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ABSTRACT Recently, satellite image analytics based on convolutional neural networks have been vigor-
ously investigated; however, in order for the artificial intelligence systems to be applied in practice, there
still exists several challenges: (a) model explanability to improve the reliability of the artificial intelligence
system by providing the evidence for the prediction results; (b) dealing with domain shift among images
captured by multiple satellites of which the specification of the image sensors is various. To resolve the
two issues in the development of a deep model for satellite image analytics, in this paper we propose a
multi-domain learning method based on attention-based adapters. As plug-ins to the backbone network,
the adapter modules are designed to extract domain-specific features as well as improve visual attention
for input images. In addition, we also discuss an alternating training strategy of the backbone network and
the adapters in order to effectively separate domain-invariant features and -specific features, respectively.
Finally, we utilize Grad-CAM/LIME to provide visual explanation on the proposed network architecture.
The experimental results demonstrate that the proposed method can be used to improve test accuracy, and
its enhancement in visual explanability is also validated.

INDEX TERMS Deep network parametrization, multi-domain learning, satellite image analytics, visual
explanation.

I. INTRODUCTION
With the development of remote sensing technology, satel-
lite imagery is now being utilized for a variety of appli-
cations such as environmental monitoring. For instance,
South Korea’s satellite Chollian1 provides meteorological
and ocean information around Korean peninsula; the imagery
data is analyzed for typhoon forecasting, the detection of
climate change, and so on.

However, for some analysis tasks, the decipherment of
the satellite imagery should be conducted by human experts.
According to SIA,2 if a 100km2 (10km × 10km) image is

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinjia Zhou .
1https://nmsc.kma.go.kr.
2https://www.si-analytics.ai.

supposed to be deciphered in 300m× 200m units, the human
experts should annotate about 1650 sub-images for the entire
image; this requires at least 200 hours.

Hence, the need of automating the annotation process
is recently emerging; to achieve this, there have been
attempts based on the convolutional neural network (CNN),
e.g., [1]–[3]. Nevertheless, in order for the artificial intelli-
gence (AI) systems (based on deep networks) to be applied
in practice, there still exists a room for improvement; in this
paper we focus on the following two points:
Model Explanability. Since most of analytics applications

for satellite imagery are highly critical in their accuracy (e.g.,
disaster prediction), wrong decision of the AI systems could
cause significant problems. Hence, the reliability of the AI
systems become extremely important in this case; with regard
to the prediction results provided by the AI systems, it should
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FIGURE 1. Multi-domain images provided by the Digital Globe3

satellites [5]. The images lie on different domains according to
operational altitude, spectral characteristics, and resolutions.

TABLE 1. Summary of four land-use aerial/satellite datasets from
different domains.

be explained how the results come out. In this work, we par-
ticularly focus on visual interpretability of deep networks.
In comparison with classical intelligent systems (such as
rule-based) of which the decomposable pipelines allow each
individual component to provide a natural intuitive explana-
tion, a deep model could give better task performance, but its
abstraction and complexity (arised from stacking lots of lay-
ers) make hard to interpret. To address it, Selvaraju et al. [4]
proposed Grad-CAM as a scheme for the visual explanation
to enhance localization of categories in images; our method
is developed to make the best use of it.
Handling domain shift. If dealing with imageries from

multiple satellites, we should consider domain shift among
them. For instance, Fig. 1 show images captured by five
different satellites; the domain shift occurs according to the
specification of the image sensors. Also, Table 1 describes the
details of four land-use aerial/satellite datasets, which were
collected from different institutions [10], [11]. Given multi-
domain images, we aim to build a deep network model to be
suited well into the multiple source domains; this problem is
referred to as multi-domain learning [12]. Here, the impor-
tance of constructing universal representations [13] stands
out more than under domain adaptation of which the objective
is to adapt the model from source domains to the (unlabeled)
target domain.

In order to resolve the two issues in the development of a
deep model for satellite image analytics, we propose a multi-
domain learning method based on attention-based adapters.
Plugged into the backbone network, the adapter modules
are designed to improve visual attention for input images.
In addition, given training data from multiple domains,
the adapter modules capture domain-specific features of each

3https://www.maxar.com.

domain, whereas domain-invariant features are extracted into
the backbone network; to do so, we also introduce a training
strategy to effectively split the domain-invariant and -specific
features.

In summary, the main contributions of this paper are
threefold. First, we propose a network architecture for
multi-domain learning, based on attention-based adapters.
As plug-ins to the backbone network, the adapter modules not
only capture domain-specific features but also improve chan-
nel and spatial attention for input images. Second, we pro-
pose an alternating training strategy of the backbone and the
adapters. In the approach, the training is performed by alter-
nately freezing the two components; this allows to iteratively
achieve effective separation of domain-invariant and -specific
features. Third, we evaluate the proposed method on two
kinds of multi-domain datasets, of which one includes
aerial/satellite imagery. Through the experiments, we first
demonstrate its effectiveness in classification performance,
and the visual explanability is also validated.

II. PROBLEM DESCRIPTION
Fig. 2 describe our motivating scenario. In this figure,
we assume that multiple satellites carry out remote sensing on
a variety of regions. Also, we suppose that spatial resolutions
and pixel sizes of the sensed images are various according
to the satellites, which implies domain shift among them.
Accordingly, each satellite would have images from different
domains.

