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ABSTRACT The current researches trend to adopt a low-resolution hot spot map to restore the original high-
resolution representation to save computing cost, resulting in unsatisfactory detection performance, espe-
cially in human body recognition with a highly complex background. Aiming at this problem, we proposed
a model of parallel connection of multiple sub-networks with different resolution levels on a high-resolution
main network. It can maintain the network structure of a high-resolution hot spot map in the whole operation
process. By using this structure in the human key point vector field network, the accuracy of human posture
recognition has been improved with high-speed operation. To validate the proposed model’s effectiveness,
two common benchmark data sets of COCO key point data set and MPII human posture data set are used for
evaluation. Experimental results show that our network achieves the accuracy of 72.3% AP and 92.2% AP
in the two data sets, respectively, which is 3%-4% higher than those of the existing mainstream researches.
In our test, only the accuracy of backbone’s SimpleBaseline with ResNet-152 is close to ours, yet our network
realized a much lower computing cost.

INDEX TERMS Artificial intelligence, convolution-net, DeepResolution-Net, pose recognition.

I. INTRODUCTION
Human posture estimation is one of the important appli-
cations of deep convolution neural network in behavior
perception [1]–[3]. It has been widely utilized in pedes-
trian movement trend detection, health recovery training and
other related fields, working by capturing image signals of
human behaviors, tracking and judging different behavior
postures [4]–[6].

At present, most of the mainstream human posture estima-
tion networks used the character detector mechanism, which
directly used the top-down single-person attitude estimation
technology, such as the 3D-Mask R-CNN detection model
proposed by He et al. [7], Johnson [8], and Huang and
Zhong [9]. The Online Pose Tracking framework proposed
by Guanghan Ning et al., detected human candidate objects
in the first frame and used a single-person posture classifier to
track the position and posture of each candidate object. When
the candidate object is lost, the framework will associate the
current frame’s detection data with the graph convolution
network.
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However, these mentioned networks are limited by their
network structure, and the computing overhead will increase
linearly with the increase of the number of people in the
same image [10]–[12]. Besides, the human detector may not
accurately identify the position of the human body when it is
occluded, resulting in missing some of the detected objects.
Further, such a mechanism is more likely to cause the loss
of detected objects in the blurred part since most of these
networks are composed of a series of main networks from
high-resolution to low-resolution [13], [14].

Aiming at this issue, we designed the MEPDN (Multi-
Enhance-Pose-Detection-Net) network, which combines the
high-speed bottom-up human key point vector field detec-
tion network and parallel multi-level high-resolution network
(DeepResolution-Net). The basis of the MEPDN network
is designed as a parallel multi-level concatenation neural
network. The image is acting as the input of the two-branch
CNN, and the high-resolution hot spot map is also uti-
lized in each branch. The two CNN branches jointly predict
the location of the key points and the affinity vector field
of the key points. By constantly optimizing the operation
results of the previous stage, the best results are finally
obtained.
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The MEPDN network changes the hot spot map of sym-
metrical structure in the vector field detection network of
human key points by multi-stage convolution to a parallel
multi-stage high-resolution hot spot map with step-by-step
progression, which is referred to as DeepResolution-Net in
this paper.

The DeepResolution-Net operation mechanism working
by recalculating the subnetworks with symmetrical resolu-
tion, changing it to make it paralleled by sub-networks with
multiple levels of resolution, and then continuously adding
sub-networks with different resolutions in parallel of each
layer. In that way, it is possible to keep part of the convo-
lution sub-network operating at the highest resolution all the
time. Therefore, this kind of network model is different from
the traditional symmetrical high-to-low resolution network
model such as Hourglass [15], it can provide more powerful
performance in recognition and computing speed.

On the other hand, the introduction of high-resolution
network can enable the MEPDN to identify the vector rela-
tionship between key points more accurately. We used the
high-resolution feature hotspot map of parallel multi-scale
fusion in each layer of the cascade network, and allow the
parallel networks in the MEPDN to exchange information
with each other to achieve multi-scale fusion and feature
extraction. The final estimated key point is the output of the
high-resolution backbone network. This parallel network can
connect high-resolution and low-resolution networks instead
of serial connections as in the previous method. Therefore,
the method can maintain high-resolution rather than restore
the resolution through a low-to-high process to make the
predicted Heatmap more accurate in space.

Our contributions can be mainly concluded in the follow-
ing three points:

(1) Proposed an enhanced human posture estimation net-
work, based on multi-level concatenation convolution neural
network and step-by-step progressive multi-level resolution
network.

(2) Applied step-by-step multi-resolution network to the
calculation of human key point affinity field for the first time,
which improved the energy efficiency of human key point
affinity field calculation under high complex background to
some extent.

