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ABSTRACT This paper studies the optimal decision-making problem for a plug-in electric taxi (PET) in
a time-varying complex environment, i.e., a passenger environment, charging station environment, traffic
environment, and taxi company management system, in order to maximize PET profit in a short-term
operating cycle. First, this problem is formulated as a sequential decision-making problem composed of
multiple decision slots. Then, to make the model more practical, the model is divided into two parts:
an external environment and an electric taxi model for refinement. The uncertainty and time-varying
characteristics of four environmental aspects, including passengers, charging stations, traffic, and taxi
company management systems, are analysed and modelled. The transitions between adjacent processes and
the environmental feedback of each process are modelled by further subdividing both the serving process and
the charging process of the PET into multiple subprocesses, including cruising, carrying passengers, driving
to the charging station, queueing before charging, and connecting to the power grid for charging. There are
several uncertain factors in the sequential decision-making process for the PET, which leads to difficulty
in solving the problem. To address this difficulty, the model-free algorithm SARSA is chosen. Finally, the
effectiveness of the proposed method is verified by simulation results.

INDEX TERMS Plug-in electric taxi, decision making, uncertainty, SARSA algorithm, load modeling.

NOMENCLATURE
En Environment state at decision-making slot n.
Sn PET state at decision-making slot n.
An Action selected at decision-making slot n.
Rn Reward at decision-making slot n.
Gn Return following decision-making slot n.
tn Discrete time steps at decision-making slot n.
dfp(t) PET cruising distance at time t .
wq(t) PET queueing time at time t .
me(t) PET unit charging price at time t .
ms(t) Unit kilometre price of PET serving at time t .
v(t) PET speed at time t .
fd PET energy consumption per kilometre at time t .
dcp PET passenger carrying distance

(a random variable).
dfc Distance for PET driving to charging station

(a random variable).
wfp PET cruising time
wcp PET passenger carrying time.
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wfc PET driving time to charging station.
wg Time to connect to the grid for charging.
σ 2
fp Variance of dfp(t) probability distribution.
σ 2
q Variance of wq(t) probability distribution.
T pfp Peak passenger travel time.
T gfp Off-peak passenger travel time.
T pq Peak queueing time.
T gq Off-peak queueing time.
T pe Peak charging price time.
T ge Off-peak charging price time.
T pv Peak traffic time.
T gv Off-peak traffic time.
T dts PET operating time during the day.
T nts PET operating time at night.
Dpfp Mean value of dfp(t) probability distribution

during T pfp.
Dgfp Mean value of dfp(t) probability distribution

during T gfp.
W p
q Mean value of wq(t) probability distribution

during T pq .
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W g
q Mean value of wq(t) probability distribution

during T pq .
Mp
e PET unit charging price during T pe .

Mg
e PET unit charging price during T ge .

V p PET speed value during T pv .
V g PET speed value during T gv .
Mdt
s PET unit kilometre price for service during T dts .

Mnt
s PET unit kilometre price for service during T nts .

emax PET battery capacity.
pc PET charging power.
msf PET flag-down fare.
γ Discount-rate parameter in SARSA algorithm.
α Learning-rate parameter in SARSA algorithm.
ε Probability of taking a random action

in an ε-greedy policy.
rpv Penalty when PET does not have enough energy

to complete task.

I. INTRODUCTION
There is a consensus in all countries worldwide to vigorously
develop new-energy vehicles, as represented by electric vehi-
cles, to replace traditional fuel vehicles [1]. The large-scale
development of electric vehicles will present great changes
to the transportation system and have a profound impact on
electric power and energy systems [2]–[4].

Since uncoordinated large-scale electric vehicle charging
will threaten the safety and stability of the power grid, there
has been a wealth of research on electric vehicle dispatching
strategies under the background of electric power systems.
Ref. [5] studied the optimal operation scheduling of electric
vehicles in a smart distribution network, aiming at improv-
ing voltage profiles and reducing network losses. Ref. [6]
proposed the application of electric vehicles to participate in
the primary frequency regulation of a power grid. The goal
of optimal control is to suppress the frequency fluctuations
in a power grid. In [7] and [8], plug-in electric vehicle stor-
age was exploited for load flattening and voltage regulation.
Ref. [9] proposed a novel business model to optimize the
charging energy of PEVs to maximize aggregator profits.