Periodically, each satellite transmits the captured images to
the ground station; the received images are not only analyzed
for the specific tasks (e.g., typhoon prediction, scene recogni-
tion), they can be also utilized to train machine learning mod-
els to automate the analysis process. In this work, we consider
CNN-based deep networks for the automation process, and a
situation is assumed when a sufficient amount of images has
been collected in the ground station for training.

Along with human experts, the trained deep network is
utilized to analyze upcoming images from the satellites; in
addition, it also provides the visual evidence for the drawn
results. Hence, the considered deep network model should
have functionalities to support the explanability.

We now formulate a multi-domain problem for the above
scenario. GivenK domains (from the satellites), letDk denote
a distribution on each domain k (1 ≤ k ≤ K ), where D
stands for the mixture of all the domains. Here we consider
image classification tasks; each domain distribution exists on
the joint space X × Y , where X and Y are input and label
spaces, respectively. We use Dk = {(xkn, y

k
n)}

Nk
n=1 to denote

a dataset from domain k , where (xkn, y
k
n) ∼ Dk , and Nk is

the number of the corresponding training samples. We also

use D =
K⋃
k=1

Dk to denote the union set of the single domain

datasets; correspondingly,N stands for the number of the total
training samples in D.

In this formulation, the considered multi-domain learning
problem has the following objective: to minimize the target
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FIGURE 2. The considered scenario for explanable multi-domain learning with satellite images.

risk ε := Pr(x,y)∼D[h(x) 6= y], where h : X → 1Y is the
corresponding hypothesis and 1Y is the probability simplex
over Y . In addition, the hypothesis should be constructed to
provide good visual attention so that it supports good visual
explanability.

III. RELATED WORK
A. SATELLITE IMAGE ANALYTICS BASED
ON DEEP LEARNING
First we review the existing literature on deep learning
approaches to satellite image analytics. In [2], the authors
proposed amethod for fusing extracted features frommultiple
CNNs, in order to improve classification accuracy on the
aerial/satellite datasets described in Table 1; Chaib et al. [15]
also proposed a feature fusion method including a dimension
reduction phase to speed up the classification task as well as
to achieve better task performance. With regard to the similar
datasets, Cheng et al. [16] presented a metric learningmethod
to make features from different classes more discriminative.
In [17], the authors proposed ARCNet that utilizes a recurrent
attention mechanism to help discard non-critical information,
which allows to focus on key region of images in training.
In [18], the authors presented an architecture including pixel-
set and temporal attention encoders in order to improve clas-
sification precision for satellite image time series.

In addition, there also have been studies to develop deep
learning methods for addressing multi-domain issues on
satellite image datasets, e.g., [11], [19]–[26]. Nevertheless,
they mainly focus on domain adaptation; as mentioned in the
introductory section, in this paper we deal with the related but
different problem, multi-domain learning.

B. VISUAL EXPLANATION
Next we summarize the existing studies on providing visual
explanation from deep networks. Class activation mapping
(CAM) [27] is one of the first approaches to identify dis-
criminative regions of input images fromCNNs. By replacing
fully-connected layers with convolutional layers and global
average pooling [28], it achieves class-specific feature maps

by weighting feature maps with respect to classes; there have
been works that utilize the CAM for visual explanation of
aerial/satellite imagery, such as [29]. However, the CAM
has a drawback it is only applicable to CNN architectures
utilizing global average pooling over the final convolutional
feature maps; to overcome this limitation, Selvaraju et al. [4]
proposed Grad-CAM (of which the detailed procedure is
described in Section IV-C); consequently, we consider the
Grad-CAM as the main explanation method in this paper.
It is noted that Chattopadhay et al. presented Grad-CAM++
[30] as the extension of Grad-CAM, in order to improve
object localization and occurrence explanation of multiple
instances in a single image; since the difference between the
two approaches lies in only how to compute neuron impor-
tance weights, our method also would be fitted well into the
Grad-CAM++.

In addition to the above activation-based strategies, there
also exist perturbation-based approaches to identify which
part of input data contributes to the prediction. For instance,
Ribeiro et al. [31] presented LIME that learns an interpretable
model locally around the prediction. As a model-agnostic
method, the LIME determines the parts to be highlighted
by learning the weights of each perturbation of a sample;
an evaluation using this approach will be also conducted in
the experimental section. With the similar philosophy to the
LIME, SHAP [32] computes the weights based on Shapley
values. We also note that there exists an approach that utilizes
integrated gradients from the baseline (e.g., the black image)
to the input in order to satisfy sensitivity and implementation
invariance [33].

C. MULTI-DOMAIN LEARNING
Given source domains, multi-domain learning aims to learn
a model in order to improve the task performance across
the domains. Here we summarize the existing studies on the
multi-domain learning and describe their limitations.