(3) Balanced the computational cost and recognition accu-
racy, which provided certain advantages in the mainstream
bottom-up human posture estimation network.

In the second chapter of this paper, we compare algorithm
logic between the designed the MEPDN network and the
two representative mainstream attitude recognition networks,
and briefly describe the implementation methods of different
attitude detection networks.

For the further method demonstration of the network,
we put it in the third chapter, in which we will logically
demonstrate the methods used in the implementation of the
MEPDN network and explain the two parts of the network
architecture of the MEPDN network from the aspect of math-
ematical logic.

In the fourth chapter, we will compare the mainstream
network performance indicators, compare the network perfor-
mance in various scenarios in two mainstream test sets, and
achieve gratifying results in some key indicators of attitude
recognition network performance.

II. RELATED WORK
At present, many studies have proposed their solutions to
the problem of human posture recognition. For example,
the DeepPose [16] network from Alexander Toshev et al.
defines the human posture estimation problem as a key point
regression problem. By using the DNNnetwork to capture the
correlation information of each human key point, the regres-
sion calculation is carried out for each key point. In this way,
the explicit design feature extractor and local detector can be
avoided. There is no need for DNN network to establish the
topology for the key points, which makes the whole method
easier to implement.

In the AlphaPose [17] network proposed by
Hao-Shu Fang et al., SSD-512 is used for human detection
and Stacked Hourglass for attitude estimation. The network
is mainly composed of three parts:

(1) Symmetric Spatial Transformer Network (SSTN) sym-
metric space transformation network: used to extract single-
person regions from inaccurate Bounding Box.

(2) Non-maximum suppression of NMS parameterized
attitude: it is used to solve the redundancy in the calculation.

(3) Pose-Guided Proposals Generator (PGPG): It used to
enhance the training data of AlphaPose network.

The above two representative networks also show two
different recognition models currently used in the field of
human posture estimation:

(i) Top-down recognition model [15], [18], [19]. Those
kinds of models selected the location of the detection
object given by MASK R-CNN and other network models
firstly. Then estimated the attitude of each instance object
respectively.

For example, the 3D-Mask R-CNN model proposed by
Georgia Gkioxari et al. The basic network of the 3D-Mask
R-CNN model is a standard ResNet network model, which is
extended to 3D. The network model generated a 3D feature
blob for Tube Proposal Network (TPN) to generate Proposal
tubes. In the model, RPN generated a 2D attitude suggestion
box, TPN generated the 3D attitude suggestion tube. These
Tubes are used to extract regional features from 3D Feature-
blob, with a spatio-temporal RoI-Align mechanism.

These Proposals are fed into a classifier, and another key
point detector is used to predict the heat map of the key points.
However, such a design suffered a big drawback in calcu-
lation consumption. When the number of identified objects
in the picture is large, the detector is required to operate
repeat calculation in one image, which makes the operation
time increased linearly with the increase of the number of
identified objects in the image.

(ii) Bottom-up recognition model [20], [21]. Those kinds
of models predicted the hot spot map of the key points in the
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human body firstly, and returned the spatial position of the
key points. Then, selected position with the highest Gaussian
value as the key point of the network model prediction and
expressed the spatial correlation between various parts of the
body as a graphic model of a tree structure.

For example, the bottom-up network structure proposed by
Pishchlin et al. [22]–[24], jointed marks candidate key points
and associated them with each object. However, it may take
several hours for the network to finish the operation since
it is an NP-HARD problem to deal with the integer linear
programming problem on a fully connected graph. In other
networks, since the main network adopted the method of
high-to-low resolution, the key point prediction error may
occur and the correlation between variables may not be cap-
tured by the tree structure model when the identified object
in the image is too small.

The HigherHRNet [25] network model proposed by
Bowen Cheng et al. is a bottom-up human posture esti-
mation network based on HRNet and SimpleBaseline [26].
The network adopts the method of multi-scale fusion.
Through heatmap aggregation, in the inference stage, it
solves the training problem caused by the diversity of
detected objects in a bottom-up network to a certain
extent.

The network uses high-resolution feature pyramid learning
scale perception representation, which enables to achieve
multi-resolution supervision in network training and multi-
resolution aggregation function in logical reasoning. More
accurate detection results can be obtained in small human
target detection. However, this method still has some limi-
tations in the output feature map. Because the output feature
map is related to the data set used by the network, repeated
experiments need to be carried out according to the selected
data set to determine the size of the output feature map with
the best performance.

