretically at least 32 times of fault injection are required
to obtain the full encryption key. In 2008, byte-oriented faults
are independently inserted in eight executions of the key
schedule and then the full 128-bit key of SM4 is disclosed
in [10]. In 2011, Li et al. [11] employed only one fault inside
the intermediate state just before the 28th round to extract
partial key bits and the remaining unknown 22.11-bit key (on
average) was recovered using a brute-force search.

The above fault analyses are based on transient faults
which require accurate time synchronization to precisely trig-
ger a fault at a particular position of the intermediate state
during the encryption, such as flipping bits of the input state
in the 29th round during the encryption process of SM4 [9].
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However, a persistent fault can be generally injected before
the encryption of any plaintext so time precision is not neces-
sary anymore. Zhang et al. [12] proposed a PFA against AES
with a single-byte fault model at CHES-2018. The authors
assumed a single-byte fault was inserted in the S-box, and
the value and the position of the fault were known to the
adversary. Moreover, only 2281 ciphertexts on average are
used to recover the key. They also demonstrated the PFA
against AES implementation with eight T-boxes, but the
process of resetting the device and injecting a fault should
be repeated four times to recover the full last round key
and the number of required ciphertexts increases to 8200.
Later, they presented a detailed analysis of the applicability
of the PFA to several implementations of AES [13]. The
improved PFA against AES implementation with the S-box
does not require the knowledge of the value and location
of the inserted fault [14]. Moreover, the PFA trial is first
demonstrated on ATmega163L microcontroller in practice
but the adversary is allowed to reset the device and collect the
correct and incorrect ciphertexts corresponding to the same
plaintext to determine whether a fault is inside the S-box.
Caforio et al. [15] roughly described the concept of recov-
ering the last round key of simplified Feistel ciphers whose
round functions only consist of S-box lookup operations.
However, if the permutation layer in the round function, such
as the linear transformation of SM4, diffuses a single-byte
error into every byte of the intermediate state, it is difficult
to decide the error appears in which lookup operation. As a
result, the last round key cannot be deduced even if the
position and value of the inserted fault are known.

We present a revised PFA against SM4 which is based
on a generalized Feistel structure. A single-byte fault is
induced in the lookup table, and the value and the posi-
tion of the fault are random and unknown to the adver-
sary as well. Moreover, only one successfully fault injection
is enough to leak the entire encryption key if SM4 is
implemented either using the T-box or using the S-box.
We launch the attack on the source codes of SM4 con-
tained in standard cryptographic libraries Crypto++ [16]
and GMSSL [17] separately. Our main contributions are as
follows:

a) To the SM4 implementation using the S-box and the
linear transformation, e.g., the SM4 code in Crypto++,
we employ the inverse linear transformation L−1 [18] and
the differential of two intermediate states to locate the posi-
tion where the error occurs. Furthermore, we conclude the
position of the inserted fault through three carefully chosen-
ciphertext pairs.

b) To the SM4 implementation using a T-table, e.g.,
the SM4 code in GMSSL, we put forward a locating algo-
rithm to locate the position where the error occurs and deduce
the position of the faulty entry in the T-table. To our knowl-
edge, this is the first fault attack breaking the SM4 implemen-
tation using a single T-table.

c) The locating algorithm also works on the SM4 imple-
mentation using the S-box.

d) We conduct experiments of the revised PFA against
SM4 implementations protected by DMTR [19] and prove
that the E-and-D mode can thwart the attack.

The rest of this paper is organized as follows: We first
give a brief review of SM4 in Section II. Second, we depict
the core idea and the process of PFA against SM4 imple-
mentation with the S-box in Section III, and we introduce
the locating algorithm and PFA against SM4 implementation
with a T-table in Section IV. Third, we give a theoretical
evaluation of complexity of our attack in Section V. The
experimental results of PFA against SM4 implementations
involved in Crypto++ and GMSSL are shown in Section VI.
Finally, we suggest the countermeasure to resist our PFA in
Section VII and conclude the paper in Section VIII.

II. DESCRIPTION OF SM4 ALGORITHM
Both the block size and the key length of SM4 are 128 bits,
and both the encryption and the key schedule are based on a
generalized Feistel structure [1]. Due to the Feistel structure,
the encryption and decryption process is the same, but the
subkeys are applied in the reverse order in the decryption
procedure. In this section, we briefly describe the encryption
and the key schedule process of SM4 and introduce the
implementation of SM4 based on a T-table.

A. ENCRYPTION
A 128-bit plaintext is split into four words (X0,X1,X2,X3)
and fed into four 32-bit registers separately. The encryption
process consists of 32-round iterations and a reverse transfor-
mationR.
The round function is defined as: Xi+4 = Xi ⊕

F (Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ RK i) , i = 0, 1, . . . , 31. Here,
RK i ∈ {0, 1}32 is the ith round key, and F is composed
of a nonlinear transformation τ and a linear transformation
L, namely, F (·) = L(τ (·)). In the nonlinear transforma-
tion τ , there are four S-box lookups, denoted by S. Let
Ai+1 = (Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ RK i) represent the input
state of the transformationF , which is divided into four bytes
(ai+1,0, ai+1,1, ai+1,2, ai+1,3), and let Bi+1 and Hi+1 be the
output states of τ and L respectively. The transformations τ
and L are expressed as follows:

Bi+1 = τ (Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ RK i)

= (S(ai+1,0)||S(ai+1,1)||S(ai+1,2)||S(ai+1,3)),

Hi+1 = L (Bi+1) = Bi+1 ⊕ (Bi+1 ≪ 2)⊕ (Bi+1 ≪ 10)

⊕(Bi+1 ≪ 18)⊕ (Bi+1 ≪ 24).

