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ABSTRACT Electrolytic refining is the last step of pyrometallurgical copper production. Here, smelted
copper is converted into high-quality cathodes through electrolysis. Cathodes that do not meet the physical
quality standards are rejected and further reprocessed or sold at a minimum profit. Prediction of cathodic
rejection is therefore of utmost importance to accurately forecast the electrorefining cycle economic
production. Several attempts have been made to estimate this process outcomes, mostly based on physical
models of the underlying electrochemical reactions. However, they do not stand the complexity of real
operations. Data-driven methods, such as deep learning, allow modeling complex non-linear processes by
learning representations directly from the data. We study the use of several recurrent neural network models
to estimate the cathodic rejection of a cathodic cycle, using a series of operational measurements throughout
the process. We provide an ARMAX model as a benchmark. Basic recurrent neural network models are
analyzed first: a vanilla RNN and an LSTM model provide an initial approach. These are further composed
into an Encoder-Decoder model, that uses an attention mechanism to selectively weight the input steps that
provide most information upon inference. This model obtains 5.45% relative error, improving by 81.4% the
proposed benchmark. Finally, we study the attention mechanism’s output to distinguish the most relevant
electrorefining process steps. We identify the initial state as critical in predicting cathodic rejection. This
information can be used as an input for decision support systems or control strategies to reduce cathodic

rejection and improve electrolytic refining’s profitability.

INDEX TERMS Deep learning, electrorefining, predictive models, recurrent neural networks.

I. INTRODUCTION

The electrolytic refining process is one of the last steps
in sulfide-extracted copper production. Here, cathodes with
over 99.99% copper purity are obtained from raw anodes,
using electrolysis [1]. First, copper is electrochemically dis-
solved into an electrolyte containing CuSO4 and H»SOj.
After this, the metal is selectively electroplated into high
purity cathodes [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Grigore Stamatescu

Due to commercial requirements, copper cathodes must
meet several quality standards. These include a high metal
concentration and the absence of physical impurities, such
as nodules or dendrites [3]. Non-compliant cathodes are
rejected, and reprocessed or sold at a lower price. The fraction
of cathodes rejected (over the complete production) is known
as physical cathodic rejection.

Electrorefining objective is to maximize the production
of grade A copper cathodes. These offer a premium-price,
and so a higher profitability. Cathodic rejection represents
the efficiency of the process in the production of grade A
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FIGURE 1. Proposed Encoder-Decoder model. Every step, the attention mechanism selects the most relevant input steps to make a

prediction.

cathodes. An accurate estimation of this value can be used
as input for operational decision support systems, as well as
control strategies.

Several approaches have been proposed to characterize the
electrorefining process outcomes. These are mainly based on
physical representations of the electrolytic refining process.
However, due to the underlying interactions’ complexity,
these methods have not been able to provide an accurate
estimation.

Deep learning techniques have become a prominent tool in
the time series forecasting setting [4], [5]. These are based
on neural networks, a combination of non-linear operations.
Feature engineering is avoided by learning the intermediate
representations directly from the data. This allows modelling
highly complex and non-linear processes, in a completely
data-driven fashion. Neural networks have helped develop
several breakthroughs in computer vision [6], natural lan-
guage processing [7], and time series forecasting [8].

Recurrent neural networks (RNN) are a family of neural
networks used for processing sequential data [9]. Using a
time-based backpropagation algorithm [10], they can learn
complex time-dependent patterns. The Encoder-Decoder
architecture is based on an ensemble of RNNs. This model
can process variable-length sequences, by using a fixed rep-
resentation in a latent space. Attention mechanisms [11] fur-
ther improve this representation by creating a time-weighted
encoding for the sequence at each step. Encoder-Decoder
models with attention can handle multi-step time dependen-
cies between multivariate inputs, which makes them particu-
larly appealing for time series forecasting.

In this work, we propose a forecasting mechanism to esti-
mate the cathodic rejection of the electrorefining process.
We compare several RNN architectures using real operational
data. We show that a Encoder-Decoder architecture with an
attention mechanism, shown in Fig. 1, achieves the highest
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performance of the reviewed models. We also analyze the
attention weights as sources of information to interpret the
model’s inference process.

Our contribution to the presented problem is two-fold:

« We present a robust forecasting methodology of elec-
trorefining cathodic rejection. For this, we compare
several recurrent neural network architectures, ranging
from a vanilla RNN network to an Encoder-Decoder
architecture with an attention mechanism.