One of the promising strategy for the multi-domain learn-
ing is to capture domain-invariant features to minimize
domain discrepancy while guaranteeing domain-specific task
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FIGURE 3. Various adapter modules for multi-domain learning. Left: series adapter [44]. Middle top: series residual adapter [12],
[43], [44]. Middle bottom: parallel residual adapter [42]. Right: the proposed adapter. Note that the series and parallel residual
adapters are mainly applied with ResNet [45]; BN denotes batch normalziation.

performance. To achieve this, In [34], the authors proposed
domain separation networks for domain adaptation, consist-
ing of private networks for each domain and the shared
network. In their model, each of the private networks learn
to extract domain-specific features, whereas the shared net-
work is trained to capture domain-invariant features. As its
extension, Liu et al. [35] modified the network architecture
to apply to multi-domain learning; the authors introduced
the joint adversarial loss to prevent the mixture of sam-
ples from different classes across domains during domain-
invariant feature extraction, and they also proposed a method
for the orthogonal regularization between private features
across domains. In [36], the authors proposed a method
based on multi-task learning; in their method, each domain-
specific features are co-embedded into a common sparse
space, and the co-embedded features are fused to extract
domain-invariant features.

However, many of these approaches require large param-
eter spaces to extract the specific features of each domain.
Instead, to reduce parameter sizes of the domain-specific
components, lightweight adapter-based methods have been
also introduced, in which domain-specific features are
extracted into the adapter modules. In [13], the authors pro-
posed to exploit the parameters in batch normalization [37]
and instance normalization [38], [39] layers as adapter
modules; the remaining core model parameters are shared
for every domain. Also, expanding this, Berriel et al. [40]
presented a budget-aware adapter that selects the most
relevant feature channels for each domain; to reduce the
computational complexity of the model, in their method,
the channel selection is performed under a given complexity
budget.

In [12], the authors proposed series residual adapter mod-
ules (mainly for ResNet [45]), which consist of a 1 × 1 filter
bank in parallel with a skip connection (middle top panel
in Fig. 3). The adapter modules are applied (as plug-ins)
in each residual block of the main backbone network. If
we denote an intermediate feature map as F ∈ RH×W×C ,

the refined output becomes

F′ = F+ diag(π) ∗ F, (1)

where π ∈ RC×C is the adapter module, and diag(·) is the
operator to reshape the input matrix in a diagonal filter bank.
It is noted that the controller modules in [41] can be thought as
one of the series residual adapters. Also, Li et al. proposed a
data drivenmethod, called covariance normalization, in order
to effectively reduce the size of the adapter parameters via
two principal component analyzes (PCAs); the series resid-
ual adapters are primarily considered in their evaluation.
Meanwhile, [42] presented parallel residual adapter modules
(middle bottom panel in Fig. 3); that is, denoting the existing
convolution filter bank as f, the refined output is computed as

F′ = f ∗ E+ diag(π) ∗ E, (2)

where E is a feature map from the previous layer; note
that F = f(E). In addition, there have been methods that
exploit series adapter modules (left panel in Fig. 3). For
instance, Zhao et al. [44] proposed a neural architecture
search (NAS)-based approach that adaptively discover the
structure of the adapter modules for different domains to
balance between the effectiveness and compactness; it is
noted that, in addition to the series adapter, the series residual
adapter is also considered in the adapter module selection for
each layer.

Besides, there also exist studies that utilize other types of
adapters. In [46], the authors presented an adaptive param-
eterization approach, in which adapter sizes are determined
by the level of complexity of each domain. With regard to
the location of adapters, Xiao et al. [47] exploited an adapter
consisting of two convolutional layers only after the feature
extraction network. It is additionally noted that, assuming
no prior knowledge of domain labels, Deecke et al. [48]
proposed a dynamic residual adapter as an adaptive gating
mechanism to help account for latent domains.
Limitations: However, these approaches based on adapter

modules have the two limitations. First, in the existing
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FIGURE 4. The proposed network architecture. A CNN is used as the domain-agnostic backbone, and we also use two attention
modules for each convolutional layer as domain-specific components.

approaches, adapter modules were not designed to improve
visual explanability. That is, even though the adapter mod-
ules can help to improve domain-specific task performance
upon the domain-agnostic backbone, they do not consider
additional process to motivate the improvement of the visual
attention for input images. We note that Yang et al. [49]
proposed a deep attention adapter based on the attention
mechanism of ECA-Net [50]; however, it still has the problem
in the separation of domain-invariant and -specific features,
as described in the following paragraph.

Second, most of the adapter-based approaches mainly
employ sequential learning process of domain-agnostic
and -specific components. That is, in their approaches, (a) the
domain-agnostic backbone is pre-trained on a general dataset
(e.g., ImageNet [51]); (b) the domain-specific components
are then trained by freezing the backbone parameters, for each
single domain dataset. Even though Rebuffi et al. [12] pre-
sented the experimental results when applying theirmethod to
end-to-end learning, in order to train (or fine-tune) the back-
bone, they used a naïve training approach that samples mini-
batches from each domain in a round robin fashion, which has
a limitation on effectively separating domain-invariant and -
specific features. In addition, the reviewed approaches are not
suitable for training from scratch in common.
The Proposed Solution: To overcome the first limita-

tion, we develop our adapter modules to improve visual
explanability by investigating what and where to focus on
input images. In the proposed adapter modules, we employ
two attention processes with regard to channel and spatial
information. Also, to resolve the second limitation, we pro-
pose an alternating training strategy for the separation of
domain-invariant and -specific features. In each iteration, the
domain-agnostic backbone and the domain-specific adapters
are updated sequentially by freezing each other; the iterative
freezing allows to effectively extract domain-specific features
while the remaining features (i.e., domain-invariant) are cap-
tured by the backbone. Hence, the proposed strategy enables
to train the network from scratch, unlike the reviewed adapter-
based methods.