The reverse transformation R maps the internal state
X32,X33,X34,X35 onto the ciphertext C ∈ {0, 1}128,
i.e.,R (X32,X33,X34,X35) = (X35,X34,X33,X32).

In addition, the inverse linear transformation L−1 is
defined as follows [11]:

Bi+1 = L−1 (Hi+1) = Hi+1 ⊕ (Hi+1 ≪ 2)⊕ (Hi+1 ≪ 4)

⊕(Hi+1 ≪ 8)⊕ (Hi+1 ≪ 12)⊕ (Hi+1 ≪ 14)

⊕(Hi+1 ≪ 16)⊕ (Hi+1 ≪ 18)⊕ (Hi+1 ≪ 22)

⊕(Hi+1 ≪ 24)⊕ (Hi+1 ≪ 30).
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FIGURE 1. Structure of SM4 cipher.

B. KEY SCHEDULE
The encryption key, denoted by MK , is also split into four
words (MK 0,MK 1,MK 2,MK 3) and XORedwith four 32-bit
constants (FK0,FK1,FK 2,FK 3), i.e.,

(K0,K1,K2,K3) = (MK 0 ⊕ FK 0,MK 1 ⊕ FK 1,

MK 2 ⊕ FK 2,MK 3 ⊕ FK 3) .

Afterwards, each 32-bit round key RK i(i ∈ {0, 1, . . . , 31})
is derived as follows:

RK i = Ki+4 = Ki ⊕ F ′(Ki+1 ⊕ Ki+2 ⊕ Ki+3 ⊕ CK i),

i = 0, 1, . . . , 31, where (CK 0,CK 1, . . . ,CK 31) are 32 con-
stant parameters. The mixing transformation F ′ also consists
of the nonlinear transformation τ and a simplified linear
transformation L ′, i.e.,

B′i+1 = τ (Ki+1 ⊕ Ki+2 ⊕ Ki+3 ⊕ CK i),

H ′i+1 = L ′
(
B′i+1

)
= B′i+1 ⊕ (B′i+1 ≪ 13)⊕ (B′i+1 ≪ 23).

In this paper, the adversary recovers the last four
round keys (RK 31,RK 30,RK 29,RK 28) and calculates the
encryption key using the inverse key schedule as follows:
(RK 31,RK 30,RK 29,RK 28) = (K35,K34,K33,K32) ,

K35−i−4 = F ′ (K35−i−3 ⊕ K35−i−2 ⊕ K35−i−1 ⊕ CK 31−i)

⊕K35−i, i = 0, 1, . . . , 31,

MK = (MK 0,MK 1,MK2,MK3)

= (K0 ⊕ FK 0,K 1 ⊕ FK 1,K2 ⊕ FK 2,K3 ⊕ FK 3) .

C. T-TABLE IMPLEMENTATION
Lang et al. [18] proposed a fast software implementation of
SM4, which merges the nonlinear transformation τ and the
linear transformation L into four lookup operations corre-
sponding to four distinct T-tables, denoted by T0,T1,T2,T3.
Each table Tj(j ∈ 0, 1, 2, 3) contains 28 entries and the value
of each entry is a 32-bit integer. In GMSSL [17], the trans-
formation F is further optimized by looking up the same
T-table, denoted by T . Consequently, the transformation F

is expressed as:

Hi+1 = F (Ai+1) = [T (Ai+1 & 0xff )� 24]

⊕ [T ((Ai+1 � 8) & 0xff )� 16]

⊕ [T ((Ai+1 � 16) & 0xff )� 8]

⊕T [Ai+1 � 24].

III. REVISED PERSISTENT FAULT ANALYSIS
This section explains the revised PFA in detail. At first,
we will introduce the fault model and the core idea of our
PFA. Secondly, we will assume the SM4 is implemented with
the S-box and illustrate the concrete attack steps.

A. FAULT MODEL
The assumptions of our PFA are listed as follows:

1) The adversary can reboot the encryption system multi-
ple times.

2) The adversary can inject a random single-byte fault into
the lookup table (i.e., the S-box or the T-table). Let fp
(∈ {0, 1, . . . , 255}) be the index of the faulty byte in
the lookup table.

3) The injected fault is persistent, i.e., the affected entry
stays faulty unless the encryption system is rebooted.

4) The adversary can feed chosen plaintexts into the
encryption module, and obtain the corresponding
(faulty or normal) ciphertexts.

5) The encryption key remains unchanged unless forced
to alter.

B. CORE IDEA
First, the relationship between four words of the ciphertext
(X35,X34,X33,X32) and internal states (X31,X30,X29,X28)
involved in the last four rounds are as follows:

X35 = X31 ⊕ F (X32 ⊕ X33 ⊕ X34 ⊕ RK 31) ,

X34 = X30 ⊕ F (X31 ⊕ X32 ⊕ X33 ⊕ RK 30) ,

X33 = X29 ⊕ F (X30 ⊕ X31 ⊕ X32 ⊕ RK 33) ,

X32 = X28 ⊕ F (X29 ⊕ X30 ⊕ X31 ⊕ RK 28) .

