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ABSTRACT Deep reinforcement learning has recently been successfully applied to a plethora of diverse and
difficult sequential decision-making tasks, ranging from the Atari games to robotic motion control. Among
the foremost such tasks in quantitative finance is the problem of optimal market making. Market making
is the process of simultaneously quoting limit orders on both sides of the limit order book of a security
with the goal of repeatedly capturing the quoted spread while minimizing the inventory risk. Most of the
existing analytical approaches to market making tend to be predicated on a set of strong, naïve assumptions,
whereas current machine learning-based approaches either resort to crudely discretized quotes or fail to
incorporate additional predictive signals. In this paper, we present a novel framework for market making
with signals based on model-free deep reinforcement learning, addressing these shortcomings. A new state
space formulation incorporating outputs from standalone signal generating units, as well as a novel action
space and reward function formulation, are introduced. The framework is underpinned by both ideas from
adversarial reinforcement learning and neuroevolution. Experimental results on historical data demonstrate
the superior reward-to-risk performance of the proposed framework over several standard market making
benchmarks. More specifically, the resulting reinforcement learning agent achieves between 20-30% higher
terminal wealth than the benchmarks while being exposed to only around 60% of their inventory risks.
Finally, an insight into its policy is provided for the sake of interpretability.

INDEX TERMS Deep reinforcement learning, genetic algorithms, high-frequency trading, machine learn-
ing, market making, stochastic control.

I. INTRODUCTION
In the field of high-frequency trading (HFT), market mak-
ing (MM) is particularly salient as it is estimated to constitute
more than 65% of trading volume and 80% of limit order
traffic in some markets [1]. MM is the process of simulta-
neously quoting limit orders on both sides of the limit order
book (LOB) of a given security with the goal of repeatedly
capturing the quoted spread (i.e., the difference between the
quotes) while minimizing the inventory risk. The inventory
risk arises from uncertainties in the value of the asset held in
the market maker’s inventory, which is in general non-zero
as it depends on when and whether the orders on the two
sides of the LOB get executed. Market makers, in addition
to maximizing their risk-adjusted returns, serve a critical
role in the market by providing liquidity and immediacy in
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transactions, thereby playing a vital part in the security price
formation process, for which they are commonly incentivized
via rebates. This role is particularly important during peri-
ods of either heightened volatility or inadequate order flow.
It should therefore not come as surprising that market makers
are often colloquially referred to as ‘‘market catalysts’’.

A. RELATED WORK
Most commonly,MM is formalized as a problem in stochastic
inventory control, and especially so since the seminal work
by Avellaneda and Stoikov [2], which was in turn strongly
inspired by the earlier work by Ho and Stoll [3]. Under such
a formalization, the goal is to continuously select optimal
prices at which the market maker should set its bid and
ask quotes (limit orders) such as to maximize the expected
terminal utility, which should account for both the profit and
loss (PnL) and risk. Analytically, this is usually done by
using the associated Hamilton-Jacobi-Bellman equations to
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derive closed-form approximations to the optimal bid and ask
quotes, i.e., to the optimal MM controls.

In the original Avellaneda-Stoikov (AS) model [2], a drift-
less diffusion process for the mid-price evolution is assumed
as well as the terminal time T when all positions need to be
closed. The authors provide approximations to the optimal
quotes, given by the Taylor expansions around T . On a related
note, Guéant et al. [4] consider a variant of the AS model
with inventory limits and derive asymptotic approximations
to the optimal quotes in the limit T → ∞, whereas in [5]
the model is extended by considering both non-martingale
mid-price dynamics and inventory limits. More sophisticated
analytical MM approaches, all more or less in the spirit of
the original AS model, include additional features such as:
stochastic market spreads [6], trading via market orders [6],
interdependence in mid-price moves and limit order execu-
tion probabilities viamutually excitingHawkes processes [7],
short-term alpha trend dynamics [7], model uncertainty [8],
latency [33], and LOB signals [9].

Even though analytical approaches differ in the choice
of the utility function, modeling of the underlying pro-
cesses, and other assumptions, they share in common being
predicated on mathematical models underpinned by strong
(naïve) assumptions about market behavior and employing
many parameters that require often laborious estimation from
historical data. For example, it is often assumed that the inten-
sities at which the limit orders get executed decay either expo-
nentially or linearly with the distance from the mid-price,
or that the mid-price innovations are normal i.i.d. Despite
being conducive to mathematical tractability, such assump-
tions render the model less realistic. To sidestep these short-
comings, it seems promising to consider approaches such
as reinforcement learning (RL), which are both data-driven,
i.e., learn directly from the data, and suitable for solving
the stochastic control problem of optimal MM. RL methods
are particularly favorable since they are capable of solving
problems in a completely model-free fashion and tabula rasa,
i.e. without any explicit modeling of the underlying processes
or any prior knowledge. Moreover, since the optimal MM
controls (policies) might be non-linear and highly complex,
deep reinforcement learning (DRL) [35], the combination of
RL and deep learning in which deep neural networks (DNNs)
are used to represent RL policies and value functions, is par-
ticularly suitable. We emphasize that, recently, DRL meth-
ods achieved outstanding success in a variety of diverse,
complex sequential decision-making tasks, ranging from the
Atari games [10] to robotic manipulation [11] and resource
management in network slicing [34]. Research on (D)RL for
MM, despite still being relatively scarce, has also recently
been swiftly growing. Some other applications of DRL in
finance include portfolio optimization [19], risk management
and hedging [36], and adaptive rolling window selection [37].