Through the clustering problem of graph theory nodes,
the model effectively used non-maximum suppression to
express the optimization problem as an Integer Linear Pro-
gram (ILP) problem. It can be effectively solved in net-
work computing. However, since the model utilized both fast
R-CNN (for human body detection) and ILP (for human
posture estimation), the computational complexity of the
DeepCut network model is very large.

Zhang et al. [45] tried to improve the network perfor-
mance by re-decoding the hot spot map. They decoded the
hot spot map predicted by the network into the coordinates
of the key points of the human body in the original image
space, and proposed a more principled distributed perceptual
decoding method. However, this kind of key point coor-
dinate representation network based on distributed percep-
tion will make the network vary with the size of the input
image, which will have a great impact on the amount of
computation.

The solutions of traditional human posture estimation net-
works are mostly focused on probabilistic graphic models
and picture structure models [27]–[29]. But the utilization

of deep convolution neural networks can provide more effi-
cient results for human body key point estimation. However,
most networks adopted a similar classification sub-network
structure with reduced resolution [2], [30], [31], which is
composed of the main body that produces the same resolution
as its input and the regression used to estimate the hot spot
map.

For example, Hourglass and its derivative networks used
a symmetrical high-to-low resolution network. It combined
with a structure body with the same resolution as the input
elements of the network and a regression device used to
estimate the hot spot atlas. Such networks utilized the hot spot
atlas to estimate the location of the key points in the human
body and then restore it to high resolution in the output phase,
which may result in the loss of some information during the
operation phase.

In addition to improving the resolution of the hot spot
map in the classification sub-network in different ways,
Yanrui Bin et al. [49] proposed Semantic Data Augmenta-
tion (SDA). By pasting segmented body parts with various
semantic granularity, it can enhance the effect of human
body detection in the image when the target in the detected
image is seriously occluded. Compared with the human body
key point affinity field method adopted by the MEPDN
in this paper, the method of logically deducing the posi-
tion coordinates of other key points through the known key
points, the SDA network needs to preprocess the image.
If the occlusion range is large or the resolution of the
input image is high, the pasting segmented body parts with
various semantic granularity processing may take longer.
It will also lead to a linear increase in network computing
overhead.

Different from others, Ke et al. [46] is focused on improv-
ing the hourglass model of deep conv-deconv with four
key improvements: (i) multi-scale supervised learning, ter-
minal multi-scale regression network; (ii) key point masking
training method; (iii) structure-aware loss; (iv) key point
masking training scheme. These improvements make the
network play a role in complex multi-person recognition
scenes such as scale change, occlusion and so on. How-
ever, this kind of multi-scale structure-aware network may
have higher requirements for the data used in the net-
work training stage. It makes the network training more
tedious, which will indirectly lead to the increase of network
computing.

The MEPDN network we designed in this paper is a
bottom-up target detection network. In the network, the idea
of partial affinity field (PAF) is used to calculate the corre-
lation between key points, and the correlation score is given
through a set of PAF. At the same time, the 2D vector field
is used to encode the position and direction of the limbs in
the image domain. Such a network can learn the relationship
between the human body key point position and the human
body affinity field simultaneously in two branches CNN.
As to further enhance the recognition accuracy of the network
in the responsible background, we used the main network in
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the two parallel branches to maintain high resolution in the
whole operation.

III. METHODOLOGY
In this chapter, we will introduce the method of the MEPDN
in three parts. Part A will be an overview of the MEPDN
network, which will involve the overall design architecture
of the MEPDN network. It will systematically show the
underlying design concept of the MEPDN network for the
first time, including the structure of the multi-level concate-
nated convolution neural network and the step-by-step multi-
resolution hot spot atlas. It will introduce the multi-level
concatenated convolution neural network, which is the core of
the MEPDN network. In part B, we will start from the human
body key point affinity field used by the MEPDN network
to predict human key points, gradually expand and carry on
the mathematical logic deduction. We believe this will help
to show the theoretical basis of the superior performance of
MEPDN in human body key point detection. Part C will show
the step-by-step multi-resolution main network, which we
call DeepResolution-Net. It is an essential way forMEPDN to
control computing overhead while maintaining high enough
recognition accuracy. It works with a multi-level concate-
nated convolution neural network and finally constructs the
overall structure of the MEPDN network.

A. INTRODUCTION OF THE MEPDN NETWORK
TheMEPDN network adopted the parallel multi-level convo-
lution neural network as the underlying design architecture.
At the same time, the human body key point detection and
human posture estimation of parallel operation in the network
are enhanced by high-resolution main network parallel multi-
level different resolution sub-networks.

The proposed pedestrian posture detection network,
focused on improving the ability of vehicles to detect pedes-
trians and reducing the operation time of the network in the
case of high complexity and multi-objectives. It is based on
a multi-stage parallel convolution neural network and step-
by-step progressive multi-resolution hot spot map. This net-
work structure can improve the recognition accuracy of the
network.