Obviously, all the above studies have focused on private
electric vehicles, and little attention has been paid to elec-
tric taxis. Electric taxis are different from private electric
vehicles in terms of power characteristics, running time, and
power consumption [14]. Specifically, compared with pri-
vate electric vehicles and electric buses, electric taxi own-
ers are completely profit oriented. However, most studies
have put forward scheduling strategies from the perspective
of power systems [5]–[9], ignoring the interests of electric
vehicle owners or electric vehicle fleets. Considering the
profit-seeking of taxi owners, the effects of these methods
will be greatly reduced if they are directly applied to electric
taxis. Second, electric taxis will be in use most of the time,
and owner actions will be affected by many external factors
(such as passengers, traffic conditions, etc.), which leads
to great uncertainty. However, most of the current studies
make deterministic assumptions [10], [11] or deterministic

predictions [12], [13] about electric vehicle loads. From a
practical point of view, these methods apply only to private
electric vehicles (which are parked most of the time) and
electric buses (which have relatively fixed travel times and
routes) but not to electric taxis. In summation, most of the
existing studies cannot be directly applied to electric taxis,
so electric taxis need more attention and research.

Since 2014, electric taxis have gradually attracted the
attention of researchers. Ref. [15] and [16] proposed a multi-
objective optimizing model for electric taxi charging station
deployment based on taxi trajectory data. Ref. [17] and [18]
studied the optimal charging problem for a plug-in elec-
tric taxi by considering factors such as time-varying service
incomes and charging costs. Ref. [19] provided a charging
station recommendation system for electric taxis to achieve
spatial optimization of the electric taxi charging problem.
Ref. [20] launched an online method to calculate proper real-
time prices from the viewpoint of a utility company, such
that the collective charging load of a fleet could track the
desired value as the response to prices. Ref. [21] proposed
a multiagent framework for PET operation and developed the
multistep Q(λ) learning approach for PETs to make decisions
under various situations. However, the main shortcomings of
these existing studies are as follows:
• The influences of important factors other than the power
grid (such as those related to the transportation system)
on the operating decisions of PETs have been ignored.

• The models rely too much on historical operation
data or the deterministic assumption of the PET
behaviour chain, so they cannot reflect the autonomous
response of electric taxi owners to changes in the exter-
nal environment and the uncertainty of their behaviours.

• Since most studies rely heavily on real-time environ-
ment information (such as electricity price and traf-
fic data), these methods place specific requirements
on communication technologies, business models, and
supporting facilities in real-world applications, which
makes the applications more difficult.

In this paper, the operating processes of PETs are math-
ematically expressed, and then the operating behaviours of
PETs are modelled from the source (the key factor affecting
the operating decision of PETs). The uncertainty of the PET
operating environment leads to uncertainty in the behaviour
of PET owners, which greatly increases the difficulty of solv-
ing this optimization problem. To overcome this difficulty, the
SARSA algorithm is selected to solve the problem accord-
ingly. The main contributions of this paper are summarized
as follows:
• Because electric taxi owners are completely profit ori-
ented, this paper studies the optimal decision-making
problem of PETs from the perspective of actual electric
taxi owners to maximize the daily income of a single
electric taxi.

• PET driver behaviours are influenced by many environ-
mental factors, creating great uncertainty. This paper
focuses on the influence of environmental factors
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(passengers, charging stations, traffic, taxi company
management systems) on the behaviours of PET drivers
and puts forward a PET operating behaviour model
based on environmental uncertainty. The model can
reflect the autonomous responses of PET drivers to the
environment and the uncertainty of this behaviour.

• The optimal decision-making method for PETs pro-
posed in this paper is mainly based on operating environ-
ment characteristics, which reduces the dependence of
the model on historical PET data and real-time environ-
mental data. Therefore, the model has greater expand-
ability and wider application scenarios.

The rest of this paper is organized as follows. In Section II,
the operation optimization problem of a single PET in a short-
term operating cycle is simplified, and the difficulty of solv-
ing the problem is analysed. The model is further refined in
Section III, mainly by including the operating environment of
PETs and environment feedback signals to PETs, the states in
the operating processes of PETs, and the transitions between
states. Section IV introduces the specific solution methods
and steps of the problem. The simulation results are shown
in Section V, and Section VI offers conclusions from this
paper.

II. PROBLEM FORMULATION
In simple terms, this paper addresses how to maximize the
benefits of a PET in its short-term operating cycle by properly
arranging the service time and charging behaviours. A short
operating cycle of a PET is usually composed of multiple
service processes and charging processes. A PET needs to
decide between the service process and charging process, that
is, to decide whether to serve or charge in the next process.
A Markov chain model is used to describe this problem.
It is assumed that a short-term PET operating cycle contains
N + 1 decision-making slots. At the decision-making slot
n = 0, 1, 2, . . . ,N , based on the environment En ∈ E where
the current decision-making slot is located, the PET should
select the next action An ∈ A, i.e., An = 1 An = 0, standing
for service action and charging action, respectively. Then, the
PET will complete the selected behaviour. After the end of
a service or charging behaviour, it will enter into the next
decision-making slot. At the slot, the PETwill select an action
An ∈ A based on the new environment En+1 ∈ E, and as
above, the cycle will continue until the end of a short-term
operation. It can be said that a short operating cycle of an
electric taxi contains N discrete decision-making slots, or it
can be said that it containsN processes of interaction between
a PET and its operating environment, which is represented by
the following sequence:

