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ABSTRACT Maternal and fetal heartbeat couplings are evident throughout fetal development. Most of the
published work, however, did not consider maternal physiological factors such as Heart Rate Variability
(HRYV), and did not investigate the interrelationships of maternal-fetal coupling parameters. The aims of
this study are to investigate whether: 1) maternal-fetal Heart Rate (HR) coupling (A-based) parameters
are associated with fetal development, and 2) fetal gold standard Gestational Age (GA) can be estimated
using maternal-fetal HR coupling and variability of various recording lengths. The study considered
Electrocardiogram (ECG) signals from 60 healthy pregnant women with no records of fetal abnormalities.
HRV and X\ parameters at various Maternal:Fetal coupling ratios were calculated, and stepwise regression
was utilized to create generalized linear regression models considering various lengths of recorded signals
(1 and 5 min) to produce a robust estimate of fetal age. Cross-validation performances were evaluated by
the mean square root of the average of squared errors (nNRMSE) between age values estimated by the
proposed models and gold standard GA identified by Crown-Rump Length (CRL). Effect of Fetal Behavioral
States (FBSes) on proposed models with different recording lengths was considered to examine the highly
nonstationary nature of signals. We found that HR coupling strength for a specific ratio is not constant
throughout gestation. Results showed that ratios of 2:3 and 2:4 were common between the proposed models.
The value of A[2:3] was found to be positively correlated with GA, while A[2:4] had a negative correlation.
Compared with gold standard GA identified by CRL, the proposed regression model resulted in mRMSE
of 2.67 and 3.69 weeks for the recordings of 5 and 1 min, respectively. However, when FBS was considered,
both models produced lower estimation errors. Fetal GA can be more reliably estimated by a multivariate
model incorporating fetal and maternal HR coupling and HRV parameters using 5 min of ECG signals.

INDEX TERMS Biomedical signal processing, electrocardiography, fetal development, fetal heart rate,
gestational age, heart rate variability, linear models, pregnant women.

NOMENCLATURE . ECG Electrocardiogram
LMP  Last Menstrual Period FBS Fetal Behavioral States
GA Gestational Age MMHR Mean value of Maternal Heart Rate
CRL  Crown-Rump Length FMHR Mean value of Fetal Heart Rate

FHR Fetal Heart Rate

MSDNNHR Standard Deviation of NN intervals in

FHRV  Fetal Heart Rate Variability
HRV Heart Rate Variability
MHR  Maternal Heart Rate

HR Heart Rate

Maternal Heart Rate

Fetal Heart Rate
MRMSSDHR Root Mean Square

FSDNNHR Standard Deviation of NN intervals in

of Successive
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FRMSSDHR Root Mean Square of Successive
Differences between normal Fetal
heartbeats

One-Minute model

Five-Min model Five-Minutes model

mRMSE mean Root Mean Square Error

bpm Beats per minute

One-Min model

I. INTRODUCTION

The American College of Obstetricians and Gynecologists
provided guidelines for estimating the due date based on
ultrasonography and the Last Menstrual Period (LMP) in
pregnancy [1]. Up to the first trimester of pregnancy,
ultrasound measurement of the embryo is considered to
be the most accurate method to confirm Gestational Age
(GA) [2], [3]. Measurements of the Crown-Rump Length
(CRL) of the fetus earlier in the first trimester of pregnancy
are more accurate [4], [S] with an error of £5-7 days [6], [7].
Beyond the first trimester, the accuracy of the CRL to assess
fetal development decreases. One of the main challenges
when confirming GA using CRL-based methods or standard
ultrasonography techniques in general is being subject to
human errors and requiring good clinical practice admin-
istered by highly-skilled technicians [8], which might not
be feasible in low- and middle-income settings. Therefore,
a more robust approach is required to estimate the GA.

It has been reported in the literature that Fetal Heart
Rate (FHR) and its variability have estimated fetal growth
as an alternative GA [9]. One advantage of this method
is that it does not require expensive equipment nor heavy
training, making it suitable for countries with limited
income [10]-[12]. An early study reported insignificant dif-
ference in accuracy of estimated GA from FHR in early
pregnancies when compared with CRL method [13]. A recent
study estimated the GA using ultrasound fetal biomet-
rics [14]. Another study used a learning method for classi-
fication and regression to assess fetal age by Fetal Heart Rate
Variability (FHRV) measures [15]. These studies, however,
did not consider maternal physiological factors such as Heart
Rate Variability (HRV).