The bottom-up mechanism is adopted in the multi-cascade
parallel convolution neural network in recognition, which
first tracks and locates the human body’s key points, and
then connects the posture structure of the human body at
anchor. In this way, the operation time of the network will
not increase linearly with the increase of detected targets
in the image. Besides, by integrating the step-by-step multi-
resolution hot spot map, recognizing human key points in the
complex background is not accurate enough can be alleviated.

Unlike the previous attitude recognition network, which
is from high resolution to low resolution, and then restored
to a high-resolution symmetrical structure in the output
phase, the stepped structure enables the network to main-
tain high-resolution output throughout the operation process.
Meanwhile, in the high-resolution main network, different

resolution subnetworks are continuously introduced into the
exchange unit to realize the exchange of information across
the network. As a result, the network retains more image
details in operation and does not increase the operation time
significantly.

When designing theMEPDNnetwork, we strive to setmost
of the parameters to learnable parameters. It will significantly
help the network to have better adaptability in different data
sets. However, it is inevitable that some network parameters
are non-learnable parameters. Through many experiments,
we finally determine the non-learnable parameter values that
can bring the best performance in COCO data sets and MPII
data sets. We will make an additional explanation when we
calculate the non-learnable parameters in the mathematical
formula.

In this part, we focused on the mathematical logic of the
human key point affinity field andmulti-stage high-resolution
network. We combined these two techniques for the first time
to realize multi-person attitude recognition in high-precision
and complex background, to achieve better results in the
follow-up experimental phase.

The MEPDN network is inspired by the human affinity
field and the confidencemap network of key points [32], [33].
The network preset the pixel positions of p human body key
points, as Yp∈ Z ∈R2, where Z is a set of coordinates of
all human body key points in the input image. The network
will be continually trained so that it can eventually predict the
location of all key points in the human body.

Fig.1 gives a two-branches multi-level CNN architecture,
as follows.

FIGURE 1. Schematic diagram of the MEPDN network structure.

Fig.1 is only a schematic diagram of the subordinate
structure of the DeepResolution-Net to the original multi-
stage concatenation convolution structure. In actual opera-
tion, DeepResolution-Net encapsulated each multi-cascade
sub-network into a whole, which is formed by continuously
parallel step-by-step progressive multi-level resolution sub-
network. Each stage of the network is composed of subnet-
works of the multi-class sequence predictor gx(·). Training
will enable the classifier to predict the location of each key
point in different levels of the network model.

The introduction of the DeepResolution-Net structure can
replace the sequential multi-resolution sub-network structure
of the original multi-stage concatenation structure. Therefore,
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the resolution in each stage of the sub-network will no longer
be a high-to-bottom process, but a step-by-step parallel con-
nection of multiple sub-networks with different levels of
resolution in the continuous operation.

When the loss function reaches the expected threshold,
the convolution operation of the picture in the MEPDN net-
work based on a multi-level concatenation structure will be
terminated. Therefore, the final number of the convolution
stages is not fixed, depending on the stage at which the loss
function finally reaches the threshold.

The multi-level connection structure of the
DeepResolution-Net is started with a high-resolution sub-
network model, and multiple resolution subnetworks will be
added step by step in operation. As shown in Fig. 2:

FIGURE 2. The schematic diagram of DeepResolution-Net network
model.

The feature-Maps in DeepResolution-Net network are still
multi-stage volume integrators. Each Feature-Maps in the
graph is the characteristic graph of sub-networkwith different
resolutions. These sub-network structures contain multi-level
concatenated convolution neural network structures.

The downsampling multiple here is the non-learnable
parameter. After many tests, we finally determine that the hot
spot map of the original resolution is used in the first layer
network. The hot spot map in the second layer network is
obtained by twice downsampling of the first layer network.
In the third layer network, the hot spot map is obtained by
quadruple sampling using the first layer network. This three-
layer network structure can not only maintain the high-speed
computing ability of the network, but also greatly improve the
image detection ability of the network.

B. HUMAN KEY POINT DETECTION AND PAF NETWORK
In each stage, the classifier gx(·) will predict the confidence
value for each key point of the human body based on the fea-
tures extracted fromZ in the image, and the information from
the classifier of the previous stage from the neighborhood
around each Yx in the current stage. The confidence values
generated by the classifier in the first stage are as follows:

g1 = (xz)→ {b
p
1(Yz = z)}p∈{0...P} (1)

xz in Equation (1) represents the image features extracted
from the position Z of the input image. Equation (1) indicates
that the feature information extracted by the classifier in each
stage of the MEPDN network and the data obtained by the
classifier in the previous stage are input to the next stage of the
network. In this way, amulti-level cascaded network structure
is formed.