« We explore the attention mechanism’s weights, to ana-
lyze the most relevant information used by the model to
predict this indicator. This helps us explain the inference
process of the Encoder-Decoder model, which allows us
to shed light on a traditionally black-box system, such
as neural networks.

The remainder of the article is organized as follows.
Section II reviews previous approaches to the proposed prob-
lem. Section III details the deep learning methods used,
as well as the proposed benchmark. Methodology is presented
in Section IV. Section V analyzes and discusses the results.
Finally, conclusions are included in Section VI.

Il. RELATED WORK

The electrorefining process has been studied through dif-
ferent scientific perspectives. Prior research has been
focused on the development of physically based represen-
tations to model the phenomena. This has been achieved
by different means, including the characterization of the
physico-chemical processes involved [12], simulation of the
impurities behaviour [13] and variable effects on the process
outcome [14].

Different authors have also studied the process results
forecasting. They have been able to identify the correlation
between process variables and cathodic rejection [3], pre-
dict current efficiency [15], [16] or select the most relevant
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variables that correlate with the quality of the outcomes [17].
However, the existing research is primarily based on the the-
oretical representation of the phenomena and has difficulties
when dealing with the electrolytic refining operations’ real
conditions.

Data-driven methods have also been used to model opera-
tional indicators in copper refinery processes. Most of these
are based on supervised machine learning techniques, such as
SVM, kNN for classification, and generalized linear models
or single layer neural networks (NN) for regression tasks
[18], [19]. These model don’t fully exploit the time-series
nature of the indicators, leaving space for testing more
complex deep learning models, such as recurrent neural
networks.

Finally, the Encoder-Decoder architecture has proven to
be successful in operational regression settings, such as fore-
casting operational indicators for thickening processes [20],
[21]. However, the value of attention weights as information
sources has not been established. To the best of our knowl-
edge, this is the first proposed application of recurrent neural
networks to predict cathodic rejection in an electrorefining
operational setting.

lll. PROPOSED MODELS

We present the theoretical background of the proposed mod-
els, as well as the baseline used to compare the forecasting
performance.

A. TIME SERIES APPROACH
To establish a baseline for Current Efficiency forecast-
ing, we set an Auto Regressive Moving Average with
Exogenous Inputs model (ARMAX) as a benchmark. This
model allows forecasting time series, by using multiple vari-
ables as external information. The proposed implementation
follows [22].

Formally, given a sequence Y = {y1,...yi—1},
an ARMAX model predicts y, through the following equation
system [23]:

14 r q
=Y Ayij+ > Dixij+ > Biejt+e (1)
j=1 j=1 j=0

Here, A, € R,Bj € R and D; € RM are the
auto-regressive, moving-average and exogenous parame-
ters, respectively. The error term for a time step is given
by €.

B. RECURRENT NEURAL NETWORKS

Recurrent neural networks [24] are a family of neural net-
works used for processing sequential data by modelling
temporal relationships within the sequence [9]. An inter-
nal recurrent representation of the sequence, known as
the hidden state, h®, allows the model to retain rele-
vant information from the existing series, up to the given
step ¢ [25].
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Given a sequence of values {xi,...x;}, the hidden state
is updated recursively as a function of itself, the inputs, and
other model parameters:

hy = F(h—1, x5 0) ()

In the case of a vanilla RNN, the weights update process is
given by [9]:

hy = tanh(W - [h; 1, x;] + b) 3)

Where W and b are models parameters.

Training of these models involves the use of back-
propagation-through-time algorithm, which implies the mul-
tiplication of the different step derivatives [10]. Therefore,
small and large gradients effects is amplified. This affects
the numerical stability of the training process, especially on
larger sequences. These problems are known as the exploding
and vanishing gradients problem, respectively [26].

C. LONG SHORT TERM MEMORY
Long Short Term Memory Cells [27] are introduced to
handle longer sequences. Here, information is adaptively
selected, using input, forget and output gating opera-
tions. This reduces the effect of extreme values on down-
stream calculation, which in turn stabilizes the training
process.