IV. A PROPOSED MULTI-DOMAIN LEARNING METHOD
FOR BETTER VISUAL EXPLANATION
In this section, we propose our method for multi-domain
learning to enhance the visual explanation. The proposed
method consists of three phases, and the following sub-
sections describe each of them; in the end of this section,
the whole procedure is described in Algorithm 1.

A. PHASE 1: CONSTRUCTING ATTENTION-BASED
ADAPTERS UPON THE BACKBONE NETWORK
For multi-domain learning, we take an approach to train
multiple adapters with respect to each domain, in addition
to the backbone network. wk = {w,mk} denotes model
parameters for domain k , where w is the domain-agnostic
component shared for all the domains, and mk is each
domain-specific component (i.e., adapter modules), respec-
tively. In the proposed network architecture, a CNN (e.g.,
AlexNet [52], ResNet [45], etc.) is used as the backbone, and
we adopt CBAM [14] for the domain-specific components,
as illustrated in Fig. 4.

The CBAM consists of two sequential sub-modules: the
channel and the spatial attention module, which are applied
to each convolutional layer in order to adaptively refine the
extracted features. In training, we use the two sub-modules as
domain-specific components; thus, a set of them corresponds
to mk for each domain k . For an intermediate feature map
F ∈ RH×W×C extracted from each convolutional layer, let
Mc ∈ R1×1×C and Ms ∈ RH×W×1 denote its 1-D channel
attention map and 2-D spatial attention map, respectively.
Then, the overall attention process is given as,

F′ = Mc(F)⊗ F, (3)

F′′ = Ms(F′)⊗ F′, (4)

where ⊗ is element-wise multiplication. Note that F′′ is the
final refined output of the convolutional layer.

However, different from the original CBAM, in our atten-
tion process, the final output of each convolutional layer is
computed as

F′′ =Ms(F′)⊗ F′ + F. (5)
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Algorithm 1 Overall Algorithm. Note That wk = {w,mk}

Input: Training dataset D, the learning rate η, test images
to be examined on the trained network
Output: w,mk for every domain k , and Grad-CAM results
for the test images

/* Phase 1: Constructing attention-based adapters upon the
backbone network*/
construct the adaptersmk upon w for every domain k
/* Phase 2: Alternating training of domain-agnostic and -
specific components */
repeat
for k = 1, · · · ,K do

compute L(wk ; ξ ∼ D)
end for
/* Freeze {mk} and update w */
w← w− η

∑K
k=1

Nk
N ∇wL(wk ; ξ ∼ D)

for k = 1, · · · ,K do
compute Lk (wk ; ζk ∼ Dk )
/* Freeze w and updatemk */
mk ← mk − η∇mkLk (wk ; ζk ∼ Dk )

end for
until convergence
/* Phase 3: Visual explanation on the trained network */
compute Grad-CAM on the trained network for the test
images

Empirically, we identified that the modified attention process
can improve the separation of domain-invariant and -specific
features to the CNN backbone and the two attention modules,
respectively.

Here, the channel attention map Mc(F) is constructed by
analyzing the inter-channel relationship of features. That is,
in order to find the channels that need to give more attention
for an input image x, the following operation is conducted:
(a) Spatial information of the intermediate feature map is
aggregated from average-pooling and max-pooling. (b) The
both descriptors with each pooling operation, denoted as
Fc
avg and F

c
max respectively, are then forwarded to multi-layer

perceptron (MLP) with one hidden layer as

Mc(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ (W1(W0(Fc
avg))+W1(W0(Fc

max))), (6)

where σ denotes the sigmoid function, and W0 and W1
denote weights of the MLP layers.

Given the channel-refined features, the followed spatial
attention module produces the spatial attention mapMs from
inter-spatial relationship of them, of which the goal is to
enhance where to focus on an input image. To achieve this,
both average-pooling and max-pooling are firstly applied for
the channel-refined feature map, as in the channel attention
module; then, the concatenated descriptor [F′savg;F

′s
max] is

forwarded for an additional convolutional operation f applied

to create the spatial attention map, as follows:

Mc(F′) = σ (f ∗ [AvgPool(F′);MaxPool(F′)])

= σ (f ∗ [F′savg;F
′s
max]). (7)

By applying the two attention processes, we can have
improved intermediate feature maps for visual explanation,
which contain better information of what and where to focus
on input images. Also, in this work, we additionally assign
the role of the extraction of domain-specific features to the
adapter modules; accordingly, it can be achieved that the
proposed network architecture provides both the improved
visual explanability and domain robustness at the same time.