E0,A0,E1,A1,E2, . . . ,EN ,AN
s.t. E ∈ E, A ∈ A (1)

Sequence (1) contains two transitions. The first is how
to select action an based on the current environment en,
which is the transition from the environment state en to the

action an. The second is what happens to the environment
after action an has been executed, which is the transition
from the action an to the environment state en+1. The PET
policy π (a|e) drives the first transition. The policy of the PET
is specifically described as follows: the PET evaluates each
optional action (serving or charging) at each decision-making
slot. The higher the PET’s evaluation of an action, the greater
the probability of selecting the action at the decision-making
slot, which can be formulated as

a∗n = argmaxan,i p(an,i|{e0, a0, . . . , en})

= argmaxan,i p(an,i|en) (2)

where the conditional probability originally contains the
sequence information before the state en. According to
Markov properties, the action at the next moment is only
related to the current state and is independent of the state
before the current moment, so (2) is simplified as above.

The second transition in (1) is determined by the operat-
ing environment where the PET is located. After the PET
completes an action, the environment will respond to the
action and present new situations to the PET so that the
PET transitions to en+1. Here, also according to the Markov
characteristic, the environmental state transition en to en+1
can be expressed in the form of probability:

p(en+1|en, an) = Pr{En+1 = en+1|En = en,An = an} (3)

Based on the above analysis, the key problem is how to
optimize the policy from state to action at each decision
slot so that the PET can obtain an optimal action sequence
{A0,A1,A2, . . . ,AN } according to the policy to achieve the
goal of maximized revenue in the operating cycle:

max
An∈A

N∑
n=0

Rn+1 (4)

where Rn+1 is the numerical reward (such as the profit
obtained from a single service or the cost of a single charge,
defined in Section III (24)-(25).) that an operating environ-
ment feeds back to the PET after completing the behaviour
selected at the decision-making slot n. It is worth noting
that Rn+1 is not acquired immediately at slot n but rather
at slot n + 1 after the serving or charging process has been
completed, as shown in Fig. 1.

FIGURE 1. A short-term operating cycle for a PET.

Since the decision-making problem of a PET within an
operating cycle is a sequential decision-making problem that
contains multiple decision-making slots, we cannot directly
optimize the income of the entire operating cycle according
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to (4), so we need to convert (4) into the objective of each
decision-making slot:

max
An∈A

Gn, n = 0, 1, 2, . . . ,N

s.t. Gn = Rn+1 + γRn+2 + γ 2Rn+3 + · · · + γ N−nRN+1
(5)

Ideally, the goal of each partial decision-making slot for
the PET is to maximize the reward of the entire operating
cycle. However, the current and future action decisions will
not affect the past rewards, as shown in (5), so the objective of
a specific decision-making slot n does not include the rewards
R1,R2, . . . ,Rn before the present decision-making slot n.
In (5), γ is a parameter where 0 ≤ γ ≤ 1, which is called
a discount rate. The closer it is to 1, the more consideration
is given to future rewards.

However, it is still difficult to directly optimize (5) because
when the PET is at the decision-making slot, the future state
action sequence is unknown, let alone the future income. This
can be further expressed in the form of expectations:

vπ (e)
.
= Eπ [Gn|En = e]

= Eπ [
N∑
k

γ kRn+k+1|En = e] (6)

qπ (e, a)
.
= Eπ [Gn|En = e,An = a]

= Eπ [
N∑
k

γ kRn+k+1|En = e,An = a] (7)

where Eπ [·] represents the expected value of a random vari-
able at a given policy π . Eq. (6) expresses the probabilistic
expected value of the rewards obtained by the PET in accor-
dance with the policy π , starting from state e. vπ (e) measures
the value that state e provides to the realization of goal (4)
under the policy π . Eq. (7) expresses the expected rewards
of all possible decision sequences according to the policy π ,
starting from the state e and the execution of the action a.
qπ (e, a) measures the value provided by taking action a in
state e to achieve goal (4) under the policy π .
After a series of analyses and derivations, we obtain a

more effective expression of the operating decision-making
optimization problem for a PET, that is, to solve the optimal
policy π (a|e) of the PET in a short-term operating process to
maximize the value of each state in the operating process:

π∗ = argmaxπ vπ (e). (8)

In other words, the problem is to decide the next action at
each decision-making slot to maximize the value of the state
of the current decision-making slot:

a∗ = argmaxa qπ∗ (e, a) (9)

Remark 1: It should be noted that the above models and
derivations assume Markov characteristics of the PET oper-
ation. That is, the probability of the occurrence of each
possible value of En and Rn only depends on the previous
state En−1 and the previous action An−1 and is completely

independent of the earlier state and action. The key to solving
this problem is to determine the probability of state En−1,
action An−1, to the next state En and reward Rn. In practical
application, this probability value is actually an accumulation
of experience (data can come from reality or a simulation, and
this paper works with the latter).