Current non-deep RL approaches to optimal MM are
mainly based on temporal-difference RL, for example via
simple discrete Q-Learning [12] or SARSA with a lin-
ear combination of tile codings used as a value function

approximator [13]. Among DRL approaches, Sadighian [14]
proposes an MM framework based on advanced policy
gradient-based algorithms (A2C and PPO) and an observa-
tion space consisting of LOB data and order flow arrival
statistics. Kumar [15] introduces a realistic LOB simulator
which is then used to train MM agents based on Deep Recur-
rent Q-Networks (DRQNs). Additional notable research in
DRL for MM includes multi-asset MM over a large uni-
verse of bonds [16] as well as MM for a multi-agent dealer
market [17].

However, most such approaches either resort to crudely
discretized action spaces with only a dozen of possible
actions, i.e., quote pairs, or fail to incorporate additional
predictive signals (besides the time and inventory) into the
state space. Moreover, they tend to disregard the issue of
interpretability of the learned MM controls, including their
relationship with the existing analytical closed-form approx-
imations. Hence, in this paper, we focus on precisely these
aspects.

B. OUR WORK AND CONTRIBUTIONS
The main goal of this paper is the development of a novel
comprehensive framework for MM with signals. To this
end, we use a combination of two standalone supervised
learning-based signal generating units (SGUs) and a DRL
unit for MM that exploits the generated signals. By linking
signal generation capabilities with RL-based MM control,
we leverage the advantages of both supervised and rein-
forcement learning, primarily (i) the existence of labels, and
(ii) consideration of the intrinsic sequentiality of the problem.
The choice of the SGUs is based on the following idea:
when setting quotes for the next period, the market maker
effectively has two degrees of freedom, corresponding to how
wide (the width) and how asymmetrically (the skew) w.r.t. the
mid-price it sets the quotes. Clearly, the market maker should
set thewidth (skew) in accordancewith the price range (trend)
forecasts for the next period. If it could do this with perfect
accuracy, it would be able to both capture the maximum
possible spread in each period and avoid accumulating any
inventory. We therefore include exactly these predictions as
signals into the state space. The main contributions are the
following.

First, we propose a novel state space, action space, and
reward function formulation. Specifically, we introduce a
tick-based action space that is both continuous (unlike is
the case with most current DRL approaches) and takes into
account the tick-based nature of MM on stocks (unlike most
analytical approaches).

Second, encouraged by the recent results [18] in the genetic
algorithms community, we use neuroevolution for training
DNNs representing DRL agents. To the authors’ knowledge,
this is the first study to investigate the viability of using
neuroevolution for training DNN agents for MM. We aban-
don gradient-based DRL in favor of a neuroevolution-based
approach in which DNNs directly map states into actions,
instead of probability distributions over possible actions.
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(For a somewhat similar approach in portfolio optimization
that also uses direct mapping to actions see [19].) This
eschews the noisy gradient problem and ameliorates learning
instabilities, like catastrophic forgetting, which often plague
state-of-the-art gradient-based DRL methods. Additionally,
a particular choice of DNN initialization, orthogonal for
weights and constant for biases, that improves the diversity
of the zeroth-generation agents, is proposed.

Third, inspired by ideas from adversarial reinforcement
learning [20], we use perturbations by an opposing agent
— the adversary — to render the MM agent more robust to
model uncertainty and consequently improve generalization.
The novel state and action space design for the adversary,
which represents the market itself, ensures that it learns when
and how to act in order to best hinder theMM agent. We point
out that, in our approach, the adversary directly perturbs the
MM agent’s actions, whereas in the existing research on ARL
for MM [21] the simulation model parameters are altered
instead.

Fourth and final, we focus on the interpretability of the
learned MM controls. Recently, the topics of interpretabil-
ity and transparency in deep learning, including DRL, have
received immense interest. As a recent example from the HFT
literature, Leal et al. [22] tackle interpretability of the ‘‘black
box’’ controls learned by a DNN controller for optimal exe-
cution. In a somewhat similar vein, we shed some light on the
resulting DRL agent by providing explanations of the learned
MM controls.

II. PRELIMINARIES
A. (DEEP) REINFORCEMENT LEARNING
RL is a large class of machine learning algorithms for
efficiently solving (usually discrete-time) Markov decision
processes (MDPs) based on learning by interacting with
the environment via trial-and-error. A discrete-time MDP is
given by a tuple (S,A,P,R, γ ) where S is a set of states,
A a set of actions, P : S × A × S → [0, 1] a transition
probability function,R : S ×A→ R a reward function, and
γ ∈ [0, 1] a discount factor.
At each time t , the decision-maker, also known as the

agent, observes the state of the environment St and selects
an action At based on the current state. The selected action
generally influences the next state of the environment St+1,
as well as the reward Rt+1. The procedure is then iterated
and a (possibly infinite) sequence of states, actions, and
rewards (S0,A0,R1, . . . , St ,At ,Rt+1, . . .) — the trajectory
— is obtained. Since the next state St+1 depends only on
the current state St and the action At and is conditionally
independent of the prior states, the state transitions of an
MDP satisfy theMarkov property, as the name itself suggests.
There are two types of RL tasks (i.e., MDPs): non-episodic
and episodic. Non-episodic tasks are never-ending and result
in infinite trajectories, whereas episodic tasks end when a
special state, called a terminal state, is reached.