B. PHASE 2: ALTERNATING TRAINING OF
DOMAIN-AGNOSTIC AND -SPECIFIC COMPONENTS
The proposed network architecture has been developed to
extract domain-invariant features into the backbone network,
whereas domain-specific features are extracted to the adapter
modules. In addition, the parameters in the adapter mod-
ules should be able to have improved channel and spatial
attention for better visual explanation. To achieve this, now
we introduce a training approach for the domain-agnostic
and -specific components based on alternating optimization,
which is an iterative procedure to minimize the objective
function jointly over all variables by alternating restricted
minimizations over the individual subsets of variables [53].

In the training process, we consider the following
objective:

objective : min
w,m1,··· ,mK

1
K

K∑
k=1

Lk (wk ), (8)

where Lk (wk ) = Eζk∼Dk [Lk (wk ; ζk )] is the objective func-
tion (e.g., cross-entropy loss) for domain k , and ζk denotes the
unbiased randomness in theminibatch construction underDk .

As mentioned in the previous section, for the separation
of domain-invariant and -specific features, the reference [12]
considers a strategy of firstly training the shared component
(i.e., w in our case) by sampling minibatches from each
domain in a round robin fashion, then subsequently training
each domain-specific components with the corresponding
domain dataset.

Instead, our method is developed so that the domain-
agnostic and -specific components are jointly trained in each
iteration; it also allows to train them from scratch. As illus-
trated in Fig. 5, the domain-agnostic component w is firstly
trained (from themerged training samples for all the domains)
by fixing the current adapter modules for each domain k
(i.e., mk ); the w is updated by the averaged gradients for
each domain according to the number of training samples.
Subsequently, each of the mk is trained (from the corre-
sponding single domain samples) by freezing the updated w,
in order to extract domain-specific features. By doing this,
as domain-specific features are extracted into the adapter
modules, the remaining domain-invariant features becomes
concentrated on the backbone.
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FIGURE 5. Illustration of the proposed alternating training strategy, which
allows to separate domain-invariant and domain-specific features.

In summary, the update rule of the proposed alternating
training in each iteration is described as follows:

1) Freeze {mk} and update w. Compute L(wk ; ξ ∼ D),
where ξ denotes the unbiased randomness in the mini-
batch construction under D. Then, update w as w −
η
∑K

k=1
Nk
N ∇wL(wk ; ξ ∼ D), where η is the learning

rate.
2) Freeze w and update {mk}. Compute Lk (wk ; ζk ∼

Dk ) for each domain k . Then, update mk as mk −

η∇mkLk (wk ; ζk ∼ Dk ) for every domain k .
We now analyze the convergence of the proposed alter-

nating training strategy. In the analysis, we use L(wk ) to
denote Eξ∼D[L(wk ; ξ )]. Also, we use w(t)

k to denote the
model parameters for domain k at t-th iteration; w(0)

k stands
for the initial parameters.

We first provide some assumptions and lemma for the
convergence proof.
Assumption 1 (smoothness): Lk (θ ) is β-smooth, ∀k;

Lk (θ1) ≤ Lk (θ2)+
〈
∇Lk (θ2), θ1−θ2

〉
+
β
2 ‖θ1−θ2‖

2, ∀θ1, θ2.
Assumption 2 (bounded gradient of w): There exists a

constant G such that E‖∇wLk (w(t)
k )‖2 ≤ G2, and the follow-

ing holds: ‖∇wLk (w(t)
k ) − ∇wL(w(t)

i6=k )‖ ≤ ‖∇wLk (w
(t)
k ) −

∇wLk (w(t)
i6=k )‖, ∀k, i, t .

Assumption 3 (bounded gradient ofmk ): There exists
constants Qk and Rk such that E‖∇mkLk (w

(t)
k )‖2 ≤ Q2

k and

E
∥∥∥∇mkLk

(
w(t)
k −

η
K

∑K
i=1 ∇wL(w

(t)
i )
)∥∥∥2 ≤ R2k , ∀k, t ,

Lemma 1: If Assumption 2 is satisfied, the following holds
under the proposed alternating training strategy:

E
∥∥∥∇wLk (w(t−1)

k )−
1
K

K∑
i=1

∇wL(w(t−1)
i )

∥∥∥2≤ 4(K− 1)G2

K
. (9)

Proof: The proof is available in Appendix VI.
In order to establish the convergence bound of the alter-

nating training strategy, we provide Theorem 1 as follows.
In this theorem, for simplicity, the learning rate scheduling is
not considered, and we suppose that Nk is identical for every
domain k .

Theorem 1: If Assumption 1, 2, and 3 hold, the proposed
alternating training strategy ensures the following for 0 <
η ≤ 1

β
and T ≥ 1:

1
T

T∑
t=1

E‖∇Lk (w(t−1)
k )‖2 ≤

2
ηT

(
E[Lk (w(0)

k )]− L∗k
)

+βδη +
16(K − 1)G2

K
+ 4Q2

k + 2R2k ,
4 (10)

where L∗k is the optimal value for domain k, and δ is

the smallest value such that E
∥∥∥ 1
K

∑K
i=1 ∇wL(w

(t−1)
i ; ξ (t)) +

∇mkLk
(
w(t−1)
k −

η
K

∑K
i=1 ∇wL(w

(t−1)
i ; ξ (t)); ζ (t)k

)∥∥∥2 ≤(
E
∥∥∥ 1
K

∑K
i=1 ∇wL(w

(t−1)
i )+ g(t)k

∥∥∥2 + δ).
Proof: Here we provide a sketch of the proof. The

complete proof is available in See Appendix VI.
By Assumption 1, we have

E[Lk (w(t)
k )] ≤ E[Lk (w(t−1)

k )]