At this point, we have clearly described the short-
term operating decision-making problem for a PET. Next,
the model is further refined in Section III and Section IV.
Section III will further describe the operating environment
of the PET. In addition, Section IV will address the state
transitions between decision slots and the calculation of each
decision slot’s rewards.

III. MODEL REFINEMENT
A. ANALYSIS OF PET OPERATING ENVIRONMENT
Obviously, the actual operating environment of a PET is
complex and changeable, and there are many factors that
can affect the operating decision-making process of the PET,
such as weather, road conditions, and so on. Therefore, when
analysing the operating environment of PETs, to ensure that
the research results are realistic, a comprehensive understand-
ing is required; in addition, to ensure the feasibility and
efficiency of solving the problem, environmental information
that has less obvious influences on the PET decision-making
process should be selectively ignored. Regarding the impacts
of operating environments on electric taxis, researchers have
compiled statistics and analyses on actual data or simulated
data. According to existing studies [21]–[23], this paper
selects the environmental factors that have a direct and greater
impact on the operating decision and revenue of a PET: pas-
sengers, charging stations, transportation, and taxi company
management systems, which constitute the operating environ-
ment of the PET in this paper. First and foremost, in this paper,
the operating space of the PET operating problem is limited
to a small city or a specific district of a large city (such as
the central business district, residential quarters, residential
and commercial mixed area, etc.). When the PET operating
area is small, it is assumed that the impact of the PET’s
spatial position on its operational decision-making process is
far less than its temporal position. Therefore, in this paper,
only the time-varying characteristics of the environment in
the PET operating area are considered. In different spatial
locations, the environment has different time-varying char-
acteristics, which has different influences on PET operation.
The influence of the time-varying characteristics of these
four aspects (passengers, charging stations, transportation,
and taxi company management systems) of the environment
on PET operation is analysed below.

1) PASSENGER ENVIRONMENT
In different time periods, passenger travel will show differ-
ent characteristics (such as the total number of passengers,
the average travel distance, etc.). The impact of passenger
travel time on the PET operating occurs mainly in the process
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of PET cruising. In general, the PET cruising distance in peak
travel hours shorter than the PET cruising distance in ordinary
travel hours.

dfp(t) ∼ U (d̄fp(t), σ 2
fp) (10)

d̄fp(t) =

{
Dpfp t ∈ T pfp
Dgfp t ∈ T gfp

(11)

The cruising distance at time t , dfp(t), is uncertain, so it is
assumed that dfp(t) is a random variable subject to a uniform
distribution, in which the mean value d̄fp(t) related to the time
period, and Dpfp < Dgfp.

2) CHARGING STATION ENVIRONMENT
The PET charging process is completed at a charging station,
so the environment of the charging station is an important
factors affecting the operating decision of a PET. Different
charging stations may have completely different load curves
and different charging peaks during the day. Whether charg-
ing stations are available during the peak electric vehicle
charging times will affect PET queueing time wq(t) before
charging; in addition, this can affect the PET charging price
me(t) (PET charging price generally consists of two parts,
energy price and charging station service charge, and the
charging station can adjust the service charge according to
load conditions within the station).

wq(t) ∼ U (w̄q(t), σ 2
q ) (12)

w̄q(t) =

{
W p
q t ∈ T pq

W g
q t ∈ T gq

(13)

me(t) =

{
Mp
e t ∈ T pe

Mg
e t ∈ T ge

(14)

The queueing time wq(t) is uncertain, so it is assumed to
be a random variable complying with uniform distribution,
in which the mean value w̄q(t) is related to the time period,
and W p

q > W g
q .

3) TRAFFIC ENVIRONMENT
During PET service calls and while driving to the charging
station, the PET speed will be affected by the traffic environ-
ment (traffic congestion) at all times. Different PET driving
speeds will affect the time for a PET to complete a serving
process or charging process, thus affecting the revenue per
unit time; in addition, this will affect the energy consumption
of the PET fd (previous studies have shown that the energy
consumption of a PET is correlated with its average speed,
which can be fitted by (16)).

v(t) =

{
V p t ∈ T pv
V g t ∈ T gv

(15)

fd = k1+ k2 · v(t)+ k3/v(t) (16)

where Eq. (16) is a basic form commonly used to fit the
relationship between energy consumption and average PET
speed. k1, k2 and k3 are fitting coefficients, whose values

can be obtained by multiple linear regression based on a large
amount of actual data.