FIGURE 3. Schematic diagram of PAF vector field.

bp1(Yp = z) is the prediction score of the classifier gt(·)
for the image position z to allocate the p part in the first
stage. In the network, the first branch is used to generate
the predictive confidence map ST in each stage. The second
branch is used to generate the affinity field PAFS Lt. After
the operation of each stage, the confidence map ST and the
affinity field PAFS Lt will be connected in the two branches
and put into the next stage.

The image is first analyzed by initialized and fine-tuned the
first 10 layers of the VGG-19, in which the feature map Fwill
be generated. Then, input feature map F to the top branch of
the network to generate a set of confidence maps S1 = ρ1(F).
Input bottom branch to generate affinity field L1

= ϕ1(F),
where ρ1 and ϕ1 are the deduced CNN network that deduced
by the key points and affinity field of the human body in the
first stage of the network. In subsequent phases, ρ1 and ϕ1,
will be continuously generated from the previous phase. They
will be used together with featuremap F for joint computation
and producing more accurate predictions in the process.

St = ρt(F,St−1,Lt−1), ∀t ≥ 2 (2)

Lt
= ϕt(F,St−1,Lt−1), ∀t ≥ 2 (3)

Among them, ρ1 and ϕ1 will be used in the CNN network
of stage t for inference calculation. We represent all the
evaluated belief values of the p part at each image location
z = (u, v)T in the image as bpt ∈ Rw×h, where w and h
are the width and height of the image respectively, as shown
in (4).

bpt [u, v] = bpt (Yp = z) (4)

The confidence graph set of all the key points of the human
body in the image is represented as bt = Rw×h×(P+1).
To predict the position of human key points and PAF

confidence map more accurately in each iteration, we apply
a loss function in two parallel branches. The loss function is
applied after multi-level convolution. So the original convolu-
tion structure can be spatially weighted to solve the problem
that some data sets cannot completely mark all characters.
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The loss function is described as follows:

fts =
J∑

j=1

∑
p

W(p)·
∥∥∥Stj(p)−S∗j (p)∥∥∥22 (5)

ftL =
C∑

c=1

∑
p

W(p)·
∥∥Lt

c(p)−L
∗
c (p)

∥∥2
2 (6)

∥∥∥S tj (p)− S∗j (p)∥∥∥22 =
(

2

√∑
j

∣∣∣S tj (p)− S∗j (p)∣∣∣2
)2

(7)

S∗j is the basic fact partial confidence graph, and L∗c is the
basic fact partial affinity vector field.W is a binary mask with
W(p)= 0when the annotation is missing at an image location
p. In the network, the gradients will be adding periodically
to solve the problem of the disappearance of gradient. Each
confidence map is a 2D representation of a specific human
key point at each pixel position. Hence, if there is a human
key point that should be detected in the image, the confidence
of this pixel will reach a peak. When it is applied in a
multi-person target scene, the relative confidence peaks are
supposed to appear in each key point of each human target.

In the network, the corresponding confidence graph S∗j,k is
generated firstly for each human target k. Let xj,k ∈ R2 be
the basic real position of the body part j of human k in the
image, xz contains all the xj,k. The value at the location of
p ∈ R2 in S∗j,k is defined as:

S∗j,k(p) = exp(−

∥∥p−xj,k∥∥22
σ 2 ) (8)

The basic fact confidence map to be predicted by the
network is a collection of confidencemaps through operators,
as shown in (9).

S∗j (p) = maxkS∗j,k(p) (9)

By measuring the confidence of the relationship between
the key points of the human body, the MEPDN can judge
which key points belong to the same person. Undoubtedly,
the simplest method is to mark the midpoint of the connection
of key points as the marking attributes of different human
bodies. However, it may lead to deviation when body is
overlapped, and resulting in misjudgment of human body
structure.

To solve this problem, the PAF method is adopted in this
paper. PAF is a 2D vector field of each human limb. For the
pixel region of a limb belonging to the same individual, all
pixels in the region will point to another key point from one
key point in the region.

Let xj1,k and xj2,k be the basic real positions of body parts
j1,j2 in the body c of character k. If point p is on the limb,
then the value at L∗c,k(p) refers to the unit vector from j1 to
j2. The basic real partial affinity vector field L∗c,k at image
point p is defined in (10).