A stochastic policy π : A × S → [0, 1] expresses the
probability of selecting action a in state s. A deterministic

policy π : S → A maps states directly into actions. The
sole goal of an RL agent is to maximize the expectation of
the discounted cumulative sum of rewards — the return —
which is given by:

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γ kRt+k+1. (1)

In non-episodic tasks γ < 1 to ensure convergence of (1).
The RL agent searches for a policy — an optimal policy
π∗— that maximizes the expected return:

π∗ = argmax
π

Eπ [Gt ]. (2)

An optimal policy always exists but is not necessarily
unique. Furthermore, let us express St as a feature vector
x(St ):

x(St ) = [x1(St ), x2(St ), . . . , xn(St )] ∈ Rn. (3)

Now, let us denote a parametrized (for example by a DNN)
policy by πθ and the objective function (e.g., the return)
by J (θ ). The goal now is to find an optimal parametrized
policy π∗θ that maximizes the objective:

π∗θ = argmax
πθ

E[J (θ )]. (4)

B. LIMIT ORDER BOOK
A limit order book [23] is a collection of outstanding (unex-
ecuted) limit orders for a given security. A limit order is
an offer to purchase or sell a certain amount of a given
security at a specified or better price. After submission, a limit
order joins the LOB at the specified price level until it is
either canceled, modified, or executed against a market order.
A market order is a request to immediately buy or sell a
certain amount of a given security. A trader that sends a
market order is referred to as amarket taker. Amarket order is
instantly executed against outstanding limit order(s), in accor-
dance with the price-time priority, i.e., starting with the limit
order with the most favorable price from the market taker’s
perspective and so forth. If there are multiple limit orders at
the same price level, an order with an earlier submission time
gets executed first. All prices are multiples of the tick size,
the smallest price increment. The lowest (highest) price at
which there exists an outstanding ask (bid) order is referred
to as the best ask (best bid), the difference between the two
is called the bid-ask spread, and the mean of the two is called
the mid-price. A snapshot of a limit order book is provided
in Fig. 1.

C. MARKET MAKING
MM refers to a trading strategy that relies on simultaneously
quoting both bid and ask prices for the same asset. The goal
of a market maker is to generate profits by repeatedly earning
the difference between the quoted bid and ask prices, i.e., by
capturing the quoted spread. For example, let us assume that,
at t = 0, the market maker, holding no inventory, posts a
bid limit order at $99 and an ask limit order at $101. If both
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FIGURE 1. A snapshot of a limit order book showing five levels of depth.
The current mid-price (denoted by the blue dashed line) is $99.5, the best
bid is $99, the best ask is $100, and the tick size is $1. Bid orders are
shown with negative volumes by convention.

limit orders get executed (i.e., if both a counterparty willing to
sell at $99 and a counterparty willing to buy at $101 appear),
the market-maker will earn the quoted spread of $2. However,
if only one of the limit orders gets executed, themarket-maker
will not only fail to capture the quoted spread but will also
end up with a non-zero inventory, thereby exposing itself
to the inventory risk. This risk stems from the uncertainties
in the value of the held asset as well as the fact that trades
happen at random times. When faced with a non-zero inven-
tory, the market maker, being risk-averse, typically skews
its quotes in order to reduce its inventory level. Moreover,
the risk-averse market-maker should continuously update its
orders while taking into account both its current inventory
level and ideally also external market signals (like trend and
volatility forecasts).

III. FORMULATION
A. MARKET MAKING PROCEDURE
We employ aMMprocedure in the spirit of the AS framework
[2] and formulate it as an episodic RL task. At the begin-
ning of a time-step (at the time t) the MM agent observes
the state of the environment St , consisting of the current
inventory level and the auxiliary signals, and performs the
action At — posts an ask and a bid limit order, both of unit
size, at certain prices Qask

t and Qbid
t . When the end of the

time-step is reached at the time t + 1t , the agent receives
a reward and posts a new pair of limit orders, unless the
agent’s inventory is equal to the minimum (Imin) or maximum
(Imax) inventory constraint, in which case only a single limit
order on the opposite side is posted, to prevent the inventory
from exceeding the bounds. The procedure is iterated until the
terminal time T when the episodic task ends. Ideally, in every
time-step, both orders are executed and the agent earns a
small profit. However, if only one of the orders gets executed,
a change in the inventory It ensues, as well as in the amount of
held cash Xt . We point out that a first-passage time (FPT) [24]
execution model is assumed, according to which a bid (ask)
limit order is executed as soon as a sell (buy) side trade takes
place at a price that is lower (higher) or equal to the price at

which the order is quoted. Additionally, instead of measuring
time in units of physical time, we use non-physical time [25],
as is commonly done in LOB modeling. Consequently, one
unit of time corresponds to a single change on the top of
the LOB, either in prices or volumes, making time discrete.
Finally, we assume there are neither transaction fees nor
rebates for market makers. The simplified summary of the
MM procedure is depicted in Alg. 1.

Algorithm 1: MM Procedure as an RL Environment

initialize t, It ,Xt ← 0 ;
while t < T

generate the auxiliary signals (the SGU outputs) ;
observe state St ;
Qask
t ,Qbid

t ←∞, 0 ;
% perform action At ;
if It < Imax then update Qt,bid ;
else pass;
if It > Imin then update Qt,ask ;
else pass;
while True

% process trades ;
foreach trade from [t, t + 1] ;
do update It ,Xt ;
t ← t + 1 ;
% break when the end of the time-step is
reached ;
if t mod 1t = 0 then break ;

end while
receive reward Rt+1 ;

end while

B. MARKET MAKING AGENT
1) STATE SPACE
At the time t , the MM agent observes the state given by:

St = [It ,RRt ,TRt ], (5)

where It denotes the agent’s inventory whereas RRt and TRt
denote the price range and trend predictions, i.e., the outputs
of the SGUs, all at time t . Thus, the state space is three-
dimensional.