Maternal and fetal beat-by-beat heart couplings were
reported to be evident throughout fetal development
[16], [17]. Recent studies reported the casual influences
of fetal on Maternal Heart Rate (MHR) and vice versa
throughout fetal development, which showed that developing
autonomic nervous system function played significant roles
in maternal-fetal heartbeat synchronizations and its direc-
tionalities [18], [19]. It is still unknown, however, whether
maternal-fetal heartbeat coupling parameters are associated
with fetal development and the potential interrelationships.
Limitations in recent fetal development studies include, but
are not limited to, estimating fetal growth without consid-
ering maternal physiological factors, as well as the lack
of the explanation of the specific mechanism leading to
maternal-fetal Heart Rate (HR) coupling.
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In our preliminary study [20], we showed that it is possible
to estimate the GA by using maternal-fetal HR coupling
strengths with fetal and maternal HRV parameters using ECG
signals recorded for 10 min. Moreover, a previous study
reported that an Electrocardiogram (ECG) recording period
of 5 min is appropriate to determine HRV features [21].
However, there have been no studies to look at the effect of
the signals’ recording length on fetal development estimation,
which is an important issue due to the highly nonstationary
nature of fetal ECG and its coupling strengths with the mater-
nal ECG signal.

During the development of the fetus in the utero, biological
rhythm is developed and is gradually harmonized by the cen-
tral nervous system [22], [23]. This results in distinctive Fetal
Behavioral States (FBSes) that correspond to four categories:
quiet and active sleep, as well as quiet and active awake
(i.e. states 1F, 2F, 3F and 4F, respectively). After 36 weeks of
gestation, FBSes can be identified by the simultaneous occur-
rence of specific FHR patterns (i.e. differences in short-term
FHRYV [24]) in normally developing fetuses [25].

The scope of this work is to propose a novel approach to
estimate the GA based on ECG signals from healthy pregnant
women with no records of fetal abnormalities. The study
takes into account various lengths of the recorded signals used
in the model, which is vital when estimating fetal develop-
ment because fetal ECG and its coupling strengths are highly
nonstationary with the maternal ECG signal.

In this paper, a novel multivariate regression approach is
proposed for estimating the GA based on two key tools:
maternal and fetal HRV features, and maternal-fetal HR cou-
pling parameters. The generalized linear regression model
combines maternal-fetal heartbeat coupling parameters with
maternal and fetal HRV features to produce a robust estimate
of fetal age. The model utilizes a stepwise regression algo-
rithm that automatically adds to or removes from the model
linear term for each parameter to determine a final model.
A key point highlighted in this study is the contribution of
maternal-fetal HR coupling strengths at various ratios for
correctly estimating the physiological development of the
fetus.

The remainder of the paper is organized as follows. The
proposed methodology for obtaining a reliable estimate of
fetal GA employing the multivariate regression approach
based on maternal and fetal HRV features in conjunction
with maternal-fetal HR coupling parameters at various ratios
is discussed in Section II. The results are presented in
Section III, and analyzed in Section IV. Lastly, conclusions
and directions for future work are presented in Section V.

Il. METHODS

A. PARTICIPANTS AND ECG SIGNAL PROCESSING
Datasets of abdominal ECG signals from 60 healthy pregnant
women with no records of fetal abnormalities were obtained
from Tohoku University Hospital (36 samples, 60%) and
Kanagawa Children’s Medical Center (9 samples, 15%) in
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Japan, in addition to Children’s National Hospital in the
US (15 samples, 25%). The study protocols were approved
by the Tohoku University Institutional Review Board (IRB:
2015-2-80-1) and Children’s National Hospital IRB with
appropriate institutional agreements. Written informed con-
sent was obtained from all subjects. All experiments were
performed in accordance with relevant guidelines and regula-
tions. The GA and maternal age ranges for the three databases
are: 20-39.3 weeks and 20-40 years (Tohoku University
Hospital), 23.6-37.3 weeks and 25.8-40.8 years (Kanagawa
Children’s Medical Center), and 20-37 weeks (Children’s
National Hospital), respectively. The maternal age infor-
mation for the Children’s National Hospital dataset is not
included herewith because it is not permitted to share this
patient information under the IRB.