The update step of the cell state involves computing forget
(W, by), input (W;, b;) and cell (W, b.) parameters

fo = oW - [hi—1, x ]+ by)

iy = o(W; - [l—1, %]+ by)

¢; = tanh(We - [hy—1, x¢:] + be)
a=fi®c-1+tir®c 4

After this, the new hidden state update process is computed
by the output gate (W,, b,):

or = oW - [hi—1,x]+ Do)
h; = o; ® tanh(c;) @)

Here, ® denotes the Hadamard product. This fam-
ily of models perform better on longer sequences than
vanilla RNNs [9]. However, the improved performance
comes at a cost, as the increased number of parameters
results in more training overhead, and makes the model
overfitting-prone.

D. ENCODER-DECODER MODELS

Encoder-Decoder models [28] use a combination of RNNs
to model sequences. Both Encoder and Decoder are trained
to maximize the conditional probability of the target values,
given an input sequence [29]. This is accomplished through
the use of a fixed representation in a latent space, called
context vector. A diagram of the forecasting process is shown
in Figure 1.
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Given the input sequence {xi, ..., xr, }, an Encoder is used
to compute the hidden states, using a LSTM model:

h?nc = LSTMenc(hi—1, x1) (6)

An attention mechanism [11], [30] uses the Encoder hid-
den states to adaptively weight the input values, creating a
time-dependent context vector. The use of a softmax layer
ensures this vector represents a distribution over input values.
Its computation follows [11]:

Ty
o =) e I @)
i=1
ex a(hdec’ henC)
Olt(s) = > t decS enc (8)
>y expa(hy®, h')
Here, a(-, -) is known as the scoring function:
a(h;enc’ hSCC) — (h;enc)t . Wa . hgec (9)

The time-variable context vector is then fed to the Decoder,
which models the conditional distribution of the target
sequence, using a second LSTM model:

7,
P = [poillyr, .. yi1d e

t=1

PO, - s yio1)s €) = LSTMgec(vi—1, B9, ¢;)  (10)

Finally, the output layer generates the predicted sequence:

i = Waee - h¥€ (11)

IV. METHODOLOGY

A. DATA

The dataset used for the study consists of information
from an electrolytic refining plant, containing 962 cathodic
cycles, totalling 11,906 daily observations. Each of these
contains several variables, measured with different granular-
ity. Cathodic rejection is measured at the end of each cycle.
To avoid time-scale effects, we consider the daily average
of each measurement. Tables 1 and 2 show the data sources
used. A detailed description of the input values is available
in Appendix A.

We scale the variables, to ensure the condition x € [0, 1].
This allows to guarantee a correct training process and elim-
inate the effect of the input scales [31]. Missing values were
filled using a KNN imputation strategy [32], to avoid reducing
the dataset size.

The resulting data is divided into a training split
of 800 cathodic processes (83.2% of the total dataset), as well
as a test split with the remaining 162 sequences (16.8%).

B. METRICS

To assess the quality of the forecast, we propose the use of
two metrics: RMSE and MAPE. In the following section,
we consider a series ¥ = {y;...yr} and its corresponding
predictions ¥ = {1 ...97}.:
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TABLE 1. Input data description. Variables are grouped according to their
source.

Group # | Description Examples
Electrolyte | 10 | Impurities concentration. As(g/l); Pb(g/).
Cathode 6 Impurities concentration. Ag(g/t); Pb(g/t).
Electrical 4 Current measurements. Short-circuit count.
Other 5 Operational measurements. Acid level.

TABLE 2. Output data description.

Variable name Unit| Description
Cathodic rejection | % | Cathodes that don’t meet the quality stan-
dard on a given cycle.

1) ROOT MEAN SQUARED ERROR (RMSE)
RMSE is defined through the following expression:

T
. 1 .
RMSE(Y, V) = ;E i — 3)? (12)
i=1

This metric is used as the loss function to train the neural
network models, as it provides a second-differentiable error
term.

One of the main drawbacks of RMSE is its sensitivity to
outliers. This is due to the quadratic term, which penalizes
large differences between the forecasted and actual values.
Also, the resulting error term does not have a physical inter-
pretation, as it depends on the original variable unit.

2) MEAN AVERAGE PRECISION ERROR (MAPE)
We compute this metric as follows:
2 - i =3l
MAPE(Y, V)= =) =L 2= (13)
T ; lyi + il
The resulting error measure can be easily interpreted,
regardless of the original unit. We use the symmetric version
of MAPE [33], to account for prediction of zero-values,
as well as over and under-estimation asymmetry.
However, MAPE cannot be used as a loss function, as it is
not everywhere differentiable. This may lead to unexpected
behavior during the training of the neural networks.