2) ACTION SPACE
The action At represents a certain choice of bid/ask orders
relative to the current best bid/ask. Therefore:

At = [At,1,At,2] = [Qask
t − Q

bask
t ,Qbbid

t − Qbid
t ], (6)

where At,i = k1 for i ∈ {1, 2}, k ∈ Z, with 1 being
the tick size, Qbask

t (Qbbid
t ) the best ask (bid), all at time t .

This action formulation is particularly convenient since the
bid-ask spread is already implicitly encoded into it and hence
there is no need for having an additional state space variable
for it. Furthermore, it ensures that even a trivial policy for
which At = [0, 0] ∀t provides a relatively strong benchmark
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– namely, the zero tick offset benchmark. Also observe that
larger (smaller) At,i values correspond to more conserva-
tive (aggressive) quoting, with negative values representing
limit orders posted inside the bid-ask spread. The action space
is two-dimensional and continuous.

Lastly, we emphasize that the action At generally affects
the next state St+1 via its influence on the next inventory level
It+1, which points to the intrinsic sequentiality of the optimal
MM problem as formulated here and warrants the use of RL
in lieu of supervised learning based-methods.

3) REWARDS
Finally, the reward function is defined as follows:

Rt+1 = (Qask
t −Mt+1)1{Qask

t exe}

+(Mt+1 − Qbid
t )1{Qbid

t exe} − λ|It+1|, (7)

where Mt denotes the mid-price at time t , 1{Q·t exe} is the
indicator function for whether the bid/ask order gets executed
in the upcoming time-step and λ is a parameter that accounts
for both volatility and risk aversion.

Such a reward function both incentivizes spread-capturing
(making round-trips) and discourages holding inventory,
in order to prevent inventory risk. It is inspired by utility func-
tions containing a running inventory-based penalty, as found
in [26] and [6]. However, instead of a quadratic penalty term,
we use an absolute value inventory penalty term which has a
convenient Value at Risk (VAR) interpretation. Furthermore,
the first two terms of our reward function can be interpreted
as the symmetrically dampened PnL reward function as intro-
duced in [13], with maximum dampening. The idea is to
strongly disincentivize the agent from trend chasing (trading)
and direct it towards spread capturing (MM). However, note
that if the market is, say, trending upwards, it is reasonable to
expect that, on average, |Mt+1 − Qask

t | > |Q
bid
t −Mt+1| and

therefore some small incentive to indulge in trend-chasing
nevertheless remains.

Observe that in the original AS model, the market maker’s
value function takes into account the time remaining until the
terminal time T —the end-time of the trading day or a trading
session when all positions are terminated to avoid exposure
to overnight risk. However, such a formulation is ill-suited
when there is no natural notion for the terminal time, which is,
for example, the case with cryptocurrencies, which are traded
continuously. (For the same reason, the ‘‘remaining time’’
variable is not included in our state space.) Finally, we point
out that a vacuous MM strategy that quotes extremely con-
servatively on both sides of the LOB, and under which no
executions at all take place, achieves a return equal to zero.

C. ADVERSARY
In order to improve the MM agent’s robustness to model
uncertainty, we draw on ideas from adversarial reinforcement
learning [20]. Ideally, this approachwill reduce the sensitivity
of the MM agent’s learned policy to differences between
training and testing conditions or model misspecification.

Therefore, besides the MM agent, an additional RL agent —
the adversary—is introduced. Its goal is tominimize theMM
agent’s return by strategically displacing its bid/ask quotes
(actions). However, to prevent the adversary from completely
hindering the MM agent, the amount of force available to
the adversary, expressed as the maximum allowable sum of
displacements, measured in ticks, is limited.

1) STATE SPACE
The state S ′t at the time t as observed by the adversary is
given by:

S ′t = [It ,1{Qask
t exe},1{Qbid

t exe}], (8)

with the same notation as in (7). Note that the adversary is
endowed with the ‘‘superpower’’ of ‘‘clairvoyance’’ — the
adversary can perfectly forecast the immediate future and
use this information to strategically displace the MM agent’s
quotes. We emphasize that the fact that the adversary’s state
space differs from the MM agent’s does not preclude the
existence of a global state space.

2) ACTION SPACE
The adversary’s action A′t corresponds to a certain displace-
ment of the MM agent’s quotes:

A′t = [A′t,1,A
′

t,2] = [Adist,1 − At,1,A
dis
t,2 − At,2], (9)

where A′t,i = l1 for i ∈ {1, 2}, l ∈ Z, with Adist,1 (Adist,2)
denoting displaced ask (bid) quotes. Observe that the action
space is two-dimensional and continuous.

3) REWARDS
The reward function is the negative of theMM agent’s reward
function:

R′t+1 = −Rt+1 = (Mt+1 − Qask
t )1{Qask

t exe}

+(Qbid
t −Mt+1)1{Qbid

t exe} + λ|It+1|, (10)

with the same notation as in (7). It penalizes the captured
spread and pushes the MM agent into accumulating large
inventory levels, hence exposing it to significant inventory
risks.

IV. IMPLEMENTATION
A. MARKET MAKING AGENT DETAILS
A feed-forward, fully-connected neural network (NN) is used
as the function approximator, i.e., to represent the DRL
agent’s policy. It maps states directly to actions — bid/ask
quotes expressed as offsets from the current best bid/ask.
To ensure that the NN outputs are appropriately scaled and
multiples of the tick size, we first multiply them by a scaling
factor and then apply a round function. An NN architecture
with two hidden layers, 32 neurons each, is selected. (Note
that such relatively shallow but still formally deep architec-
tures are commonly and successfully used in DRL [10].)
The rectified linear unit (ReLU) is used as the activation
function in all layers except the final layer where the linear
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activation function is used instead. This ensures that the agent
is also able to post quotes inside the bid-ask spread.Moreover,
the MM agent is even allowed to quote bid/ask pairs where
the ask is lower than the bid, which is also the case with the
AS approximations.