+E
〈
∇Lk (w(t−1)

k ),w(t)
k − w(t−1)

k

〉
+
β

2
E‖w(t)

k − w(t−1)
k ‖

2. (11)

Then, letting g(t)k =∇mkLk
(
w(t−1)
k −

η
K

∑K
i=1∇wL(w

(t−1)
i )

)
,

we get

E
〈
∇Lk (w(t−1)

k ),w(t)
k − w(t−1)

k

〉
≤ −

η

2

(
E‖∇Lk (w(t−1)

k )‖2

+E
∥∥∥ 1
K

K∑
i=1

∇wL(w(t−1)
i )+ g(t)k

∥∥∥2
−
16(K − 1)G2

K
− 4Q2

k − 2R2k ,
)
. (12)

Also we get

E‖w(t)
k − w(t−1)

k ‖
2

≤ η2
(
E
∥∥∥ 1
K

K∑
i=1

∇wL(w(t−1)
i )+ g(t)k

∥∥∥2 + δ). (13)

By combining the inequalities (12) and (13) into (11) and
taking an average over 1 ≤ t ≤ T , we finally have the
inequality (10).

C. PHASE 3: VISUAL EXPLANATION ON THE
TRAINED NETWORK
The final phase of our method is visual explanation for input
images on the trained network in Phase 2. As a visual expla-
nation tool, we utilize Grad-CAM [4].

Grad-CAM is a gradient-weighted class activation
approach to improve visual explanability of the CNN. The
earlier work CAM [27] utilizes the insight that the last
convolutional layer is expected to have the best representation

4In (10), we use the expected squared gradient norm to characterize the
convergence rate, as in [54]–[58].
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FIGURE 6. Illustration of providing visual explanation for input images on the trained network.

for semantic and spatial information; thus, the neurons in
the last convolutional layer would be the most appropriate to
capture class-specific information for an input image. Under
the similar philosophy, the Grad-CAM distinctively utilizes
the gradient information of the last convolutional layer to
assign importance weights to the feature maps.

Firstly, Grad-CAM obtains the gradient of ŷc (before the
softmax), i.e., the score for class c, with regard to the feature
map Fu, where u denotes its channel index. The obtained
gradients are then forwarded to global average pooling [28]
to get the neuron importance weight as:

αcu =
1
Z

∑
i

∑
j

∂ ŷc

∂Fuij
, (14)

where height and weight dimensions are indexed by i and j,
respectively.

After the importance weight αck is obtained, the weighted
linear combination of the feature maps is conducted
as ReLU (

∑
u α

c
uF

u); this result provides a coarse class-
discriminative localization map that visualizes the important
regions for the input image.

Until now, Grad-CAM has proven its effectiveness by
being applied to various studies. As described in Fig. 6, in this
work the Grad-CAM is exploited as a scheme to provide
the visual evidence for the drawn results from the proposed
network; this would assist human experts to make the final
decision.

V. EVALUATION
In this section, we experimentally demonstrate the advan-
tages of the proposed method via comparison with other
approaches.

A. COMPARED METHODS AND EVALUATION METRICS
Throughout this section, we mainly compare the follow-
ing three approaches for training from scratch; furthermore,
several state-of-the-art methods are also considered for the
evaluation.

• Share: A single network is trained using the merged
training samples from all the domains. For the network
model, the backbone CNN (i.e., w) is used in training.

• Share+CBAM: Similar to the Share, a single network
is trained with the merged training samples from all the
domains; however, the proposed network architecture
(described in Section IV-A) is utilized in training.

• Share + CBAM + AT: Similar to the Share + CBAM,
the proposed network architecture is utilized in train-
ing; moreover, the alternating training (AT) strategy
(described in Section IV-B) is additionally applied.

For evaluation metrics, we first consider test accuracy. The
test accuracy is measured with test samples for each domain;
the averaged one is computed as

A(w1, · · · ,wK ) =
1
K

K∑
k=1

Ak (wk ), (15)

where Ak (·) denotes test accuracy on domain k , which
is calculated from test samples for each domain. Next,
F1-score is utilized to consider imbalancedness of the eval-
uation datasets; we compute an averaged F1-score for all the
domains as

F1(w1, · · · ,wK ) =
1
K

K∑
k=1

2 · precision(wk ) · recall(wk )
precision(wk )+ recall(wk )

,

(16)

where precision(wk ) and recall(wk ) are the precision and the
recall values for domain k . Note that in the following the
result values are reported as the mean± standard deviation of
ten independent runswith different random seeds. In addition,
we also consider Grad-CAM [4] and LIME [31] visualization
results for the evaluation; they will be compared qualitatively.

B. PACS DATASET
a: SETUP
PACS dataset [59] contains 9991 images of seven classes
(dog, elephant, giraffe, guitar, horse, house, and person);
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TABLE 2. Test accuracy and F1-score (%) on PACS dataset with respect to different adapter types for multi-domain learning.