Twelve channel abdominal signals were recorded bipolarly
from the electrodes placed on the maternal abdomen and
sampled every 1 ms (1 kHz sampling) with 16 bit resolution.
ECG signals were obtained for a period of at least 10 min
with the participant in the supine position. To separate fetal
ECG from the composite abdominal signal, a combination
of maternal ECG cancellation and blind source separation
with a reference was employed [26]. Detailed description
of experimental set up can be found in our previous study
[27]. In brief, the linear combination of mutually orthog-
onal projections of the heart vector was used to subtract
the maternal ECG component. Blind source separation was
accomplished via a neural network method by an iterative
calculation from reference signals with resemblance to the
target signal. Maternal and fetal QRS peak locations were
detected by a custom-made MATLAB [28] routine program.

B. MATERNAL AND FETAL HEART RATE VARIABILITY

HRV features [21], [29] including the mean value of mater-
nal or fetal HR (MMHR or FMHR), standard deviation
of NN intervals in maternal or fetal HR (MSDNNHR or
FSDNNHR), and root mean square of successive differences
between normal maternal or fetal heartbeats (MRMSSDHR
or FRMSSDHR) were estimated from the recorded ECG
signals.

C. PHASE COUPLING

The coupling or synchronization between R-peaks of mater-
nal and fetal ECG signals was estimated by phase coherence
method [30], in which the instantaneous phase time series was
calculated using

2w (t — ty)
= — 2 k 1
#ie) (tk4m — 1) e M

where ¢ and #; are the time values of R-peaks in the fetal and
maternal ECG signals, respectively, and m is the number of
maternal heartbeats. The relative phase W(#;) in the time win-
dow of 1, with respect to maternal ECG signal was calculated
using the formula

o(tx) mod 2w

V() = B — @)
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The phase coupling index A was defined by [31]

1 k+N/2 2
— = iV ()
Moy = | Y 3)

j=k—N/2

where N is the number of heartbeats in time window of
fr — tw/2 < i<ty + t,/2, A ranges from O to 1, with
A = 1being the highest synchronization. W (#; ) and respective
A values were computed for multiple Maternal:Fetal (m : n)
heartbeat ratios, where n is the number of fetal heartbeats.
In this study, m : n coupling ratios associated with maternal
beats of 1, 2 and 3; and corresponding fetal beats of 2, 3 and
4 were investigated (i.e. the considered m : n ratios are 1:2,
1:3, 2:3, 2:4, 3:4 and 3:5), and N was set to 70.

D. MULTIVARIATE REGRESSION MODELS AND STATISTICS
The generalized linear regression model combines maternal-
fetal heartbeat coupling parameters with maternal and fetal
HRYV features to produce a robust estimate of fetal age. Two
multivariate linear models were generated using MATLAB’s
stepwiseglm. These models were based on different
lengths of the input ECG signals and considered various
HRV-based and coupling-based variables. We refer to the
proposed models as the One-Minute (One-Min) model and
the Five-Minutes (Five-Min) model.

The employed stepwise regression algorithm initially starts
with a model that contains only a constant (intercept) term.
The algorithm then automatically adds to or removes from
the model linear term for a variable based on deviance of the
model (i.e. the change in the deviance that results from adding
or removing the term) as the criterion. The linear term for a
variable is added to the model if the p-value of the F-statistic
—given the newly-added and the existing terms in the model—
is less than the threshold value (i.e. p < 0.05). In summary,
the stepwise regression algorithm automatically adds to or
removes from the model linear term for each variable in a
forward and backward process (based on deviance of the
model as the criterion) to determine a final model.

To generate the proposed regression models, the full
dataset of 60 subjects was randomly divided into two parts.
The two halves of the datasets (i.e. Subjects#1-30 and
Subjects#31-60) consider different time segments of the
maternal and fetal ECG signals when preparing the train-
ing and testing datasets. This has been adopted to increase
reproducibility and overcome possible data dependency.
Figs. 1 and 2 show flowcharts of the proposed regression
models.

In the One-Min model, each of the recorded maternal and
fetal ECG signals were divided into 10 segments (each seg-
ment has a length of one minute). To prepare the training data
for the One-Min model, the first time segment (i.e. 0—1 min)
of the ECG signals were considered for half of the datasets
(i.e. Subjects#1-30), and the last time segments that are com-
plete in length (i.e. 8-9 min) were considered for the remain-
ing half of the datasets (i.e. Subjects#31-60). Note that the
last complete time segment in this model was considered
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ONE-MINUTE MODEL
TESTING DATA

For Subjects#1-30 from Training,
use the following periods for testing:

-I 1-2 min -I 2-3 min -I 8-9 min

Train using

for
half of the datasets
(i.e. Subjects#1-30)

8 combinations

_.I 0—1 min
b
; ’

8 combinations

8 combinations

| _.| 0-1 min |

Train using
for the
remaining half of —
the datasets
(i.e. Subjects#31-60)

_’| 7-8 min |

A total of 64

FIGURE 1. Flowchart for the One-Min model. Min, minute.