C. EXPERIMENTS
A training epoch for a single sequence consists on the follow-
ing steps:

1) A single step, x; € RK is fed to the model. This
generates a new hidden state (two in the case of the
Encoder-Decoder model).

2) The hidden state is used to compute a forecast, y;,
which is in turn used to update again the hidden state.
These steps are repeated until the full sequence has
been predicted.

3) RMSE loss is computed on both the forecasted
sequence and the actual values.

4) The error term is then back-propagated through the
steps, in order to update the model’s parameters.
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We repeat the above process for all the sequences, in a
batched fashion. We considered a total 200 epochs, using a
cross-validation approach [34]. This allows for better conver-
gence of the training, given the size of the dataset. A leave-
one-out method was used, dividing the data into five folds:
one for validation and the rest for training.

Neural networks require the tuning of several hyperpa-
rameters, which in turn define the behavior of the model.
To reduce the computational expense of the selection process,
a Bayesian optimization approach was chosen [35], [36]. For
each model, we carried an optimized hyperparameter search
for 50 iterations, each consisting of a full training cycle. The
following parameter groups were considered:

o Regularization parameters, including gradient clip [26],
dropout value and teacher forcing ratio [9], defined as
the probability of using a ground truth value instead of
the model output when training.

o Optimizer parameters. These include the optimizer
selection, where stochastic gradient descent and Adam
optimizer [37] were compared. We also study different
values for the optimizer’s learning rate, as well as the
number of steps considered for learning rate schedule,
also known as patience.

o Network parameters, such as the number of layers con-
sidered for each architecture, as well as the internal
hidden size. In the Encoder-Decoder architecture case,
both encoder and decoder hidden size were set to the
same value.

The best configurations obtained are detailed in Table 3.

V. RESULTS AND DISCUSSION
We present the cathodic rejection forecasting results.

First, we analyze the training process. For this, we com-
pare training and validation metrics for all neural network
models.

We then present inference results. Here, we use the test
set to compare the proposed models with the benchmark.
We discuss error rates, as well as their distribution over
time.

We then focus on the Encoder-Decoder model. A random
sample from the test set is selected to visualize the inference
process. We include an evaluation of the error rate, as well as
an analysis of the attention weights, obtained as a by-product
of the attention mechanism.

A. TRAINING

Table 4 presents both training and validation metrics, for
each model. To visualize the training process, Fig. 2
shows the evolution of the loss function on the validation
dataset.

Vanilla RNN obtains the highest error values for both
metrics. This can be explained due to the lower complex-
ity of the network and thus a lower capacity to model
longer-range temporal dependencies, suggesting that cap-
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TABLE 3. Hyperparameter selection: Best configurations obtained from
Bayesian optimization.

Model
Hyperparameter RNN LSTM Enc-Dec
Dropout 0.17 0.19 0.22
Gradient clip 5 5 2
Hidden size 114 197 155
Learning rate 7.8x 1073 | 9.0x 1073 | 8.75 x 1073
Decoder layers - - 4
Encoder layers - - 7
Layers 6 7 -
Optimizer adam sgd adam
Patience 10 11 9
Teacher forcing 0.11 0.13 0.21
TABLE 4. Error metrics on training set.
MAPE [%]
Model RNN | LSTM | Enc-Dec
Training 12.97 | 10.39 3.59
Validation | 17.56 16.59 5.26
RMSE [%]
Model RNN | LSTM | Enc-Dec
Training 5.56 3.82 141
Validation | 6.69 5.28 1.53
Validation RMSE
= RNN
100 LST™™

¥, A = Enceder-Decoder
W

RMSE

Step

FIGURE 2. Loss function in validation set. The convergence rate increases
with the complexity of the model.

turing this kind of dependency is relevant for an accurate
prediction.

The use of LSTM cells speeds up the convergence process.
Even though the final error metrics of this model are similar
to RNN, the convergence to this value is significantly faster.
This suggests a higher capacity on modeling the sequences,
but a cap on the dataset size.

The Encoder-Decoder model achieves the lowest error
values, both on training and validation set. Also, this model
is the fastest to achieve training convergence. This shows
how temporal inter-dependencies are captured better by the
attention mechanism, compared to the internal representation
of RNN or LSTM.

B. INFERENCE
We now turn our attention to the inference results in the test
set. The proposed time series model results are included as
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a benchmark. Table 5 compares the test set metrics, for all
available models.