TABLE 3. Test accuracy and F1-score (%) on PACS dataset with respect to different multi-domain training methods.

they belong to four different domains: Photo, Art Painting,
Cartoon, and Sketch. Similar as in [59], we randomly divided
each domain data into 90% as training data and 10% as
test data. For the base network model, we used Caffenet,
a variant of AlexNet [52]; the detailed architecture can be
found in [60]. For training, we used pure SGD as an opti-
mization method to minimize the cross-entropy loss, with a
weight decay of 0.0005. The trainings were conducted for
2000 iterations with aminibatch size of 128. The initial rate of
η was set to 0.01; we dropped the learning rate by 0.1 at 80%
of the total training iterations. Also, we used random cropping
and horizontal flipping in the data augmentation pipeline of
all the compared strategies.

b: RESULTS
From Table 2, we compare test accuracy and F1-score on
PACS dataset with respect to the four different types of
domain adapters. In the experiments, the Share scheme
has been applied for the training, and for fair comparison,
we ignored batch normalization [37] layers in common.
As shown in the table, the proposed adapter architecture
outperforms the other three state-of-the-art architectures in
view of both the evaluation metrics. Except for ours, it is seen
that the series residual adapter shows the best performance
values; the serial adapter provides noticeable lower outcomes
compared to the other threes.

Following this, Table 3 depicts the effectiveness of the
proposed alternating training strategy on PACS dataset. Here
it is worth noting that we found in experiments that the
proposed alternating training strategy does not provide a
notable effect when the learning rate is relatively high, but
its effect increases as lowering the learning rate; the table
shows the results under the initial learning rate of 0.001.

TABLE 4. Construction of the multi-domain satellite/aerial training
samples.

Under the low learning rate, we see from the table that the
alternating training strategy provides the performance gain
of ∼4.5 % in both averaged test accuracy and F1-score,
compared to Share + CBAM. Also, from the results under
Share+ CBAM, we can see that the proposed network archi-
tecture produces better outcome than Share, even without the
alternating training. In the case of Share, it not only has the
lowest test accuracy and F1-score, but also the largest gap
between the two evaluation metrics; particularly on Sketch,
the Share yields noticeably greater gap than the two other
approaches.

Figure 7 shows the Grad-CAM visualization results. From
the figure, we can see that the proposed methods allow to
focus better on the regions where the target object is located.
With regard to Art Painting, it is observed that Share +
CBAM + AT improves visual explanability by providing
the attention on the characteristic part of the target object
(e.g., the tongue of dog and the horns of giraffe). For the horse
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FIGURE 7. Selected Grad-CAM visualization results on PACS dataset. The Grad-CAM visualization is computed for the output of
the last convolutional layer. The ground-truth label is shown on the bottom of images.

FIGURE 8. Selected LIME visualization results on PACS dataset. Positive and negative pixels are highlighted in green and red,
respectively. The ground-truth label is shown on the bottom of images.

image of Cartoon, Share completely fails to find the target
object regions, whereas the Share + CBAM + AT almost
exactly highlights the important regions. In addition, we can
also see that all the three strategies provide a similar level
of visual explanation with respect to Photo, but regarding
Sketch, Share+CBAMand Share+CBAM+ATgive better
results than Share.

Figure 8 shows the LIME visualization results. Similar
to the Grad-CAM results, we see from the figure that our
approaches allow LIME to find more appropriate superpixels

for explaining instances. For instance, in the case of the guitar
image of Photo, while Share fails to cover the entire body
of the guitar, Share + CBAM and Share + CBAM + AT
highlight the region almost accurately. Also, for the elephant
image of Photo, the proposed approaches provide the appro-
priate superpixels for the nose and ear, distinct characteristics
of an elephant, unlike Share. In addition, for the horse image
of Sketch, it is seen that only Share + CBAM + AT has
succeeded in capturing not only the legs but also the head
of the horse.
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TABLE 5. Test accuracy (%) on the multi-domain aerial/satellite dataset with respect to different adapter types for multi-domain learning.

TABLE 6. Test accuracy (%) on the multi-domain aerial/satellite dataset with respect to different training methods.

FIGURE 9. Selected Grad-CAM visualization results on the multi-domain aerial/satellite dataset. The Grad-CAM visualization is
computed for the output of the last convolutional layer. The ground-truth label is shown on the bottom of images.