B. ADVERSARY AGENT DETAILS
The same type of NN as in IV-A is used as the function
approximator. Again, the NN maps states directly to actions
— here displacements of the MM agent’s quotes. However,
a shallow architecture with only one hidden layer consisting
of 12 neurons is employed. The ReLU is used as the activation
function in the hidden layer whereas the linear activation is
used in the outer layer. The same procedure as in IV-A is used
to ensure the proper scale, as well as the discreteness of the
NN outputs.

C. SIGNAL GENERATING UNITS
The first SGU is underpinned by a gradient boosting model
and used for the prediction of the realized price range,
a volatility-based measure. The second SGU is based on a
long short-term memory (LSTM) NN and used for trend
prediction. Details pertaining to the implementation of SGUs
are provided in App. A and B.

D. TRAINING
We use a gradient-free approach - neuroevolution via
genetic algorithms for training the RL agents. Therefore,
we implicitly treat the search for an optimal policy as a
black-box function optimization problem. Most state-of-the-
art gradient-based RL algorithms rely on stochastic poli-
cies to ensure enough exploration. However, this introduces
additional stochasticity and exacerbates the noisy gradient
problem. This is particularly problematic when individual
actions can have long-lasting consequences, or when tackling
highly stochastic (or noisy) environments, as is often the case
in financial applications, including MM. Genetic algorithms,
on the contrary, are a gradient-free approach that can easily
accommodate deterministic policies without detrimentally
affecting exploration. Despite suffering from low sample
efficiency, it is hypothesized [18] that their performance is
improved due to temporally extended exploration. Further-
more, they generally have fewer hyperparameters to optimize,
can easily tackle sparse rewards as well as ‘‘jump’’ over local
minima in the parameter space, and since they are gradient-
free, there is no need to resort to tricks such as gradient
clipping to handle the problem of exploding gradients.

This choice is inspired by previous results [18], [27] that
have shown that neuroevolution offers a viable alternative
for training DNNs for DRL. Here we use the same approach
as in [18], i.e., a simple population-based genetic algorithm,
albeit with a small modification. Instead of using the Xavier
initialization, we opt for the orthogonal initialization [28]
(with the gain value set to 0.9) for the weights and constant
initialization (with the value set to 0.05) for the biases. This
particular initialization scheme is meticulously selected after

thorough experimentation with different candidate initializa-
tion schemes, as it is shown to generate the most diverse
policies.

We learn the adversary’s policy while holding the MM
agent’s policy fixed and vice versa. For both the MM agent
and the adversary, all input features are normalized with
z-score normalization. Additional implementation details,
including hyperparameter values, are given in App. C.

V. EXPERIMENTS
A. EVALUATION DATASET
The evaluation dataset comprises of historical tick-by-tick
trades and quotes from the cryptocurrency exchangeBitstamp
for the pair Bitcoin/US Dollar (ticker: BTC/USD), corre-
sponding to the period from September 1, 2020, to Septem-
ber 30, 2020 — in total full 30 trading days (720 trad-
ing hours) worth of data. We chose Bitstamp as a result
of a trade-off between maximizing both the liquidity and
the average size of the bid-ask spread. Tick-by-tick trades
data includes, among others, IDs, timestamps, prices, and
amounts, pertaining to each realized trade. Quotes data
encompasses, among others, timestamps, amounts, and prices
for the best bid/ask quotes, recorded every time the top of the
LOB has changed. Tick-by-tick trades and quotes data were
collected from the exchange’s real-time WebSocket trades
and order book L2 data feeds, respectively.

FIGURE 2. Evolution of the BTC/USD mid-price in the full dataset.

The total number of realized trades is 660, 337, which is
tantamount to around 15.29 trades per minute. (We empha-
size that the execution of a market order at multiple levels
of LOB depth results in multiple separate trades, each with
a unique ID.) The majority (54.94%) of trades are sells,
whereas the majority of the traded volume is on the buy
side (52.93%). The mean (median) size of a trade is 0.3194
(0.0921). There is a total of 3, 036, 073 quotes or approxi-
mately 70.28 quotes per minute, out of which 87.41% signify
changes in prices on the top of the LOB. The tick size equals
$0.01. The price evolution in the full dataset is depicted
in Fig. 2.We set the length of a singleMMperiod to1t = 19,
which corresponds to approximately 16.22 s.
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Using a 64/16/20 split, the dataset is divided into a training
(S1), validation (S2), and testing set (S3). The S1 and S2 sets
are used for training/validation of the SGUs, respectively, and
SGU predictions are then made on the S3 set. The S3 set is
further split into three subsets, for training, validation, and
testing of the DRL unit.

B. BENCHMARKS
In order to benchmark our approach, we use the following
two classes of benchmark strategies:
• Fixed Offset with Inventory Constraints — FOIC
(N ,M , c) — where N (M ) is the offset, measured in
ticks, from the current best bid (ask) and c is the inven-
tory constraint. For example, FOIC(1, 1, 5) corresponds
to the strategy that posts bid (ask) orders one tick
below (above) the current best bid (ask) while adhering
to the inventory constraint −c = −5 ≤ It ≤ 5 = c.
In the case It = c (or It = −c), only a single order on
the opposite side is posted;

• Linear in Inventory with Inventory Constraints —
LIIC(a, b, c) — where, if −c < It < c, ask (bid) orders
at the time t are posted at the following prices:

Qaskt = Mt + a+ bIt , (11)