TABLE 5. Error metrics on test set.

Model ARMAX | RNN | LSTM | Enc-Dec
RMSE [%] 8.31 591 5.02 1.96
MAPE [%] 29.31 16.85 15.89 5.45

All recurrent neural network models outperform the pro-
posed benchmark on both metrics. Considering the relative
error, vanilla RNN improves the baseline by 18.45%, while
LSTM does it by 32.37%. Furthermore, the Encoder-Decoder
shows an improvement of 84.14% on MAPE. This can be
attributed to the attention mechanism’s higher capacity to
represent the relationship between the exogenous variables
and the output.

To assess the forecasting horizon’s impact on the inference
quality, we analyze the temporal behavior of the relative
error. Fig. 3 shows the forecast error for different amounts
of information available for each model.

MAPE vs Step

ARMAX

RNN

030 LaT™

B Encoder-Decoder

Step

FIGURE 3. Distribution of MAPE. The Encoder-Decoder architecture shows
a steady decrease, as the amount of available information increases.

It is possible to see how the ARMAX error terms do
not improve when more information is available. Given
the auto-regressive components, the variance of the error
increases as more information is available.

Both vanilla RNN and LSTM models show a steady
decrease in their metrics when available information
increases. In the latter case, lower error levels are associ-
ated with a better handle of long term dependencies of the
sequences.

Encoder-Decoder model requires the least amount of
steps, as well as training epochs, to achieve a stable error
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value. Because of this, it appears to be the most suitable
tool to forecast the cathodic rejection of the electrorefining
process.

Having an error-rate below 5% reduces the uncertainty
associated to the forecasted outcomes. Furthermore, a pre-
cise estimation of cathodic rejection has direct relation
with the amount of grade A (high purity) cathodes pro-
duced per cycle [1]. This is critical for short term profit
estimation, as well as long term financial planning of the
operation [38].

C. ATTENTION WEIGHTS

We present a sample sequence to analyze the forecasting
process for the Encoder-Decoder model. The correspond-
ing predictions, as well as the actual values, are included
in Fig. 4.

Encoder-Decoder Model Forecast

Forecast
= = Actual value
B MAPE

[%] uondafey d1poyzed

Step

Relative error
1.0e-2-

1.0e-3-
I.----__--I’?
2 4 6

>
8 10 —

3dVIW

Step

FIGURE 4. Encoder-Decoder model prediction. The forecast rapidly
converges to the actual value, keeping a low error rate on the following
steps.

The Encoder-Decoder model starts with a MAPE of less
than 1%, at the first prediction step, which further decreases
consistently up to step 7. While the relative error increases
slightly after that, it stays under 1%. This behavior is consis-
tent across all evaluated samples, as Fig. 3 shows. This shows
the predictive capability of the Encoder-Decoder model,
which allows for an accurate forecast of cathodic rejection
from the very beginning of the process.

To understand how the error rate convergence is achieved
at the first few steps, we analyze the attention weights
obtained during the inference process. These are depicted
in Fig. 5.

The first row of the weight matrix represents the only
available attention value used to forecast. The second one
shows the weights assigned to the two previous values, and
so on. The last row shows the full weighted input, which used
to forecast the final value. From the results, it is clear that
the attention mechanism assigns larger weights to the first
steps of the sequence. This suggests that a higher relevance
is placed on the electrorefining process’s initial state, even
when more information is available.

It is also important to notice the values assigned to the
last known element, represented on the attention map’s diag-
onal values. This suggests that the previous step is also
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TABLE 6. Input data description.