FIvE-MINUTES MODEL

TESTING DATA

Train using
for half of the datasets
(i.e. Subjects#1-30)

Test using 0—5 min
for Subjects#31-60
from Training

Train using
for the remaining half of the
datasets (i.e. Subjects#31-60)

Test using 5-10 min
for Subjects#1-30
from Training

FIGURE 2. Flowchart for the Five-Min model. Min, minutes.

to be minute 8-9 rather than minute 9-10. That is because
some datasets did not have an exact length of 10 min, which
made the length of the last segment unequal to 1 min, exactly.
In addition, the value of A did not span the total length of the
last segment due to windowing. To prepare the testing data
for the One-Min model, all minute segments were considered
except those used in training. In other words, each of the
remaining segments (i.e. minute 1-2, minute 2-3, . . ., up until
minute 8-9) for Subjects#1-30 from training was combined
with the eight different segments (i.e. minute 0—1, minute 1—
2, ..., up until minute 7-8) for Subjects#31-60 from train-
ing, one at a time. This summed up to a total combination
of 64 testing datasets for the One-Min model. Throughout
this study, the results associated with the 64 combinations
were averaged to obtain a single final result for the One-Min
model. This approach was adopted in this model to eliminate
systematic bias and establish a fair representation of the data.

The Five-Min model, on the other hand, considered
a more straightforward approach. Half of the datasets
(i.e. Subjects#1-30) considered the first time segment
(i.e. 0-5 min) of the maternal and fetal ECG signals, and
the remaining half (i.e. Subjects#31-60) considered the last
time segment (i.e. 5-10 min) when preparing the training
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data. For testing data, the 30 subjects that were selected for
the first segment category in training (i.e. Subjects#1-30)
were considered for the last segment category (i.e. 5—10 min)
in testing. Likewise, the remaining half of the datasets
(i.e. Subjects#31-60) were considered for the first segment
category (i.e. 0-5 min) in testing.

Results are presented in the next section and include
different values calculated for the regression of each set
of variables: the #-statistic of a single variable and the
F-statistic of the group of variables versus a constant model
and their associated p-values, the Pearson Correlation Coef-
ficient (7), and the adjusted Coefficient of Determination
(R?). Cross-validation was repeatedly used for validation.
The estimation error was defined as the mean Root Mean
Square Error (nRMSE) between age values estimated by the
proposed models and gold standard GA identified by CRL.
Effect of FBSes on proposed models with different recording
lengths was considered to examine the highly nonstationary
nature of signals.

Ill. RESULTS

A. MATERNAL AND FETAL HEART RATE COUPLING

Fig. 3 shows an example of maternal and fetal HR time series
signals for 10 min and their coupling patterns as defined by
the relative phase (W) with coupling strength (1) at a ratio
of 2:4 (i.e. considering 2 and 4 heartbeats in the maternal
and fetal ECG signals), respectively. It can be depicted from
the figure that occasional strengthening of A appears between
6-9 min for this particular subject.

%
=

=
0

MHR (bpm)
3

=
n

FHR (bpm)

Time (min)

FIGURE 3. An example of a 29 week pregnant woman, including:

(a) MHR, maternal heart rate, (b) FHR, fetal heart rate, and (c) V¥, relative
phase and 1, coupling strength, both at a ratio of 2:4. bpm, beats per
minute; Min, minutes.
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Gestational Age (weeks)

FIGURE 4. Scatterplots of the selected variables by the One-Minute model grouped in two categories: Heart Rate Variability-based variables which
include: (a) FMHR, mean value of fetal heart rate, (b) FSDNNHR, standard deviation of NN intervals in fetal heart rate, where NN stands for interbeat
intervals from which artifacts have been removed, (c) MRMSSDHR, root mean square of successive differences between normal maternal heartbeats,
and coupling-based variables (1) associated with different Maternal:Fetal heartbeat ratios of: (d) 1:2, (e) 2:3, (f) 2:4, and (g) 3:4. bpm, beats per minute.