As shown in Figure 2, if an error occurs in the 32nd round,
X35 is affected so that the first words of the normal cipher-
text C and the faulty ciphertext C ′ are distinct, i.e., X35 6=
X ′35,X34 = X ′34,X33 = X ′33,X32 = X ′32.
Provided that an error occurs in the ith lookup operation in

the 32nd round, i.e., the ith byte of the internal state A32 =
X32 ⊕ X33 ⊕ X34 ⊕ RK 31 hits the injected fault in the S-box,
we can conclude that the ith byte of the internal state equals
the index of the fault (i.e., fp), namely a32,i = [X32 ⊕ X33 ⊕
X34⊕RK31]i = fp. Consequently, the ith byte of the last round
key satisfies rk31,i = [X32⊕X33⊕X34]i⊕fp.Moreover, when
i covers four byte-position of A32, we can calculate the entire
round key RK 31.
If the error appears in the 31st round, the ciphertext

pair (C,C ′) will be different at two words – X34 and X35.
We first execute the reverse transformation and one-round
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FIGURE 2. Overview of PFA against the implementation of SM4 with a S-box.

decryption on C to obtain internal state X31(= X35 ⊕
F (X32 ⊕ X33 ⊕ X34 ⊕ RK 31)). Next, we can similarly reveal
the round key RK 30 through X31 ⊕ X32 ⊕ X33 and fp.

If the error occurs in the 30th round, we collect ciphertext
pairs (C,C ′) that the two ciphertexts are the same only at the
last wordX32. Afterwards, we execute the reverse transforma-
tion and two-round decryption on C to obtain internal state
X30, and recover the round key RK 29 in a similar way.
Finally, if the error occurs in the 29th round, we cannot

distinguish them directly through the ciphertext pairs (C,C ′).
Thereby, we first execute the reverse transformation and one-
round decryption on C and C ′ separately to obtain internal
states X31 and X ′31. If X31 = X ′31 holds, we know the error
occurs in the 29th round. Therefore, we execute two-round
decryption on (X34,X33,X32,X31) to obtain X29 and disclose
the round key RK 28.
Remark 1: How to locate the byte-position where an error

occurs is not easy because of the diffusion effect of the
linear transformation. When the SM4 is implemented with
the S-box, we exploit the inverse linear transformation L−1 to
calculate the difference between two internal states after the
S-box lookups. Afterwards, the index of the non-zero byte of
the difference corresponds to the error position. For instance,
for a given ciphertext pair (C,C ′) of which the first words
are distinct, i.e., X35 6= X ′35, we compute L−1

(
X35 ⊕ X ′35

)
=

L−1(X35) ⊕ L−1(X ′35) = τ (X32 ⊕ X33 ⊕ X34 ⊕ RK31) ⊕

τ ′
(
X ′32 ⊕ X

′

33 ⊕ X
′

34 ⊕ RK31
)
. Consequently, if the ith byte

of L−1
(
X35 ⊕ X ′35

)
is non-zero, we know the ith lookup

operation in the 32nd round hits the injected fault.
Remark 2: How to know the position of the fault inside the

S-box, i.e., the value of index fp, is another question. When
the SM4 is implemented with the S-box, we can use some
selected ciphertext pairs to filter out incorrect candidates of
fp (see Phase 4 in Subsection III-C for details).

When the SM4 is implemented with the T-table, we present
a locating algorithm to solve the above two problems (see
Section IV for details).
Remark 3: Incorrect round keys may be generated because

the lookup operation is also called in the key schedule. At this

time, each ciphertext pair (C,C ′) satisfies C 6= C ′, where
C and C ′ are respectively the normal ciphertext and the
incorrect ciphertext corresponding to the same plaintext P.
In other words, we can conclude that no error appears in the
key schedule once we detect at least one triple (P,C,C ′) such
that C = C ′.

C. REVISED PFA AGAINST THE IMPLEMENTATION OF
SM4 WITH THE S-BOX
Our PFA includes 7 phases: ciphertexts online collecting in
the first two phases and the encryption key offline extracting
in other phases.
Phase 1: Obtain Correct Ciphertexts:
The adversary randomly generates some plaintexts

P = {Pj|j = 0, 1, . . . , n}, individually encrypts each
plaintext, and records the corresponding correct ciphertext
C = {Cj|j = 0, 1, . . . , n}, where n is the number of plaintexts
that is sufficient to recover the encryption key.
Phase 2: Inject a Fault and Obtain Faulty Ciphertexts:
Step 1: The adversary injects a single-byte fault in the

S-box while rebooting the encryption system.
Step 2: The adversary encrypts each plaintext in set P and

collects the corresponding faulty ciphertexts C′ = {C ′j |j =
0, 1, . . . , n}.
Step 3: The adversary inspects those triples. If there exists a

triple
(
Pj,Cj,C ′j

)
(j ∈ {0, 1, . . . , n}) such that Cj is identical

to C ′j , the adversary continues to execute the phases 3-7.
Otherwise, he restarts Phase 2.
Phase 3: Classify Triples Into Four Sets C′32, C′31, C′30,

and C′∗:
The adversary compares the two ciphertexts in each

triple (Pj,Cj,C ′j ), where Cj and C ′j are split into four
words, i.e., Cj = (X35||X34||X33||X32) and C ′j =

(X ′35||X
′

34||X
′

33||X
′

32).
Case 1: If X35 6= X ′35,X34 = X ′34,X33 = X ′33,X32 = X ′32,

he adds the pair (C j,C
′
j ) to C′32.