L∗c,k(p) =

{
v (if p on limb c,k)
0 (otherwise)

(10)

Here, v = (xj2,k − xj1,k)
/∥∥xj2,k − xj1,k

∥∥
2 is the unit vector

in the corresponding limb direction of the target. The point
set on the limb is the point p in 0 ≤ v · (p−xj1,k) ≤lc,k and∣∣v⊥·(p−xj1,k)∣∣ ≤ σl, defined as the point within the segment
distance threshold. Besides, the limb width σ l is the distance
in pixels, the limb length is lc,k =

∥∥xj2,k − xj1,k
∥∥
2, and the

v⊥ is a vector perpendicular to v.
The affinity force field of all people of the average image

in partial groundtruth is defined as follows, where nc(p) is
the number of non-zero vectors of all k individuals at point p.

L∗c (p) =
1

nc(p)

∑
k
L∗c,k(p) (11)

The correlation between the candidate component detec-
tions is measured by calculating the line integral on the corre-
sponding PAF along the line segment connecting the position
of the candidate component, as described in (12) and (13).

E =
∫ u=1

u=0
Lc(p(u))·

dj2 − dj1∥∥dj2 − dj1
∥∥
2

du (12)

p(u) = (1− u)dj1+udj2 (13)

For the two candidate component locations d j1 and d j2 ,
the predictive component affinity field Lc is sampled along
the line segment tomeasure their associated confidence. After
executed NMS (Non-Maximum Suppression) operation to
the predicted confidence map, a group of discrete candidate
body parts can be obtained. For each part, there are multiple
candidates since multiple people are in the image. A large
possible limb combination can be defined by those multiple
candidates. Through the above integral formula, the score of
each candidate limb can be calculated.

Firstly, the discrete candidate limbs defined in (14) are
obtained according to the predictive confidence map.

DJ = {dmj : for j ∈ {1...J},m ∈ {1...Nj} (14)

In (14), N j is the number of candidates for part j, dmj ∈R2

is the position of the m detection candidate points of part j.
The matching goal is to connect the candidate parts and the

other candidate parts of the same person. First, the variable
zmnj1j2 ∈ {0, 1} is defined to indicate whether there is a
connection between the two candidate parts dmj1 and dnj2 . The
connection set of all candidate parts is described as:

Z = {zmn
j1j2 : for j1, j2∈ {1, J},

m ∈ {1 . . .Nj1}, n ∈ {1...Nj2}} (15)

max
Zc

Ec = max
Zc

∑
m∈Dj1

∑
n∈Dj2

Emn·zmnj1j2 (16)

Then the two body parts j1 and j2, corresponding to limb c,
are considered separately, aiming to find the graph matching
method with the highest total affinity value. The total affinity
value is defined as follows.

C. DeepResolution-Net
We further improved the multi-level convolution network
and introduced a step-by-step progressive multi-resolution
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network structure with Deephigh-Net structure, as described
in Fig. 4.

FIGURE 4. Schematic diagram of DeepResolution-Net network.

The resolution of the parallel subnetwork in the latter stage
is superimposed by the resolution of the previous stage and
a new network with a lower resolution. Therefore, a unit that
can exchange data information in a multi-level sub-network
is required. Here, we utilized a switching unit mechanism.

Fig.4 shows a schematic diagram of the structure of
the multi-resolution hot spot map of the MEPDN network.
We start with a main network: N11 → N12 → N13 →
N14 (this represents the four stages of a high-resolution main
network).

In each stage, we access parallel subnetworks N22 →
N32 → N42 with smaller resolutions that are different
from those of the main network, and then on the basis of
the subnetworks, we access a layer of the lowest resolution
subnetworks N33 → N43 in parallel to form a three-
layer parallel network structure. These three-layer structures
transmit the hot spot map information at the same time, which
makes the classifier get more hot spot map information and
increases the accuracy of network prediction.

The number of network layers here is a non-learnable
parameter. After many tests, it is determined that the three-
layer network structure can maximize the balance between
the computational overhead and recognition accuracy of the
MEPDN network.

The switching unit mechanism is used in cross-parallel
subnets, which gives each subnet the right to repeatedly
accept information from other parallel subnets. Here, we give
a simple example to illustrate how the switching unit works
in the network. We divide the third-level network into three
switching blocks, each of which is composed of three parallel
convolutional network units. A switching element on these
parallel units is existed, as shown in Fig. 5.
Cb
sr represents the convolution unit of the b-th switch block

at the r-th resolution in the s-level network, and this con-
volution unit is represented as εbs . As can be seen from the
figure, each switching unit has s mapping response inputs,
denoted as {X1,X2, . . . ,Xs}, while the outputs maintain s
mapping responses and the same resolution. The mapping
relationship between the input and output of the switching
unit is described in (17).