B. MULTIVARIATE REGRESSION MODELS

The general mathematical formulation of estimated GA (in

weeks) by the proposed One-Min and Five-Min models is

described as follows

GA = Intercept + E1 x Vi+E» x Vo +...+E; xV,,
“)

where Vi, Vs, ..., V; are the selected variables (based on

HRV or coupling parameters) by the stepwise algorithm
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for each of the proposed models for the estimation of GA,
and Eq, E;, ..., E; are the estimated regression coefficients
associated with each variable. Figs. 4 and 5 show scatterplots
of the selected variables by the One-Min model and the
Five-Min model, respectively. Both of the models consid-
ered HRV-based as well as coupling-based variables. Table 1
provides a summary of the proposed multivariate regression
models including the values of models coefficients for every
selected variable. Following (4), the formulas of the estimated
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FIGURE 5. Scatterplots of the selected variables by the Five-Minutes model grouped in two categories: Heart Rate Variability-based variables which
include: (@) FMHR, mean value of fetal heart rate, (b) FSDNNHR, standard deviation of NN intervals in fetal heart rate, where NN stands for interbeat
intervals from which artifacts have been removed, (c) MSDNNHR, standard deviation of NN intervals in maternal heart rate, (d) MRMSSDHR, root mean
square of successive differences between normal maternal heartbeats, and coupling-based variables (1) associated with different Maternal:Fetal

heartbeat ratios of: (e) 1:3, (f) 2:3, (g) 2:4, and (h) 3:5. bpm, beats per minute.

GA values by the proposed models are:
GA(0One-Min) = 65.58 — 0.30 x FMHR
+ 0.95 x FSDNNHR
0.99 x MRMSSDHR
+ 28.74 x A[l : 2]
13.50 x A[2:3]
29.22 x A[2: 4]

+ 21.12 x A[3 : 4], (5)
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GA(Five-Min) = 86.74 — 0.29 x FMHR
+ 0.86 x FSDNNHR
+ 1.32 x MSDNNHR
— 3.57 x MRMSSDHR
— 47.08 x A[l1:3]
22.53 x A[2:3]
30.94 x A[2:4]
9.24 x A[3:5] (6)
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TABLE 1. Results of stepwise multivariate regression models (One-Minute and Five-Minutes models) for the estimation of gestational age.

Feature Estimate SE t-Stat p-value (X 10~2) F-test Statistics

One-Minute Model

Intercept 65.58 7.72 8.49 2.14x1079 F-Stat = 9.05 r=0.74

FMHR -0.30 0.05 -6.08 1.43%x107° p-value = 2.96x10~7 R? (Adjusted) = 0.49

FSDNNHR 0.95 0.28 3.34 0.15 mRMSE (Model) = 4.33 weeks
MRMSSDHR -0.99 0.50 -1.97 5.46 mRMSE (Validation) = 5.50 weeks
A[1:2] 28.74 10.76 2.67 1.01

A[2:3] -13.50 6.07 -2.23 3.04

A[2:4] -29.22 9.57 -3.05 0.36

A[3:4] 21.12 8.60 2.46 1.75

Five-Minutes Model

Intercept 86.74 7.56 11.48 9.46x 1011 F-Stat = 14.71 r=0.83

FMHR -0.29 0.05 -6.40 490x10~3 p-value = 7.03x 1011 R? (Adjusted) = 0.65

FSDNNHR 0.86 0.21 4.11 14.20 mRMSE (Model) = 3.58 weeks
MSDNNHR 1.32 0.35 3.83 35.08 mRMSE (Validation) = 4.55 weeks
MRMSSDHR -3.57 0.71 -5.04 0.62

A[1:3] -47.08 12.67 372 50.46

A[2:3] -22.53 5.28 -4.26 8.69

A[2:4] -30.94 6.25 -4.95 0.86

A[3:5] -9.24 3.42 -2.70 936.44

SE, standard error; FMHR, mean value of fetal heart rate; FSDNNHR, standard deviation of NN intervals in fetal heart rate; NN intervals, interbeat
intervals from which artifacts have been removed; mRMSE, mean root mean square error; MRMSSDHR, root mean square of successive differences
between normal maternal heartbeats; A, coupling strength; MSDNNHR, standard deviation of NN intervals in maternal heart rate. The equations for

the One-Min and Five-Min models are:

GA(One-Min) = 65.58 — 0.30 x FMHR + 0.95 x FSDNNHR — 0.99 x MRMSSDHR

4+ 28.74 x A[L:2] — 13.50 x A[2:3] — 29.22 x A[2:4] + 21.12 x A[3:4],
GA(pive-Min) = 86.74 — 0.29 x FMHR + 0.86 x FSDNNHR + 1.32 x MSDNNHR — 3.57 x MRMSSDHR

— 47.08 x A[1:3] — 22,53 X A[2:3] — 30.94 x A[2:4] — 9.24 x A[3:5].
The regression equation was obtained using multivariate linear regression employing the stepwise algorithm to account for the use of multiple

variables per fetus.