Qbidt = Mt−a+ bIt , (12)

where a and b are constants, and the remaining notation
is the same as in III. If It = c (or It = −c), only the
order on the opposite side is posted. Clearly, the orders
are posted around the indifference priceM ind

t = Mt+bIt
with a constant spread equal to 2a. This class of strate-
gies, where the quotes depend linearly on the inventory
is particularly important, since it also subsumes the
Guéant–Lehalle–Fernandez-Tapia (GLFT) approxima-
tions [4], which are considered state-of-the-art and in
which the optimal quotes, when the inventory is strictly
within the constraints, are given by:

Qaskt = Mt +
1
γ
log

(
1+

γ

k

)
−
2It − 1

2

√
σ 2γ

2kA

(
1+

γ

k

)1+ k
γ
, (13)

Qbidt = Mt −
1
γ
log

(
1+

γ

k

)
−
2It + 1

2

√
σ 2γ

2kA

(
1+

γ

k

)1+ k
γ
, (14)

where γ is the risk aversion coefficient, σ the standard
deviation, whereas k and A are liquidity-related parame-
ters, as introduced in [2]. More precisely, A corresponds
to the trading intensity while k accounts for the bid-ask
spread and the shape of the LOB. Once again, if It = c
or It = −c, only a single order (on the opposite side) is
posted. We will refer to this special case of LIIC(a, b, c)
as GLFT(γ , c).

C. PERFORMANCE AND RISK METRICS
The following performance and risk metrics are employed:
• Episode return. The total episode return, G0, as given
by (1).

• Terminal wealth. The total wealth (portfolio value) at
t = T .

• Mean Absolute Position (MAP), defined as:

MAP(t) =
1
M

M∑
k=1

|Ik1t |, (15)

where M is the number of completed time-steps until
the time t . The MAP metric directly accounts for the
inventory risk.

• Maximum Drawdown (MDD), given by:

MDD(T ) = max
τ∈(0,T )

[
max
s∈(0,τ )

Ws −Wτ

]
, (16)

where Wt = Mt It + Xt denotes the total wealth at the
time t, and the rest of notation is the same as before. The
MDD can be understood as the maximum loss from a
peak to a trough of a certain portfolio.

• Rolling PnL-to-MAP Ratio (PnLMAP), a custom
rolling metric that we define as follows:

PnLMAP(t) =
Wt

MAP(t)
, (17)

which simultaneously considers both the profitability
and the incurred inventory risk of the MM strategy up
to the time t .

D. REINFORCEMENT LEARNING ENVIRONMENT DETAILS
We set Imax = 2, Imin = −2 and λ = 0.15. This choice of
parameters corresponds to a highly risk-averse market maker.

E. RESULTS
Following training, the resulting DRL agent is evaluated
on the testing set (out-of-time) and its performance is
compared against multiple benchmarks from V-B. Fig. 3
depicts the PnLMAP diagram of the DRL agent compared
against the agent variant trained without adversarial dis-
turbances (DRL2), the FOIC(0, 0, 2) benchmark, and the
GLFT(0.001, 2) benchmark. All GLFT parameters were cal-
ibrated in accordance with the procedure described in [29],
except the risk aversion parameter γ which is generally cho-
sen according to the risk preferences of the market maker.
To obtain a strong benchmark for comparison, we select the
value of γ that results in the maximum PnLMAP(T) value on
the testing dataset. Furthermore, in order to ensure a fairer
comparison, the inventory constraints for the benchmarks
were set to be equal to the DRL agent’s, i.e., to the values
from V-D. More comparison details, for a slightly wider
spectrum of benchmark strategies, are given in Table 1.

The results indicate that our DRL approach significantly
outperforms the benchmarks and achieves not only by far
the most favorable return-to-risk performance, but also the
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FIGURE 3. Rolling PnL-to-MAP ratio on the testing set for four of the considered strategies. The DRL variants
significantly outperform the benchmarks, indicating more favorable return-to-risk performances.

TABLE 1. DRL agent vs benchmarks comparison.

highest terminal wealth, as well as the most favorable MDD,
all while having the second-lowest MAP. For example, notice
that the DRL agent achieves more than 30% higher terminal
wealth than the FOIC(0,0,2) while being exposed to less
than 60% of its inventory risk. Similarly, the DRL agent by
far outperforms the GLFT(0.001) benchmark with respect to
all metrics. The difference in the performance between the
DRL agents and the benchmarks seems to grow steadily (and
apparently linearly) with time. Also notice that the DRL agent
achieves both higher terminal wealth and lower maximum
drawdown (MDD) than the DRL2 agent (the variant without
AD). On the other hand, its MAP is slightly higher. This
seems to suggest that the AD variant is better at deciphering
when to keep relatively high inventory values without jeop-
ardizing the PnL. Taken altogether, the DRL agent slightly
outperforms theDRL2 agent while surpassing all other agents
by a large margin. We remark that the performance drop
that happens around the environmental step number 7300
corresponds to a sudden change in the BTC/USD value.
Fig. 4 shows the agent’s behavior on a small segment of the
testing period. Generally, the inventory constantly fluctuates
around zero, indicatingMMbehavior, as expected.Moreover,
the inventory level is between −1 and 1 most of the time

FIGURE 4. Typical DRL agent behavior. Observe that bid (ask) quotes are
posted more conservatively (aggressively) when the inventory is positive,
and vice versa. The actions are shown scaled (factor 0.2).

(89.06% of the time during the testing period), which clearly
indicates high aversion to risk.