4) TAXI COMPANY MANAGEMENT SYSTEM
Different taxi companies will have different management and
operating systems. Electric taxis need to operate according
to the regulations of their companies. In a taxi company
system, the shift change system (such as the shift change
time, the need for surplus electricity during the shift) and the
passenger fees rules (taxi starting price, unit kilometre price,
night operation subsidy, etc.) will have a direct impact on the
decision and income of the PET.

ms(t) =

{
Mdt
s t ∈ T dts

Mnt
s t ∈ T nts

(17)

It is notable that the unit kilometre price ms(t) here is only
a part of the passenger fees that will change over time, while
the complete passenger fees (that is, PET serving revenue)
will be given in Section III.

B. PET MODEL
The following is a further refinement of the PET model.
Before refining the state model of the PET, we first need
to distinguish the objective environmental state and the
observed environmental state of the PET. An objective oper-
ating environment for the PET demands that the environment
will not be changed by subjective observation or cognition
of the PET. An observed PET environment, as the name
implies, refers to the subjective environment of the PET.
The environment in Section II and the four parts of the PET
operating environment discussed in Section III belong to an
objective environment. In this section, to further refine the
PET decision-making model, it is necessary to discuss the
environment observed by the PET (hereinafter referred to
as PET state). The PET state is an abstract expression of
environmental information that the PET can and must obtain.
The obtainable information for the PET depends on the actual
background, such as whether the environmental information
is disclosed and whether the technology and equipment con-
ditions supporting the information transmission are available.
However, the information required by the PET depends on
which environmental information will have a greater impact
on the PET operating decisions. This study solely focuses on
how selecting the state in the actual application should be
considered and adjusted in combination with the background
of the actual problem. However, this study is a relatively
universal model, focusing on the decision-making method
itself. Therefore, this paper does not seriously consider the
real background but rather works from the perspective of
algorithm implementation and effectiveness. Finally, in this
paper, time and SOC of the PET are selected to constitute the
PET states. In other words, the two parameters of time and
SOC are used to identify the PET state at each decision slot:

S ∼ [Stime, Senergy] (18)
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where, Stime is the time state and is set as a state every
30 minutes. When taking a day as an operating cycle, there
are 48 time states in an operating cycle. Senergy is the SOC of
the PET. The total electric quantity of the PET is divided into
25 states. That is, there are 48× 25 = 1200 PET states.
At each decision-making slot, the PET has to choose the

action of the next process based on the current state S. The
PET has two optional behaviours: serving or charging.

A = {as, ac} (19)

where, as indicates that the PET decides to offer service as the
next process at the current decision-making slot, and as = 1;
ac indicates that the PET decides to seek a charge as the next
process at the current decision slot, and ac = 1.

FIGURE 2. State transition when selecting serving.

1) STATE TRANSITION
The following is a further analysis of how the state of the
adjacent decision slot is transformed, that is, the expres-
sion of (3): how to obtain sn+1 according to sn and an.
As briefly analysed above, there is a continuous process
of serving or charging between two adjacent decision slots
(depending on whether the PET chooses serving or charging
behaviour at the previous decision slot). Therefore, analysing
the state transition between the decision-making slots is
essentially analysing which changes (Stime state and Senergy
state transitions) occur to the state of the PET S during the
process of serving or charging. If the PET chooses service,
the serving process (the serving process is composed of two
processes of cruising and carrying passengers, as shown in
Fig. 2) will take place. In addition, the Stime state and Senergy
state transition of the PET are as follows:

stime,n+1(stime,n, as) = floor(
tn + wfp + wcp

30
) (20)

s.t.
∫ tn+wfp

tn
v(t)dt = dfp(tn),

∫ tn+wfp+wcp

tn+wfp
v(t)dt = dcp

senergy,n+1(senergy,n, as) = floor(
en − dfp(tn) · fd − dcp · fd

emax/25
)

(21)

If the PET chooses charging, the charging process (the
charging process consists of three processes: driving to a
charging station, queueing before charging, and connecting
to the power grid for charging, as shown in Fig. 3) will take
place. In addition, the Stime state and Senergy state transition of

FIGURE 3. State transition when selecting charging.

the PET are as follows:

stime,n+1(stime,n, ac) = floor(
tn + wfc + wq(t)+ wg

30
)

(22)

s.t.
∫ tn+wfc

tn
v(t)dt = dfc,wg =

emax − en
pc

senergy,n+1(senergy,n, ac) = 25 (23)

In Eqs. (20) and (22), floor(·) is the rounding down func-
tion. Eqs. (20) and (22) refer to the PET Stime state after the
PET completes a serving action or a charging action, respec-
tively. It should be noted that the time s wfp, wcp, and wfc in
Eqs. (20) and (22) are calculated based on the distance and
speed of the corresponding action. The time wq(t) is obtained
according to Eqs. (12) and (13), while the charging time wg is
calculated by assuming that the PET is fully charged in every
charging action. Eqs. (21) and (23) refer to the PET Senergy
state after the PET completes a serving action or a charging
action, respectively. Since it is assumed that the PET is fully
charged after each charge, the PET is at maximum Senergy
state after each charging action, i.e., Senergy = 25.