Group Variable Description Mean Std NaN (%
Cathodic Ag(glt) Silver concentration. 438 x 1075 | 1.59 x 10~? 0.0
Cathodic Bi(g/t) Bismuth concentration. 1.12 x 106 4.0 x 1077 0.0
Cathodic Ca(g/t) Calcium concentration. 2.7x 1077 1.49 x 107 0.0
Cathodic 02(g/t) Oxigen concentration. 1.1 x 10~4 3.86 x 1075 0.0
Cathodic Pb(g/t) Lead concentration. 5.39 x 1076 | 2.28 x 10~6 0.0
Cathodic Sb(g/t) Antimony concentration. 1.63 x107°% | 6.19 x 10~6 0.0
Electrical Current Cumulative current intensity. 20.61 4.92 0.0
Electrical Short Circuit A Short-circuit count at circuit A. 26.07 31.64 0.0
Electrical Short Circuit B Short-circuit count at circuit B. 23.15 28.93 0.0
Electrical Voltage Electrode’s potential difference. 11.23 2.01 0.0
Electrolyte | As(g/l) Arsenic concentration. 7.31 0.93 0.0
Electrolyte | Bi(mg/l) Bismuth concentration. 27.89 9.76 0.0
Electrolyte | Ca(g/l) Calcium concentration. 0.36 0.05 0.0
Electrolyte | Cl(mg/l) Chlorine concentration. 61.34 10.58 0.0
Electrolyte | Fe(g/l) Iron concentration. 0.17 0.02 0.0
Electrolyte | Fe2(g/l) Iron sulfate concentration. 0.1 0.02 0.0
Electrolyte | Ni(g/l) Nickel concentration. 0.2 0.04 0.0
Electrolyte | Pb(mg/l) Lead concentration. 9.92 1.74 0.0
Electrolyte | Sb(g/l) Antimony concentration. 0.28 0.06 0.0
Electrolyte | Temperature(°C) Electrolyte temperature. 63.46 4.23 0.0
Other Water flow (L/m) | Electrolyte water flow. 3.72 2.38 6.73
Other Acid flow (L/m) Acid flow. 1.62 1.57 6.19
Other Anode weight Anode weight. 9.29 x 10° 3.96 x 102 0.0
Other Tank A level (1). Electrolyte stock at Tank A. 65.2 15.19 1.44
Other Tank B level (1). Electrolyte stock at Tank B. 64.99 12.45 5.02
10 VI. CONCLUSION

In this investigation, several recurrent neural network mod-

. ! : ! : els were designed to predict cathodic rejection. Using real

operational data from an electrorefining operation, differ-

1 08 ent architectures were compared in terms of accuracy and

06

o4

roz

—00

FIGURE 5. Attention values for a single sequence. Each row of the matrix
represents the attention weights assigned to the sequence’s previous
values, up to the current step, represented by the column.

taken into consideration by the attention mechanism when
performing inference. This makes sense if we take into
consideration that this value represents the only new infor-
mation available to the model between two consecutive
steps.
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convergence speed, using a traditional time series model as
a benchmark.

Here, cathode rejection is forecasted throughout the
cathodic cycle, while the actual value is obtained at the end of
the process. We also present two metrics to train the models
and compare the different approaches.

Three RNN networks are proposed to solve the prob-
lem mentioned above. A vanilla RNN, an LSTM based
model, and an Encoder-Decoder architecture equipped with
an attention mechanism. The last one shows an improve-
ment of 84.1%, in terms of relative error, against the
benchmark. The error converges steadily from the second
to the third step of the sequence. This allows obtain-
ing an accurate forecast in the early stages of the pro-
cess, which helps to reduce the uncertainty of the process
outcomes.

We also show how the attention weights obtained from the
model’s inference can be used to obtain valuable information
from the process. This allows for better process monitoring,
as well as cycle optimization.

From the presented results, it is possible to conclude that
the use of an attention mechanism allows obtaining an accu-
rate forecast of the current efficiency from an electrorefining
process in a timely manner.

Several directions for future research arise from this
investigation.
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In the first place, a larger dataset is needed to test more
complex approaches. Even though we present an attention
mechanism that improves the existing approaches, there are
other alternatives that, given enough data, can further enrich
the analysis. Some of these are:

1) Double Attention: This mechanism, similar to [39],
allows to obtain attention maps from both a temporal
and a spatial level. This allows identifying critical steps
in the process, as well as the most relevant variables that
explain the forecasting result.

2) Convolutional Attention: The use of convolutional
attention models, such as the Transformer [40] allows
to speed up significantly the training process, due to the
fact that convolutional neural networks don’t require
recursive computation, and thus may be trained in a
parallel fashion. This, in turn, helps to achieve better
results by using more complex models.

Finally, future research includes studying the interaction
with model processing controllers. An accurate and robust
modelling methodology for the electrorefining cathodic
rejection may be used to estimate the outcomes on process
control actions. This may be used to further reduce rejection,
enhancing the quality of the production.

APPENDIX

DATA DESCRIPTION

We provide a detailed description of the input values used for
training the different models on Table 6. This includes the
name of the variable, a brief description of it, and its main
statistical indicators.
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