Case 2: If X35 6= X ′35,X34 6= X ′34,X33 = X ′33,X32 = X ′32,
he adds the pair (C j,C

′
j ) to C′31.
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Case 3: If X35 6= X ′35,X34 6= X ′34,X33 6= X ′33,X32 = X ′32,
he adds the pair (C j,C

′
j ) to C′30.

Case 4: If X35 6= X ′35,X34 6= X ′34,X33 6= X ′33,X32 6= X ′32,
he adds the pair (C j,C

′
j ) to C′∗.

Phase 4: (Locating Algorithm) Deduce the Round Key
RK 31 and the Value of fp:

Step 1: The adversary sets the value of fp to 0.
Step 2: For a ciphertext pair (C j,C

′
j ) in C′32, the adversary

computes L−1(X35⊕X
′

35). Next, he sets the value of the i
th(i ∈

{0, 1, 2, 3}) byte of the last round key RK 31 to [X32 ⊕ X33 ⊕
X33]i ⊕ fp if the ith byte of L−1

(
X35 ⊕ X ′35

)
is non-zero.

Step 3: The adversary picks out another ciphertext pair
from C′32 and repeats Step 2 until the variable i covers four
possible positions. Consequently, he obtains a candidate of
the round key RK 31.
Step 4: The adversary picks out a ciphertext pair from C′31,

denoted by (Cj0 ,C
′
j0
) Here, each ciphertext Cji also composes

of four words (X35,ji ||X34,ji ||X33,ji ||X32,ji ), ji ∈ {0, 1, . . . , n}.
Then, he computes L−1(X34,j0 ⊕ X ′34,j0 ). Provided that the
index of the first non-zero byte of L−1(X34,j0 ⊕ X ′34,j0 ) is l
(l ∈ {0, 1, 2, 3}), he searches for two other ciphertext pairs
(C j1 ,C

′
j1
) and (C j2 ,C

′
j2
) from C′31 satisfying that the l th bytes

of L−1(X34,j1 ⊕ X
′

34,j1
) and L−1(X34,j2 ⊕ X

′

34,j2
) are non-zero

as well. The selected pairs are called as verification pairs,
denoted by (Cv0 ,C

′
v0 )l, (Cv1 ,C

′
v1 )l and (Cv2 ,C

′
v2 )l .

Step 5: The adversary runs the reverse transformation and
separately decrypts Cv0 , Cv1 , and Cv2 one round using the
above candidate of the round key RK 31. Furthermore, he indi-
vidually calculates X31,v0 ⊕X32,v0 ⊕X33,v0 , X31,v1 ⊕X32,v1 ⊕
X33,v1 , and X31,v2 ⊕ X32,v2 ⊕ X33,v2 . If the l

th bytes of them
are not equal, let fp = fp + 1 and go to Step 2. Otherwise,
he outputs the candidate of the round key RK 31 and the value
of fp at the moment.

The corresponding pseudocode of Phase 4 is shown in
Algorithm 1 in Appendix A.
Phase 5: Deduce the Round Keys RK 30 and RK 29:
Step 1: The adversary picks out a ciphertext pair from C′31

and decrypts the correct ciphertext Cj one round to obtain
X31. Then, he calculates the difference L−1

(
X34 ⊕ X ′34

)
and

recovers the round key RK 30 using a similar method as that
in Steps 2 and 3 of Phase 4.

Step 2: The adversary picks out a ciphertext pair from
C′30, and decrypts the correct ciphertext Cj two rounds
to obtain X31 and X30. Then, he deduces the difference
L−1

(
X33 ⊕ X ′33

)
and recovers the round key RK 29 using the

same method.
Phase 6: Classify the Set C ′∗ and Deduce the Round Key

RK 28:
Step 1: For ciphertext pairs (C j,C

′
j ) in C′∗, the adversary

decrypts Cj and C ′j one round to obtain the internal states X31
and X ′31 separately. If X31 = X ′31, he puts the corresponding
ciphertext pair (C j,C

′
j ) into set C′29.

Step 2: The adversary picks out a ciphertext pair form
C′29, and decrypts the correct ciphertext Cj three rounds to
obtain X31,X30, and X29. Then, he computes the difference

L−1
(
X32 ⊕ X ′32

)
and recovers the round key RK 28 using the

same method.
Phase 7: Deduce the Encryption Key MK:
The adversary derives the encryption key MK according to

RK 28,RK 29,RK 30 and RK 31 using the inverse key schedule.

IV. PFA AGAINST THE SM4 IMPLEMENTATION WITH A
T-TABLE
The input of the T-table lookup is a byte, but the output is four
bytes [18]. Thus, only one of the four bytes is altered when
a single-byte fault is inserted. Consequently, the combined
techniques used in Phase 4 cannot correctly locate the posi-
tion where an error occurs. Therefore, we develop a locating
algorithm to accomplish this task (see Figure 3). Other anal-
ysis phases are similar to the phases in Subsection III-C.
Phase 4: (Locating Algorithm) Deduce the Round Keys

RK 31,RK30 and the Value of fp:
Step 1: The adversary sets fp to 0.
Step 2: The adversary creates two empty sets G and Ḡ.
Step 3: For each pair (Cj,C ′j ) in C′32, the adversary com-

putes Gj = X32 ⊕ X33 ⊕ X34 ⊕ (fp||fp||fp||fp), where Cj =
(X35||X34||X33||X32), and adds Gj to the set G.