2) REWARD SIGNAL
Next, the reward signal from the environment after the PET
completes a serving process or a charging process is defined:

rn+1(sn, as, sn+1) = msf +
∫ tn+wfp+wcp

tn+wfp
ms(t)v(t)dt (24)

rn+1(sn, ac, sn+1) = −
∫ tn+wfc+wq(t)+wg

tn+wfc+wq(t)
me(t)pcdt (25)

where Eq. (24) actually refers to the carrying income obtained
in a serving process, while Eq. (25) refers to the total charging
cost.

IV. SOLUTION ALGORITHM
Thus far, we have introduced the model in detail, but this is
still far from the solution to the final problem. According to
the analysis concept of Eqs. (2)-(9) in Section II, we need
to list all possible state transitions and specify each state-
transition probability before calculating Eqs. (6) and (7) to
obtain the optimal strategy. However, after further refinement
of themodel in Section II, we find that it is nearly unreachable
to list all possible state transitions (1200 PET states have
been set above, which means that 12002 = 1.44 × 106
state-transition probabilities need to be set or calculated.
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FIGURE 4. Sample generation process.

In addition, the state transition process contains many ran-
dom variables, such as dfp(tn), dcp, dfc and so on). There-
fore, we cannot apply ‘‘model-based’’ algorithms (such as
dynamic programming) to solve this problem. We can only
choose a ‘‘model-free’’ algorithm (which approximates the
expected values in (6) and (7) by simulating enough sam-
ple sequences). In this paper, the commonly used ‘‘model-
free’’ algorithm SARSA is selected to solve this problem.
SARSA is a temporal difference (TD) learning algorithm,
which combines Monte Carlo simulation and dynamic pro-
gramming [24]. From the point of view of the algorithm
structure, it is similar to the Monte Carlo method, which is
also solved by simulating the interactive sequence from the
core of the algorithm; this approach also uses the classic
Bellman equation in reinforcement learning to realize self-
iteration. As its name implies, the five key iteration factors of
the algorithm are S (the current state), A (the current action),
R (the reward obtained by the simulation), S ′ (the next state
entered by the simulation) and A′ (the next action taken in
the simulation). The core iteration equation for SARSA is as
follows:

Q(S,A)← Q(S,A)+ α[R+ γQ(S ′,A′)− Q(S,A)] (26)

The pseudocode of the algorithm is as follows.
The key to the algorithm implementation lies in Step 3, that

is, how to simulate an episode of a sequence sample. There
are two key points to implement Step 3: one is the policy
used to simulate the sample, and the other is the definition
of the final state of an episode. As shown in the pseudocode
above, this paper uses the most basic and commonly used
random policy in reinforcement learning algorithms, that is,
an ε-greedy policy. This kind of policy may well balance
exploitation and exploration.

π (a|s) =

1−
ε

2
a = argmaxa Q(s, a)

ε

2
a 6= argmaxa Q(s, a)

(27)

Algorithm 1 Solution to (4)-(9)
1: Step 1: Initialization. Q(s, a),∀s ∈ S, a ∈ A(s).
2: Step 2: Setting. Set values of α and γ .
3: Step 3: An episode. Set a starting state S.

1) Choose action A from state S using policy
derived from ε-greedy.

2) Take action A, observe R, S ′.
3) Choose action A′ from state S ′ using policy

derived from ε-greedy.
4) Update

Q(S,A)← Q(S,A)+ α[R+ γQ(S ′,A′)− Q(S,A)].

5) Update S ← S ′,A← A′.
6) Go to 3) and repeat this process until S is terminal.

4: Step 4: Repeating. Go to Step 3, repeat this process until
all Q(s, a) converge.
5: Step 5: Output the final policy π (s) = argmaxa Q(s, a).

Eq. (27) indicates that the probability of selecting the
action with the maximum action value is 1 − ε

2 , while the
probability of another action is ε

2 . This kind of policy may
well balance exploitation (select the action with maximum
action value) and exploration (select action other than the
action with maximum value function).