Yk =
∑s

i=1
a(Xi, k) (17)

At the same time, the switching units across parallel
subnetworks have additional output mappings, as described

FIGURE 5. Schematic diagram of DeepResolution-Net network across
neuron switching units.

FIGURE 6. Structure diagram of cross-neuron exchange unit.

in (18).

Ys+1 = a(Ys, s+ 1) (18)

The function a(Xi,k) represents the set of Xi sampled up
and down from resolution i to k.
Here we simply return the heat map from the high-

resolution representation of the output of the last switching
unit. And use the mean square error function as the loss
function to compare the predicted hot spot map with the real
value. By applying the 2D Gaussian function and centering
on the groudtruth position of each key point, a base truth
thermal mpa with a standard deviation of 1 pixel is generated.
The schematic diagram of the cross-neuron exchange unit is
shown in Fig. 6.

As shown in Fig.6, for example, in the 3× 3 convolu-
tion of a step switching unit, 2 times step size and 2 times
downsampling is utilized. For the 3× 3 convolution of two
consecutive step switching units, 2 times step size and 4 times
downsampling is utilized. For up-sampling, simple nearest-
neighbor sampling is utilized, and then 1× 1 convolution is
adopted to align data channels.

IV. EXPERIMENT
In this part, experimental results and analyses of proposed
work are given, tested on two mainstream datasets, namely
COCO 2017 dataset and MPII dataset.

A. KEY POINT DETECTION IN COCO DATA SET
COCO data set is large and rich object detection, segmen-
tation and subtitle data set. This data set aims at scene
understanding and is mainly intercepted from complex daily
scenes. The target in the image is calibrated by accu-
rate segmentation. The images include 91 types of targets,
328000 images and 2500000 labels. By far, it has the largest
dataset of semantic segmentation, containing 80 categories
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TABLE 1. Coco validation set: Performance comparison of THE MEPDN
network with CPN, Hourglass and other networks.

TABLE 2. Coco validation set: Performance comparison of the MEPDN
network with CPN, Hourglass and other networks [AP].

and more than 330000 images, of which 200000 are tagged,
and the number of individuals in the entire dataset is more
than 1.5 million.

On the basis of COCO2017 Training data set, we sup-
plemented the human body key point identification data in
a special environment. It combined these training data with
COCO2017 as the training data set of our network. In the
performance evaluation of the network structure, we used
val2017 data set and test-dev2017 data set. The val2017 data
set contained about 5000 images and the test-dev2017 data
set contained 20k images.

TheNetwork performance standardOKS is defined in (19):

OKS =

∑
I exp(

−d2i
/
2s2k2i σ (vi> 0))∑

i σ (vi> 0)
(19)

OKS (Object Key point Similarity) is the similarity of key
points. In the task of evaluating the key points of the human
body, the quality of the key points predicted by the network is
not only calculated by the simple Euclidean distance, but also
by adding a certain scale to calculate the similarity between
the two points.

In (19), d i is the Euclidean distance between the detected
key points and the corresponding ground reality, vi is the real
visibility sign of the ground, s is the object proportion, and ki
is the constant of each key point that controls the attenuation.

In Table 1 and Table 2, we compared the data of the
MEPDN network with that of other mainstream human pos-
ture recognition networks.

In Table 1, AP refers to the average precision, that is,
the average precision of each class in multi-class prediction.

TABLE 3. Coco test-dev set: Performance comparison of the MEPDN
network with CPN, Hourglass and other networks.

In Cascade R-CNN, the equivalent values of AP [42] and AP
[75] indicate that the IoU threshold of detector is greater than
0.5,0.75 (AP at OKS= 0.50,AP at OKS= 0.75), etc. AP[M]:
AP for medium objects: 322 < area < 962; AP[L]: AP for
large objects: area > 962.

During the experiments, we trained the MEPDN network
from scratch, and the input size of the picture is 256× 192,
which is the same as that of other mainstream neural net-
works. Finally, the experiments get a score of 72.3% AP,
which is nearly 4% higher than that of CPN. Compared
with the Hourglass network, the MEPDN network has a
lead of more than 5% in AP. Even comparing with the
best-performed network, the SimpleBaseline network, which
adopted ResNet-152 as a backbone, the proposed network
also maintained a similar level of AP score.

The comparison of our network and the mainstream human
posture estimation networks on the COCO test set is shown
in Table 3.We can see that due to the utilization of DeepHigh-
Net structure, the MEPDN network has an AP score, which
is 10% higher than the OpenPose with convolutional cascade
network, and outperforms other bottom-up networks included
in the data. Corresponding to the top-down network, only the
SimpleBaseline of a backbone with ResNet-152 can reach
the same AP score comparing to ours, which demonstrated
the proposed network is better than other bottom-up attitude
estimation networks.