C. MULTI-DOMAIN AERIAL/SATELLITE DATASET
a: SETUP
For the experiments, we constructed a multi-domain
aerial/satellite dataset with common class samples among
AID [8] (600 × 600 pixel images with 0.5 ∼ 8m resolution),
NWPU [7] (256 × 256 pixel images with 0.2 ∼ 30m resolu-
tion), PatternNet [9] (256 × 256 pixel images with ∼ 0.8m
resolution), and UCMerced [6] (256× 256 pixel images with
0.3m resolution), as depicted in Table 4. In the experiments,
we resized the images to 225 × 225 pixel images. For
the base network model, we used CaffeNet similarly as on

the PACS dataset. For training, we used pure SGD as an
optimization method to minimize the cross-entropy loss, with
a weight decay of 0.0005. The trainings were conducted for
2000 iterations with a minibatch size of 128. The initial rate
of η was set to 0.01; we dropped the learning rate by 0.1 at
80% of the total training iterations.

b: RESULTS
Table 5 depicts test accuracy and F1-score on the considered
multi-domain aerial/satellite dataset with respect to domain
adapter types. Unlike on the PACS dataset, where the serial
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FIGURE 10. Selected LIME visualization results on the multi-domain aerial/satellite dataset. Positive and negative pixels are
highlighted in green and red, respectively. The ground-truth label is shown on the bottom of images.

residual and the proposed adapter architectures provide better
results than the others, we observe from the table that the
parallel residual adapter yields the best performance among
all the four types; it is seen that the proposed one is placed in
the second rank. In addition, similar as in Table 2, the serial
adapter shows the performance drop of ∼20% compared to
the other architectures.

Next, Table 6 describes the task performance with respect
to training methods on the multi-domain aerial/satellite
dataset. From the table, it is seen that Share + CBAM +
AT achieves the best test accuracy and F1-score among
the three compared strategies. Unlike on the PACS dataset,
we identified that the alternating training strategy gives the
performance gain regardless of the learning rate; the table
shows the results under the initial learning rate of 0.01,
as stated in the experimental setup. In the case of Share +
CBAM, we see that it outperforms Share also on this dataset,
even without the alternating training; here we can observe
the performance gain of ∼1.5% in both the evaluation
metrics.

Figure 9 shows the Grad-CAM visualization results. Sim-
ilar as on the PACS dataset, we see from the figure that the
proposed method focuses better on the target object regions;
in some cases, it provides almost perfect visual explanation
(e.g., anchorage and river of AID, beach of NWPU, and game
space of PatternNet). On the other hand, we have found that
in rare cases, the Share + CBAM + AT also induces reverse
attention, as shown in the airfield image of PatternNet; that
is, for the image the region is highlighted except only the
target object. However, even if the focused regions become
reverse, the degree of explainability that human beings accept
as color could be similar with the correct attention cases; the
improvement in reverse attention also might be helpful to

train classifiers, which would result in higher classification
performance.

Figure 10 shows the LIME visualization results. From
the figure, we observe that the target object region is well
captured in the order of Share + CBAM + AT, Share +
CBAM, and Share; this is seen clearly, particularly for the
anchorage images. For the other cases, it is seen that the three
strategies show the similar explanation performance; but, for
the airfield image of NWPU, Share + CBAM has succeeded
in highlighting the red airplane at the bottom right, while the
others could not.

VI. CONCLUSION
In this paper, we proposed a multi-domain learning method
for satellite image analytics, based on attention-based domain
adapters. For the proposed method, we first introduced the
architecture of the attention-based adapters, which improve
channel and spatial attention for input images. The adapter
modules are trained jointly with the backbone network; to
do so, we also presented an alternating training strategy to
effectively separate domain-invariant and -specific features
into the backbone and the adapters, respectively. Finally,
we exploited Grad-CAM to provide visual explanation on
the proposed network architecture; in the evaluation of the
proposed method, LIME was also considered for another
explanation approaches. By the experiments with two multi-
domain datasets, we demonstrated that the proposed method
can not only improve task performance but also provide better
visual explanation results. In this regard, we now interest in
the related distributed learning settingswhere communication
between workers is restricted (e.g., [61]); our future work lies
in improving the alternating training strategy to fit well into
the distributed environments.
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APPENDIX A
THE PROOF OF LEMMA 1

E
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≤
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[ K∑
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(
2‖∇wLk (w(t−1)

k )‖2 + 2‖∇wLk (w(t−1)
i )‖2

)]
≤

4(K − 1)G2

K
, (17)

where the first inequality is obtained from ‖
∑K

i=1 φi‖
2
≤

K
∑K

i=1 ‖φi‖
2, ∀φi ∈ Rd , the second and the last inequality

comes from Assumption 2, and the third inequality follows
from ‖φ1 + φ2‖2 ≤ 2‖φ1‖2 + 2‖φ2‖2.

APPENDIX B
THE PROOF OF THEOREM 1
By Assumption 1, we have

E[Lk (w(t)
k )] ≤ E[Lk (w(t−1)
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where the first equality is obtained from that ξ (t) and ζ (t)k are
independent to ξ (1), · · · , ξ (t−1) and ζ (1)k , · · · , ζ

(t−1)
k , respec-

tively, the second equality is obtained from
〈
φ1, φ2

〉
=

1
2 (‖φ1‖

2
+ ‖φ2‖

2
− ‖φ1 − φ2‖

2), ∀φ1, φ2 ∈ Rd , the first
inequality follows from ‖φ1 + φ2‖2 ≤ 2‖φ1‖2 + 2‖φ2‖2,
the second and the last inequality comes from Assumption 3
and Lemma 1.

Also we get
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By combining inequalities (19) and (20) into (18), we have,
for 0 < η ≤ 1

β
,
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By dividing the inequality (21) with η
2 , we have
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By taking an average over 1 ≤ t ≤ T , finally we have
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