Step 3 obtains an episode of data through cycles 1) to 6)
until the PET reaches the final state. However, there are
several different final states. Fig. 4 shows a more detailed
loop logic of Step 3 and the scenarios where an episode ends.
As shown in Fig. 4, the first kind of final state occurs when
Stime ≥ 48, that is, the time state Stime reaches the end of
the operating day. The second and third kinds occur when
Senergy ≤ efp + ecp and Senergy < efc respectively, that is,
the PET has chosen a serving action but without enough
energy to complete cruising and carrying passengers, or the
PET has chosen a charging action but without enough energy
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to reach the charging station. In this paper, the second and
third conditions are collectively referred to PET operating
failure. Obviously, the essential reason for an operating fail-
ure is that the PET did not choose the charging action in time
and in advance. A penalty signal rpv should be set here to
avoid such an unreasonable policy.

V. SIMULATION AND ANALYSIS
In this section, we use MATLAB to simulate and verify
the effectiveness and superiority of the method proposed in
this paper. First, the basic parameters of the simulation were
explained. Then, according to the convergence and optimiza-
tion of the algorithm, several key parameters of the SARSA
algorithm were determined. Finally, the simulation results
were compared with a conventional electric taxi operating
scheme (scheme without SARSA algorithm).

A. PARAMETER SETTING
We examine a PET operating during a day (24 h) starting
at 5:00 AM. It should be noted that the parameters in this
paper are determined by reasonable assumptions based on
real data studies [21]–[23]. First, we set the basic parameters
for the PET. Vehicle battery capacity emax is set at 25 kWh,
and charging power pc is set at 12 kW. According to (16),
the corresponding energy consumption per kilometre at dif-
ferent driving speeds can be calculated. Assuming that V p

=

12km/h in traffic congestion, the corresponding energy con-
sumption per kilometre fd = 0.3kWh/km; assuming that the
general driving speed V g

= 36km/h, then fd = 0.2kWh/km.

TABLE 1. Peak hour settings.

Operating environment parameters (such as peak passen-
ger travel time, traffic congestion time, charging peak time,
etc.) depend on the characteristics of the PET operating loca-
tion (central business district, residential quarters, residential
and commercial mixed area, etc.). In this example, we set
the PET operating area as a central business district. Accord-
ing to the conclusions of existing studies, the time periods
for peak passenger travel, traffic congestion, and charging
in this region are set as shown in Table 1. In these peak
hours in Table 1 and ordinary times beyond the peak hours,
the characteristics of the PET operating environment are
different, and their corresponding cruising distance, queuing
time, charging unit price, and so on are different. When t ∈
T pfp, the cruising distance dfp(t) (in kilometres) follows uni-
form distribution U (2, 1.33); otherwise, dfp(t) ∼ U (6, 1.33).
When t ∈ T pq , the queuing time wq(t) (in minutes) follows
uniform distribution U (20, 33.33); otherwise, wq(t) = 0.
During off-peak charging price hours T ge , PET’s unit charging

price Mg
e is set to be 0.9 RMB/kWh, and during peak hours,

Mp
e is set to be RMB/kWh. During night hours T nts , PET’s

unit kilometres priceMnt
s is set to be 3 RMB/km, and during

other hours, Mdt
s is set to be 2.5 RMB/km.

B. ALGORITHM CONVERGENCE
In this section, we discuss the values of SARSA algorithm
related parameters, including discount rate γ , learning rate α,
penalty value rpv, and probability ε, in an ε-greedy policy
and select the parameter value that makes the result more
optimal. Through the preliminary experimental comparison,
we find that the value of γ and α will have an impact on
the optimization. The smaller the value of α is, the more
convergent theQ(s, a) will be, but the slower the convergence
rate will be. The penalty value mainly affects the failure rate
of an episode simulation. The smaller the penalty value is,
the smaller the failure rate is. However, α and rpv hardly affect
the optimization.

After comparing the results of different parameter combi-
nations, the parameter values are finally selected as follows:
γ = 1, α = 0.05, ε = 0.05, rpv = −103. Based on these
parameters, we respectively took 25 SOC states as the initial
state to conduct 3000 rounds of PET daily operating simula-
tions. The convergence of the algorithm is judged according
to whether the Q(s, a) of state-action pair is stable. After
3000 rounds of simulations, in addition to Senergy = 1, 2, 3,
the Q(s, a) of other state-action pairs tends to be stable, from
which the Q(s, a) of Senergy = 15 and Senergy = 25 are
selected to be displayed in Fig. 5.

FIGURE 5. Convergence of SARSA algorithm.