F. INTERPRETABILITY
In order to ameliorate the problem of poor interpretability
generally plaguing deep learning approaches, in this section
we interpret the behavior of the resulting DRL agent. To this
end, we use partial dependence plots (PDPs) [31]. A PDP
shows the marginal effect of an individual input variable x (or
multiple input variables) on the model output h(x), i.e., the
dependent variable. Let us denote the set of all other input
variables (besides x) by Y . Then the partial dependence is
given by the expectation of g over the marginal distribution
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FIGURE 5. Dependence of the learned offsets from the best bid/ask
(actions) on the normalized inventory level.

of all other input variables:

hx = EY [h (x,Y )] =
∫
h (x,Y ) dP (Y ) . (18)

It can easily be estimated [39] by averaging over the training
dataset ({(xi,Yi), i = 1, . . . , n}) while keeping x fixed:

ĥx(x) =
1
n

n∑
i=1

h (x,Yi) . (19)

Fig. 5 depicts the dependence of the DRL agent’s learned
bid/ask offsets on the normalized inventory variable. Observe
that the DRL agent’s offsets from the best bid grow slowly
and close to linearly when the inventory is negative and then
again approximately linearly (but with a much larger slope)
for positive inventory levels. Conversely, the offsets from the
best ask decrease close to piecewise linearly as the inventory
level is increasing. We also recall that, according to analytical
GLFT approximations, the optimal bid-ask quotes depend
linearly on the inventory, but it should be borne in mind that
they, unlike our approach, do not take the current bid-ask
spread into consideration. Overall, this behavior is expected
since the DRL agent, after accruing a high level of inventory,
posts ask orders aggressively to incentivize selling, and bid
orders very conservatively to prevent further buying. On the
other hand, if the DRL agent’s inventory is negative, it posts
bid orders aggressively to incentivize buying and ask orders
very conservatively to prevent further selling. Interestingly,
the slope for the bid curve seems to be significantly steeper.
A possible explanation for both this and the difference in the
curve shapesmay partly lie in the asymmetry in the number of
limit orders (i.e. the intensity of limit order arrivals) and their
distribution on the two sides of the LOB. Lastly, note that
the curves intersect very close to It = 0, as expected. Fig. 6
shows the dependence of the DRL agent’s learned bid/ask
offsets on the normalized realized price range predictions,
similarly as before. Clearly, both quotes increase as realized
price range predictions grow. Again, this is completely unsur-
prising, as higher realized price range predictions mean that

FIGURE 6. Dependence of the learned offsets from the best bid/ask
(actions) on the realized price range predictions (the signal from the
SGU1).

FIGURE 7. Dependence of the learned offsets from the best bid/ask
(actions) on the trend predictions (the signal from the SGU2).

the agent should indulge in more conservative quoting on
both sides of the LOB, i.e., increase its quoted spread, since
it has a higher probability of capturing a larger spread. The
orange line in Fig. 6 represents the sum of the two offsets,
i.e., the spread added by the DRL agent on top of the current
bid-ask spread. This seemingly convex line also increases
monotonously with the price range prediction signal, as was
expected.

Finally, Fig. 7 depicts the dependence of the DRL agent’s
learned bid/ask offsets on the normalized trend predictions.
First observe that the y-axis range is here smaller compared
to Fig. 5 and 6. This stems from the fact that the trend signal
is generally less informative and consequently less useful
than the price range prediction signal, given that returns
(and hence trends), unlike volatility, are notoriously difficult
to predict [30]. For negative values of trend predictions,
the mid-price is expected to drop, and therefore the ask orders
should be posted much more aggressively than the bid orders,
to increase the probability of the capture of the quoted spread.
This is in accordance with Fig. 7. The difference in the
aggressiveness between quoting on the bid and ask side is
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denoted by the orange line. As trend predictions increase,
this difference tends to decrease, as expected, although it
remains positive even for very large trend predictions. Again,
an explanation probably partly lies in the shape of the LOB
and its other microstructural properties. Furthermore, when
the inventory level is low, which is commonly the case with
a risk-averse MM agent, the inventory penalization term in
the reward function incentivizes the agent to generally post
quotes in such a way that the execution probabilities are
similar for both the bid and the ask side, in order to prevent
one side from getting filled more often, which would lead
to larger inventory levels. Finally, it should be emphasized
that the PDP simultaneously adjusts for other dependent vari-
ables as well, and hence any strong conclusions about the
causal nature of the relationship are not warranted. However,
the PDPs nevertheless provide an informative glimpse into
the inner workings of the resulting DRL agent.

VI. CONCLUSION
We have developed a novel, comprehensive DRL-based
framework for MM with signals incorporating signals from
auxiliary standalone supervised learning SGUs. Unlike exist-
ing approaches, our model both incorporates additional
predictive signals into the state space and uses a continu-
ous, yet tick-based action space. The framework is under-
pinned by both ideas from gradient-free neuroevolutionary
RL approaches and adversarial reinforcement learning. The
resulting RL agent demonstrates superior performance over
several standard MM benchmark strategies. Furthermore, our
approach demonstrates the feasibility of using genetic algo-
rithms (neuroevolution) for training DRL agents for MM.
An additional emphasis is put on the often neglected, but due
to the requirements of financial regulators highly important,
issue of the interpretability of the obtained controls, via the
use of PDPs. The main directions for future related research
based on our work include the following. First, it would
be interesting to generalize the framework to multi-asset
MM, possibly with latent risk factors [38] as part of the
state space. Second, price range and trend predictions could
be incorporated not only in the state space but also into
the reward function itself, perhaps as part of its inventory
penalty term. Finally, quality-diversity optimization evolu-
tionary algorithms such as MAP-Elites or other novelty
search-based approaches, could possibly be used to find a
wide variety of mutually diverse, high-qualityMM strategies.