Step 4: The adversary selects four words Ga =

(ga,1||ga,2||ga,3||ga,4),Gb = (gb,1||gb,2||gb,3||gb,4),Gc =
(gc,1||gc,2||gc,3||gc,4), and Gd = (gd,1||gd,2||gd,3||gd,4) from
G such that ga,i 6= gb,i 6= gc,i 6= gd,i, for each i(∈
{1, 2, 3, 4}).

Step 5: The adversary randomly constructs a vector
(ga,i1||gb,i2||gc,i3||gd,i4), where i1, i2, i3, i4 ∈ {1, 2, 3, 4}
and the four indexes are pairwise distinct. The con-
structed vector is a candidate of RK 31 and totally 24 can-
didates of RK 31 can be generated, denoted by ~ =

{RK 31,1, RK 31,2, · · · ,RK 31,24}.
Step 6: The adversary draws an element Gj from G

(without replacement) and compares it to each candidate
RK 31,l(l ∈ {1, 2, · · · , 24}) separately. If four corresponding
bytes between Gj and RK 31,l are all distinct, remove RK 31,l
from the candidate set ~. The adversary keep checking the
remaining candidates using each element in G until all ele-
ments in G are tried out.
Step 7: For each pair (Cj,C ′j ) in C′31, the adversary decrypts

Cj one round to obtain X31, computes Ḡj = X31⊕X32⊕X33⊕
(fp||fp||fp||fp), and adds Ḡj to the set Ḡ.
Step 8: The adversary recovers the round key RK 30 using

the method depicted in Steps 4, 5 and 6. If there is no
candidate of RK 30 left in the set ~, i.e., the current value of
fp is wrong, let fp = fp + 1 and go to Step 2. Otherwise,
he outputs the candidate of the round keys RK 31, RK 30, and
the value of fp at the moment.
The corresponding pseudocode of the above steps is shown

in Algorithm 3 in Appendix B.
Remark 4: Since errors occur, at least one byte of Gj

(∈ G) equals the corresponding byte of the last round
key RK 31. Moreover, because the ith (i ∈ {1, 2, 3, 4})
bytes of Ga,Gb,Gc, and Gd are pairwise distinct, each
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FIGURE 3. Process of the locating algorithm (taking the 32nd round as an example).

Gj(j ∈ {a, b, c, d}) contains only one byte that equals the
corresponding byte of RK 31. For instance, rk31,0 = ga,1,
rk31,1 6= ga,2, rk31,2 6= ga,3, and rk31,3 6= ga,4 hold, where
RK31 = (rk31,0||rk31,1||rk31,2||rk31,3). Therefore, if we fill
the first byte of a candidate with ga,1, the second byte
of the constructed candidate g∗,i2 only has three choices,
i.e., gb,2, gc,2, and gd,2. As a result, the total number of
candidates is 24 = 4× 3× 2× 1.

V. COMPLEXITY ANALYSIS
At first, there are 2n encryption operations in Phases 1 and
2 to obtain n triples. Second, he splits those triples into 4 sets
in Phase 3. Since error may occur at every round, each of
the first three sets involves n/32 triples on average. However,
there are only n comparison operations in Phase 3, which
can be negligible. Third, the main operation in Phase 5 is
one-round and two-round decryption operations, and they are
repeated for each element in sets C′31 and C′30 in the worst
case. Thus, n/32 one-round and n/32 two-round decryption
operations are required in the worst case. Forth, there are also
n/32 triples that belong to set C′29 on average, but he should
decrypt all triples in C′∗ to identify them in the worst case.
Consequently, 29/32 × 2n one-round decryption operations
and n/32 three-round decryption operations are needed in
Steps 1 and 2 respectively. Fifth, Phase 7 only includes the
key schedule process, i.e., there is one 32-round decryp-
tion operation. Also because the decryption procedure is the
same as the encryption procedure, the worst-case complexity
of the above phases approximate (2 + 1/16)n encryption
operations.

For the first locating algorithm (Algorithm 1), the adver-
sary launches one-round decryption on each difference of the
triple in set C′32 and one-round decryption on each ciphertext
in the triple in C′32 in Step 2 and Step 4 separately. Further-
more, the number of iterations is 256 in the worst case. As a
result, there are 3/4× n encryption operations at most.
For the second locating algorithm (Algorithm 4), Steps

2-6 and 8 only involves comparison operations, which is
also negligible as well. However, Step 7 contains one-round
decryption operations and the number of iterations of this
step depends not only on the value of fp but also on the
number of candidates left after Step 6. In the majority of our
experiments, there is only one candidate when n > 3000,
so the number of encryption operations is n/32×1/32×2×
256 = n/2 at most.

TABLE 1. Statistical results of the 992 experiments of successful attacks.

FIGURE 4. Success probability of the revised PFA against
SM4 implementation in Crypto++.