B. KEY POINT DETECTION IN MPII DATA SET
MPII is a dataset used to evaluate human posture estimates
and related benchmarks, included about 25000 images and
more than 40,000 people with annotated joints, which col-
lecting images using established classifications of human
activity. The dataset covered 410 human behaviors and each
image provides an active tag. Each image in the dataset is
from a YouTube video, and it also provides an associated
unannotated framework. In addition, the annotations of the
test set include body part occlusion, 3D torso and head orien-
tation.

In the experiment, we used the standard measure, PCKh

(header to normalize the correct key probability). PCK is
the percentage of the difference between the key points of
the human body detected by the attitude estimation network
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TABLE 4. Testing on MPII dataset.

TABLE 5. #Params and GFLOPs of some top-performed methods
reported in Table 4.

and the normalized groundtruth of a small part of the size of
the human torso. For MPII evaluation, this 100% is usually
normalized using a small portion of the head size of the
detected object, expressed as PCKh.
That is, the Euclidean distance between the predicted

key points and the real key points is within the range of
alpha× l pixels, where alpha = 0.5, and l is the size of Head.
Specifically, the diagonal length of the boundary box of
l = 0.6× Head is calculated in detail.
In Table 4, we can see that the MEPDN network has

achieved an average improvement of nearly 5% compared
with other networks at the key points with a large range of
movement (such as Kne and Ank). This is mainly due to
the fact that the MEPDN network uses the human key point
affinity field to predict the relationship between the key points
and learn their implicit spatial relationships. At the same time,
the MEPDN network also achieves an average score of about
95 in the prediction of key points of the human upper limb,
which is also at the top level in the comparison network.

In Table 5, we make an extended comparison of networks
with higher overall scores than the MEPDN. We can see that
these networks have a lead of less than 1% over the MEPDN
in total scores, but an average of 36% behind in # Params.

FIGURE 7. Experimental results of bust image.

FIGURE 8. Experimental results of images containing two portraits:(a)
Original image (b) Processed image.

FIGURE 9. Experimental results containing multiple portraits.

In GFLOPs, the MEPDN have a lead of more than 29% in
average. This is enough to show that the MEPDN is still
extremely ahead of these top networks.

C. ACTUAL OPERATION RESULT
In this part, we will focus on the running results of the
MEPDN network under some representative scenarios, which
will more intuitively show the performance of the MEPDN
network outside of the data.

In Fig.7, we choose a photo containing a single bust.
In this photo, we can clearly see that all the key points of the
portrait in the close range are accurately marked and correctly
connected. At the same time, some relatively clear portraits
in the blurred background are also captured by the MEPDN
network. Because DeepResolution-Net makes the image do
not lose too many detail pixels in multi-stage processing.
So that these fuzzy background portraits can also be correctly
identified to a certain extent.

In Fig.8, we use a close-up image made up of multiple
people.We can see that the two portraits in the close range are
accurately marked, and some relatively clear fuzzy portraits
in the background are also marked.

In Fig.9, we increase the number of portraits in close-up
images. When the MEPDN network is used to process the
image, due to the use of a multi-level convolution neural
network, this bottom-up human posture network will not
increase the computing time with the increase of the number
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of portraits in the image, so we do not have more computa-
tional overhead in different image processing.

V. CONCLUSION
In this paper, we proposed a human posture recognition net-
work that combined a multi-stage concatenated convolution
neural network and step-by-step progressive multi-resolution
main network. This network finds a balance between com-
putational cost and recognition accuracy. Finally it becomes
the current the MEPDN network. The recognition accuracy
of this network model is higher than that of most mainstream
networks in high complex backgrounds. And it still maintains
a low computing overhead, which makes it easy for the
network to run on devices with ordinary computing power.
Of course, the network still has a lot of promotion space to
improve.

At present, the MEPDN network is a forward propagation
non-end-to-end network, the output of each stage convolution
will be the input information of the next stage. The net-
work identification results of key points will be continuously
optimized in the multi-stage optimization, and the prediction
results of each stage will be extracted and optimized in the
next stage. In theory, the use of end-to-end network struc-
ture may optimize the prediction results of the network in
each stage. But in terms of overall performance, the network
already has the ability to gradually optimize the test results in
multiple stages. The introduction of end-to-end architecture
may not improve the overall performance of the network, and
this back propagation may lead to an increase in network
computing overhead. There is no doubt that this is a very
interesting idea, and we will explore how to introduce end-
to-end architecture into the MEPDN networks in the future.
And we will be deeply interested in how to control computing
overhead in this case.
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