APPENDIX A
SIGNAL GENERATING UNIT–REALIZED PRICE RANGE
A. MODEL
Underpinning the SGU for realized price range prediction is a
gradient boosting [31]model, a highly robust ensemble-based
machine learning technique employing decision trees as weak
learners. It is particularly suitable in the presence of mutually
correlated predictors as it is unaffected by multicollinearity.
The Python package XGBoost is used for the implementation
of the unit.

B. LABELS
A (quite natural) candidate labeling method is given by the
following. Let us denote the set of all prices at which the
market buys (sells) took place during the i-th time-step by
Pbuyi (Pselli ). The labels are then given by:

yi = max
(
Pbuyi

)
−min

(
Pselli

)
. (20)

This expression is quite similar to a measure of volatility
called the realized (price) range [32] (also known as the
high-low range), although it additionally accounts for the side
of the LOB at which the trade takes place. From here forth
we refer to it as the modified realized price range. Note that
if either of the two sets is empty, which commonly occurs if
1t is short, the label is undefined. Now let us denote the set
of all the best bid (ask) prices during the i-th time-step by
Pbidi (Paski ). We now define the labels in the following way:

yi=


max

(
Pbuyi

)
−min

(
Pselli

)
if Pbuyi 6= ∅, P

sell
i 6= ∅

Paski −min
(
Pselli

)
if Pbuyi = ∅, P

sell
i 6= ∅

max
(
Pbuyi

)
− Pbidi if Pselli = ∅, P

buy
i 6= ∅

Paski − P
bid
i else

,

(21)

where Pi denotes the mean of Pi. Therefore, we simply
replace the missing values by the mean best quote on the
corresponding side of the LOB. Finally, we round the labels
to two decimal places (since the tick size is $0.01).

C. FEATURES
The following 23 features, derived from domain knowledge,
are considered: the total number of trades in the previous p
periods where p ∈ {1, 2, 3, 5, 10}, the bid-ask spread at
the start of the time-step, the traded volume imbalance,
the volume-weighted average price in the previous r periods
where r ∈ {1, 3, 5}, the slope of the linear fit (OLS) of price
versus time in the previous s periods where s ∈ {1, 3, 5},
the time of the day in hours, the total traded volume, the per-
centage of upticks, the total number of large buys, the total
number of large sells, and lastly, the time-lagged labels (pre-
vious modified realized price ranges) with lags ranging from
L = 1 to L = 5. Unless stated otherwise, features refer to the
most recent previous period. The individual feature impor-
tance is then calculated, measured in terms of the gain. Our
experimentation shows that removing K = 3 features with
lowest gains improves the algorithm performance, and hence
we continue training after omitting the following features: the
percentage of upticks, the total number of large buys, the total
number of large sells.

D. MODEL AND TRAINING DETAILS
In order to find suitable hyperparameters, we perform
cross-validation on the combined training and validation set.
Key hyperparameters are selected via stepwise grid search
and additional hyperparameters are set to common, sensible
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TABLE 2. Extreme gradient boosting hyperparameter values and grid
search ranges.

values. All hyperparameter values as well as the ranges used
for the grid search are given in Table 2. After hyperparameter
optimization, we train the model again on the combined
training and validation set. The mean square error (MSE) is
used as the evaluation metric.

APPENDIX B
SIGNAL GENERATING UNIT–TREND
A. MODEL
The trend prediction SGU is based on a long short-term
memory (LSTM) NN, a special type of recurrent neural
network (RNN) capable of grasping long-term dependencies.
Due to their ability to take into account sequential dependen-
cies, LSTMs are extensively used for time series forecasting,
including financial time series prediction, and hence provide
a natural choice here.

B. LABELS
We employ the following labeling method. First, we define
the ‘‘pseudo-mid-prices’’:

mi=



1
2

(
max

(
Pbuyi

)
+min

(
Pselli

))
if Pbuyi 6= ∅, Pselli 6= ∅

1
2

(
Paski +min

(
Pselli

))
if Pbuyi = ∅, Pselli 6= ∅

1
2

(
max

(
Pbuyi

)
+ Pbidi

)
if Pselli = ∅, P

buy
i 6= ∅

1
2

(
Paski + P

bid
i

)
else ,

(22)

using identical notation as in App. A-B. Then the labels are
simply given as simple financial returns:

yi =
mi − mi−1
mi−1

. (23)

The resulting labels can be interpreted as simple ‘‘pseudo-
returns’’ based on ‘‘pseudo-mid-prices’’.

C. FEATURES
Lagged pseudo-returns (labels) with lags ranging from L = 1
to L = 10 are used as predictors.We use z-score normalization
as a feature scaling technique:

x ′ =
x − x̄
σx

, (24)

where x̄ and σx denote the mean and the standard deviation of
the input variable x, respectively.

D. MODEL AND TRAINING DETAILS
It should be noted that the NN consists of a single hidden
layer with 10 LSTM units with the tanh activation function.
The output layer is a dense layer with one neuron and the
linear activation function. The validation set is used to find the
suitable hyperparameter values, listed in Table 3. The mean
squared error (MSE) is selected as the metric, whereas the
optimization process is performed with the Adam optimizer
with its default parameters.

TABLE 3. Hyperparameter values.

APPENDIX C
REINFORCEMENT LEARNING TRAINING DETAILS
For the implementation of the main RL unit, the open-source
deep learning framework PyTorch is used. The selected
hyperparameters are given in Table 4.We note that early stop-
ping on the validation set is used as a regularization technique.
Additionally, the use of adversarial perturbations and (rela-
tively) shallow DNNs also serves to prevent overfitting.

TABLE 4. RL training hyperparameters.
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