In summary, the worst-case computational complexity
of the analysis is O(3n) encryption operations. Obviously,
the data complexity is O(n) plaintexts and the required mem-
ory is O(3n× 128) bits for all triples.

VI. EXPERIMENT RESULTS
We apply our PFA to software implementations of SM4.
The source code of SM4 in Crypto++ is implemented using
the S-box, and the code in GMSSL is implemented using the
T-table. The experiments are performed on a PC with an Intel
Core I7-8550U processor (1.8GHz) and the code is written in
C language.

A. REVISED PFA AGAINST SM4 IMPLEMENTATION IN
Crypto++

We progressively increment the number of plaintexts used in
the attack procedure and repeat the experiment 1000 times for
a given number.

It can be seen from Figure 4 that the encryption key is suc-
cessfully recoveredwith a probability ofmore than 95%when
the number of plaintexts approaches 3000. As mentioned
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TABLE 2. Probability distribution of the number of reboots.

in Remark 3, if the inserted fault affects the key schedule,
the adversary will reboot the system to inject a new fault.
When the number of plaintexts is 4000, the encryption key
is successfully recovered in 992 experiments out of total
1000 experiments. In each experiment, we count the times
that the system is rebooted, and record the elapsed time of
each experiment. Table 1 lists the metrics of those experi-
ments.

The second row of Table 1 shows that the adversary injects
a single-byte fault only once in the majority of the exper-
iments. Besides, the runtime of the attack increases slowly
with the growth of the number of reboots. It is because that
we only encrypt 100 plaintexts to determine whether the key
schedule is affected by the inserted fault, i.e., the runtime
of Step 3 in Phase 2 is much shorter than that of the entire
encrypting and analysis process.

On the one hand, if a single-byte fault is injected in the
S-box, the probability that the input of a lookup operation
does not equal fp (the position of the fault) is 255

256 . On the
other hand, the key schedule is composed of 32-round iter-
ations, and the lookup operation is called four times in each
iteration. Therefore, there are 128 lookup operations during
the key schedule. Provided that the inputs of the 128 oper-
ations are independent of one another, the probability that

no error occurs during the key schedule is
(
255
256

)128
≈

0.605 and the probability that at least one error occurs dur-
ing the key schedule is 1 − 0.605 = 0.395. Table 2 lists
the practical probability and the theoretical probability that
the number of reboots equals to a given integer. It can be
seen that the theoretical prediction matches the experimental
results.

B. REVISED PFA AGAINST SM4 IMPLEMENTATION IN
GMSSL
In GMSSL, because the encryption uses the T-table but
the key schedule uses the S-box, the fault in the T-table
does not affect the key schedule. Therefore, the system
is only rebooted once. In other words, as long as the
adversary collects enough correct and incorrect ciphertext
pairs, he is able to disclose the entire 128-bit encryption
key.

We also progressively increment the number of plaintexts
and repeat the experiment 1000 times for a given number.
It can be seen from Figure 5 that the encryption key is
successfully recovered with a probability of more than 99%
when the number of plaintexts approaches 3000. We also

FIGURE 5. Success probability of the revised PFA against
SM4 implementation in GMSSL.

FIGURE 6. Distribution of the elapsed time for 1000 experiments of
successful attacks.

record the elapsed time of each experiment independently
when the number of plaintexts is 4000. Figure 6 shows the
distribution of the elapsed time for 1000 experiments of
successful attacks.

It can be seen from Figure 6 that the time to conduct most
experiments is between 0.016 and 0.021 seconds and the
longest runtime of the attack is less than 0.04 seconds. Since
the round function only includes four T-table lookups and
three XOR operations, the collecting ciphertexts procedure
here is slightly sped up. However, the locating algorithm
is more complicated than the inverse linear transformation.
Consequently, the runtime of our PFA against the imple-
mentation of SM4 in GMSSL is a little longer than that of
our PFA against the implementation of SM4 in Crypto++.
Table 3 shows a comparison of PFAs against SM4 implemen-
tations in Crytpo++ andGMSSL.Obviously, if the adversary
obtains enough plaintexts and the corresponding ciphertexts,
the SM4 implemented with a T-table can be cracked with only
one fault injection, but the SM4 implemented with the S-box
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TABLE 3. Comparison of results for existing fault attacks against SM4.

needs more injections in most cases because the key schedule
is affected by the injected fault as well. Therefore, the T-table
speeds up the encryption calculation, but the security risk is
higher.

VII. COUNTERMEASURE AGAINST THE PFA
We apply the revised PFA to SM4 implementations pro-
tected by DMTR, which includes the E-and-E mode and the
E-and-D mode. In the E-and-E mode, a plaintext is encrypted
twice. If the two encrypted states C and C ′ are identical,
the procedure outputs C as the ciphertext. In the E-and-D
mode, a plaintext P is encrypted to obtain the state C which
is further decrypted to obtain another plaintext P′. If P′ = P,
the procedure outputs C as the ciphertext. However, if an
error is detected, the procedure stops without any output (case
1) or outputs a 128-bit random number as the ciphertext
(case 2).

Since the fault is persistent, two encrypted states are
always the same in the E-and-E mode, i.e., errors cannot be
detected. In our experiments, the success probability of our
PFA approaches 1 when the number of plaintexts is more than
3000.