C. STATISTICAL PERFORMANCE
In this section, we compare the results of the optimal
operating strategy proposed in this paper with the common
operating strategy. To obtain a statistical result, each of the
following figures is obtained via a Monte Carlo simula-
tion that consists of 100 independent trials. In the common
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FIGURE 6. The daily profits, incomes, and costs with different initial SOCs
by applying common operating strategy and optimal operating strategy.

operating strategy specifically mentioned here, when the
remaining battery capacity of the PET is less than a certain
fixed value (set it to 0.3 here), the owner will choose to
charge, and in other cases, it will choose to serve, completely
ignoring the environment changes (This strategy is often
used to make assumptions about EV charging behaviour.).
Fig. 6 shows the daily profits, incomes, and costs with dif-
ferent initial SOCs for the PETs. It can be observed that no
matter how much the initial SOC of the PET is, the optimal
operating strategy proposed in this paper can improve the
daily profits of the PET. It can also be found that the initial
SOC has a great impact on the daily profits, incomes, and
costs, and the increase in profits varies with the initial SOC.
The maximum increase is approximately 10% when the ini-
tial SOC is 0.84, and the minimum increase is approximately
3% when the initial SOC is 0.68.

Fig. 7 shows the optimal policy, which states when the PET
chooses to charge and when it chooses to serve. Charging
selection is selected when the charging action value Q(s, ac)
is greater than the serving action values Q(s, as) and vice
versa. It should be noted that both the charging selection and
serving selection are divided into strong and weak selection.
Weak selections essentially mean that there is no significant
difference between Q(s, ac) and Q(s, as) in these states (the
single selection in these states has little impact on the profit of
the entire operating process). In the case of strong selections,
Q(s, ac) andQ(s, as) aremuch different, and a single selection

FIGURE 7. The optimal operating policy.

FIGURE 8. Average, maximum, and minimum time proportions of each
operating subprocess under the common strategy and the optimal
strategy.

in these states can have a significant impact on the profit of
the entire operating process. As shown in Fig. 7, there are
three black and grey areas in the figure. When the PET is in
these states, the charging action needs to be selected.

Fig. 8 and Fig. 9 respectively compare the time propor-
tion and energy consumption per unit kilometre of each
operating subprocess under the optimal strategy and the
common strategy. As seen in Fig. 8, the optimal strategy
mainly increases the proportion of passenger carrying time by

VOLUME 9, 2021 62475



Y. You et al.: Optimal Decision-Making Method for PET in Uncertain Environment

FIGURE 9. The energy consumption per kilometre of each operating
subprocess under the common strategy and the optimal strategy.

reducing the queuing time in an operating cycle. It can be seen
in Fig. 9 that the optimal strategy not only increases the daily
profit of the PET owner through a reasonable time arrange-
ment of charging and serving but also reduces the energy
consumption per unit kilometre for the PET and increases
energy savings.

VI. CONCLUSION AND DISCUSSION
This paper investigates the optimal decision-making problem
of serving actions and charging actions for an individual PET
subject to a time-varying uncertain external environment to
maximize its average profit in a short-term operating cycle.
To optimize the applicable strategy even when the external
environment of the PET is unknown, the external environ-
ment is analysed and modelled in terms of four aspects:
passengers, charging stations, traffic, and taxi company man-
agement systems. Tomake themodelmore objective and real-
istic, the serving and charging processes in the PET operating
cycle are further refined into multiple processes of cruising,
carrying passengers, driving to the charging station, queue-
ing before charging, and connecting to the power grid for
charging. Then, the transitions between adjacent processes
and the reward signals from the environment are modelled
for model refinement. For this sequential decision-making
problem, which contains many uncertain factors, the SARSA
algorithm is selected to solve it.

A series of experiments showed the following results.
First, the initial SOC has a great impact on the daily profits,
incomes, and costs, and the increase in profits varies with
the initial SOC. Second, the proposed strategy can improve
the short-term operating profit compared with the ordinary
strategy under any initial PET SOC condition. Third, the pro-
posed strategy mainly increases the proportion of passenger
carrying time by reducing the queuing time in an operat-
ing cycle. Fourth, the proposed strategy not only increases
the daily profit of the PET owner through reasonable time
arrangement of charging and serving but also reduces the
energy consumption per unit kilometre of PET and increases
energy savings.

However, this paper only considers the behavioural deci-
sions of a single PET and the temporal characteristics of the

external environment, which is only a preliminary study of
PET operating problems. The model proposed in this paper is
extendable and can be based on the proposed model to study
the decision-making strategy of a PET and the dispatching
strategy of a PET fleet under an environment with complex
temporal-spatial characteristics. In addition, from the per-
spective of power grid operators, the model in this paper
could be used as a power load model that reflects autonomous
PET decision-making processes. Further, based on this load
model, the flexibility of a PET participating in demand
responses and the design of charging price mechanisms con-
sidering PET behavioural uncertainty can be studied.
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