In the E-and-D mode, either the adversary cannot obtain
faulty ciphertexts in case 1, or the output C ′′ is different to
the genuine faulty ciphertext C ′ with high probability so that
the deduced candidates of round keys are incorrect in case 2.
Therefore, the probability that the encryption key is recovered
with a negligible probability. In our experiments, we set
the number of plaintext to 4000, and we fail to recover the
encryption key in all 1000 experiments. Therefore, the exper-
imental data matches the theoretical result. In summary,
the DMTR countermeasure in the E-and-D mode thwarts
our PFA.

VIII. CONCLUSION
In this paper, we firstly present a revised PFA against
SM4 which is based on a generalized Feistel structure and
validate our PFA on the source codes of SM4 from standard
cryptographic libraries Crypto++ and GMSSL separately.
The experiments show that when the number of ciphertext

Algorithm 1 Deduce the Round Key RK31 and the Value
of fp
Input: C′32,C′31;
Output: fp,RK31;
1: for fp = 0, . . . , 255 do
2: for j = 0, . . ., sizeof (C′32) do
3: X35||X34||X33||X32 = C′32[j][0]; %normal ciphertext
4: X ′35||X34||X33||X32 = C′32[j][1]; %incorrect ciphertext
5: flag[4] = 0; %initial a flag array to index each obtained byte of

RK31
6: for i = 0, . . . , 3 do
7: if (L−1(X35 ⊕ X ′35)[i] 6= 0 and flag[i] == 0) then
8: RK31[i] = [X32 ⊕ X33 ⊕ X34][i]⊕ fp; %calculate the ith

byte of RK31,i.e.,rk31,i
9: flag[i] = 1; %the ith byte of RK31 are obtained
10: end if
11: end for
12: if (flag[0] == 1 and flag[1] == 1 and flag[2] == 1 and

flag[3] == 1) then
13: break; %four bytes of RK31 are obtained
14: end if
15: end for
16: Cv [3] = 0; %initial an array of verification pairs
17: Cv=Find_verification_pairs(fp,C′31,RK31); %call the subroutine

to generate verification pairs
18: for i = 0, 1, 2 do
19: X31,i=Dec_oneround (RK31,Cv[i]); %one round decryption

using the above RK31
20: end for
21: if ((X31,0 ⊕ X32,0 ⊕ X33,0)[l] == (X31,1 ⊕ X32,1 ⊕ X33,1)[l] and

(X31,1 ⊕ X32,1 ⊕ X33,1)[l] == (X31,2 ⊕ X32,2 ⊕ X33,2)[l]) then
22: return RK31 and fp; %the candidate of RK31 pass the check
23: end if
24: end for

pairs is 3000, the probability of successfully recovering the
SM4 encryption key within libraries Crypto++ and GMSSL
reach 95% and 99% separately. Table 3 lists the results of
our work and previous fault attacks against SM4. It can be
seen that the PFA only requires one or two fault injections
before encryptions. Especially, our PFA against SM4 can
practically recover the secret key in a very short time. Thus,
the PFA is a great threat to the implementations of SM4.
At last, we further prove that the DMTR countermeasure in
the E-and-D mode can thwart our PFA. The attack exploits
the characteristics of the Feistel structure, i.e., part of the
128-bit internal state keeps unchanged within one round
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Algorithm 2 Find_verification_pairs
Input: C′31,RK31;
Output: Cv;
1: n = 0;
2: Cv[3] = 0;
3: for j = 0, . . . , sizeof (C′31) do
4: X35||X34||X33||X32 = C′31[j][0]; %Normal ciphertext
5: X ′35||X

′
34||X33||X32 = C′31[j][1]; %Faulty ciphertext

6: l = 0;
7: if (n == 0) then
8: while (L−1

(
X34 ⊕ X ′34

)
[l] == 0) do

9: l ++; %Find the index l of the first non-zero byte
10: end while
11: end if
12: if (n < 3 and L−1

(
X34 ⊕ X ′34

)
[l] 6= 0) then

13: Cv[n] = C′31[j][0]; %Find the nth verification pair
14: n+ = 1;
15: else if n == 3 then
16: return Cv;
17: end if
18: end for

Algorithm 3 Deduce the Round Key RK 31,RK 30 and the
Value of fp
Input: C′32,C′31;
Output: fp,RK31,RK30;
1: for fp = 0, . . . , 255 do
2: G, Ḡ=empty %initial set G and Ḡ for round keys RK31 and RK30

respectively
3: for j = 0, . . . , sizeof (C′32) do
4: X35||X34||X33||X32 = C′32[j][0]; %normal ciphertext
5: X ′35||X34||X33||X32 = C′32[j][1]; %incorrect ciphertext
6: G[j] = X32 ⊕ X33 ⊕ X34 ⊕ (fp||fp||fp||fp) %Add Gj to set G
7: end for
8: Ga,Gb,Gc,Gd=Find_Ga_Gb_Gc_Gd(G); %call subroutine to

generate the seeds of candidates of round key RK31
9: RK31=Get_roundkey(G,Ga,Gb,Gc,Gd ); %call subroutine to

generate and filter candidates of round key RK31
10: if (RK31 6= error) then %only one filtered candidate of round key

RK31 left
11: for j = 0, . . . , sizeof (C′31) do
12: X35||X34||X33||X32 = C′31[j][0]; %normal ciphertext
13: X ′35||X

′
34||X33||X32 = C′31[j][1]; %incorrect ciphertext

14: X31=Dec_oneround (RK31,C′31[j][0]);
15: Ḡ[j] = X31 ⊕ X32 ⊕ X33 ⊕ (fp||fp||fp||fp); %Add Ḡj to set

Ḡ
16: end for
17: Ḡa, Ḡb, Ḡc, Ḡd= Find_Ga_Gb_Gc_Gd(Ḡ); %call subroutine

to generate the seeds of candidates of round key RK30
18: RK30=Get_roundkey(Ḡ, Ḡa, Ḡb, Ḡc, Ḡd ); %call subroutine to

generate and filter candidates of round key RK30
19: if (RK30 6= error) then %only one filtered candidate of round

key RK31 left
20: return fp,RK31,RK30;
21: end if
22: end if
23: end for

of encryption. However, whether the attack can be gen-
eralized to break ciphers based on other structures is an
interesting topic for future works. Besides, we put forward
the first fault analysis against SM4 implemented with the
T-table. As the T-table is widely embedded in the software
implementations of block ciphers, extending the core idea
of our PFA to the analysis of other ciphers is of great
significance.

Algorithm 4 Find_Ga_Gb_Gc_Gd
Input: G;
Output: Ga,Gb,Gc,Gd ;
1: Ga = G [0]; %set the first element of G to Ga
2: for j = 1, . . . , sizeof (G) do
3: flag[3] = 0; %initial a flag array to index the Gb,Gc, and Gd

respectively
4: if (flag[0] == 0 and G [j] [0] 6= Ga [0] and G [j] [1] 6= Ga [1]

and G [j] [2] 6= Ga [2] and G [j] [3] 6= Ga [3]) then
5: Gb = G [j]; %select required Gb from G or Ḡ
6: flag[0] = 1;
7: else
8: continue;
9: end if
10: if (flag[1] == 0 and G [j] [0] 6= Ga [0] and G [j] [1] 6= Ga [1]

and G [j] [2] 6= Ga [2] and G [j] [3] 6= Ga [4]
and G [j] [0] 6= Gb [0] and G [j] [1] 6= Gb [1]
and G [j] [2] 6= Gb [2] and G [j] [3] 6= Gb [3]) then

11: Gc = G [j]; %select required Gc from G or Ḡ
12: flag[1] = 1;
13: else
14: continue;
15: end if
16: if (flag[2] == 0 and G [j] [0] 6= Ga [0] and G [j] [1] 6= Ga [1]

and G [j] [2] 6= Ga [2] and G [j] [3] 6= Ga [4]
and G [j] [0] 6= Gb [0] and G [j] [1] 6= Gb [1]
and G [j] [2] 6= Gb [2] and G [j] [3] 6= Gb [3]
and G [j] [0] 6= Gc [0] and G [j] [1] 6= Gc [1]
and G [j] [2] 6= Gc [2] and G [j] [3] 6= Gc [3]) then

17: Gd = G [j]; %select required Gd from G or Ḡ
18: flag[1] = 1;
19: else
20: continue;
21: end if
22: if (flag[0] == 1 and flag[1] == 1 and flag[2] == 1) then
23: return Ga,Gb,Gc,Gd ; %output the selected four seeds of

candidates of the round key
24: end if
25: end for

APPENDIX A
REVISED PFA AGAINST IMPLEMENTATION OF SM4 WITH
THE S-BOX
See Algorithms 1 and 2.
Phase 4. Deduce the Round Key RK 31 and the Value of fp:

• Subroutine to generate verification pairs.

APPENDIX B
REVISED PFA AGAINST IMPLEMENTATION OF SM4 WITH
THE T-TABLE
See Algorithms 3, 4, and 5.
Phase 4. Deduce the Round Key RK 31,RK 30 and the Value

of fp:

• Subroutine to generate the seeds of candidates of a round
key.

• Subroutine to generate and filter candidates of a round
key.
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Algorithm 5 Get_roundkey
Input: G,Ga,Gb,Gc,Gd ;
Output: RK ;
1: K=empty; %initial set ~
2: n = 0;
3: for i = 0, 1, 2, 3 do
4: for j = 0, 1, 2, 3 do
5: if (j 6= i) then
6: for k = 0, 1, 2, 3 do
7: if (k 6= i and k 6= j) then
8: for l = 0, 1, 2, 3 do
9: if (l 6= i and l 6= j and l 6= k) then
10: K [n] = Ga [i] ||Gb [j] ||Gc[k]||Gd [l];
11: n + +; %Compute 24 candidates of the round

key
12: end if
13: end for
14: end if
15: end for
16: end if
17: end for
18: end for
19: flag[24] = 0; %initial a flag array to index each candidate of the round

key
20: for i = 0, . . . , 23 do
21: for j = 0, . . . , sizeof (G) do
22: tmp = G[j]⊕ K [i];
23: if (tmp [0] 6= 0 and tmp[1] 6= 0 and tmp[2] 6= 0 and tmp[3] 6= 0)

then
24: flag[i] = −1; %set the flag of the candidate of the round key

which didn’t pass the check to -1
25: break;
26: end if
27: end for
28: end for
29: for i = 0, . . . 23 do
30: if (flag [i] == 0) then
31: return K [i]; %return the remaining candidate of the round key
32: end if
33: end for
34: return error %return ‘‘error’’ if no candidate left
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