Statistics for the 7-test on the regression model vs. constant
model showed significance of the models (p < 0.05). Train-
ing mRMSE (i.e. model) between the estimated and gold
standard GA of 4.33 and 3.58 weeks were produced by the
One-Min and the Five-Min models, respectively.

C. VALIDATION OF MODELS

Cross-validation scheme was repeatedly used to validate the
proposed models for estimating the GA against gold standard
age identified by CRL. The One-Min and the Five-Min mod-
els produced mRMSE of 5.50 and 4.55 weeks, respectively.
Fig. 6 shows the significant correlation between gold standard
GA identified by CRL and estimated values by the proposed
models. The r values for the One-Min and the Five-Min
models were 0.74 and 0.83, respectively. Additionally, Fig. 7
presents the Bland—Altman plots which validate that esti-
mated GA values by the proposed models are within the
Limits of Agreement (LoA) (i.e. £1.96xSD). The estimated
bias (i.e. mean differences) and LoA for the One-Min model
are —6.10 x 10715 and +7.97 weeks, respectively. The
Five-Min model, on the other hand, results in estimated bias
and LoA of —4.26 x 10™15 and +6.53 weeks, respectively.
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Moreover, mean differences between gold standard GA iden-
tified by CRL and estimated GA values for every age group
(20-39 weeks) are plotted in Fig. 8.

D. EFFECT OF FETAL BEHAVIORAL STATES

ON PROPOSED MODELS

The two FBSes considered in this study were classified
based on FHR analysis reported in [24]. Only ECG data
of healthy fetuses from the 36" week onward (sample
size = 11 datasets) were considered because their FHRV
becomes sufficiently higher and suitable to identify behav-
ioral states [32]. Fig. 9 shows a scatterplot of the mean
values of fetal R-R intervals (FMRR) and the correspond-
ing standard deviation (FSDRR) with respect to behavioral
states 4F (active awake) and 2F (active sleep) for 11 fetuses.
Table 2 lists the statistics (FMRR, FSDRR, and FRMSSDRR)
of the considered FBSes for the two proposed models, r and
the corresponding p-values, in addition to the mean error pro-
duced during cross-validation. The One-Min model returned
64 p-values during validation (see Fig. 1), the majority of
which were insignificant (p < 0.05), and are not shown in this
paper due to space limitations. The proposed One-Min and
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Five-Min models produced average error values of 5.09 and
4.75 weeks for behavioral state 4F (active awake), and
3.69 and 2.67 weeks for behavioral state 2F (active sleep),
respectively.

IV. DISCUSSION
This study successfully demonstrated that a multivariate
regression model based on recorded ECG signals for 5 min
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could more reliably estimate the GA than that for 1 min of the
signal length. The proposed model combined maternal and
fetal HRV features with maternal-fetal HR coupling param-
eters at various ratios. A key point highlighted in this study
is the contribution of maternal-fetal HR coupling strengths
at various ratios for correctly estimating the physiological
development of the fetus. In summary, the results clearly
confirmed that utilizing maternal and fetal cardiac parameters
produces a robust approach, allowing fetal age to be reliably
estimated.

The methodology proposed in this paper (including the
detection of the adjacent beat-to-beat maternal and fetal
R-peaks in the ECG signals as well as the coupling param-
eters associated with the corresponding HR signal) is fully
automated, and is therefore less affected by human errors
when compared with LMP and sonography methods. In addi-
tion, the proposed technique has the advantage of being easily
applied and does not require highly-skilled technicians to
administer compared to standard ultrasonography techniques.

The selected variables by the proposed multi-variate step-
wise regression models (Figs. 4 and 5) considered maternal
as well as fetal HRV parameters, rather than only fetal-based
parameters. Moreover, maternal-fetal HR coupling strengths
at various ratios contributed to the development of both mod-
els, which further confirms the importance of considering
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TABLE 2. Statistics of fetal R-R interval, pearson correlation coefficient (r), p-value, and cross-validation estimation error with respect to fetal behavioral

states 4F (active awake) and 2F (active sleep).

One-Minute Model

Five-Minutes Model

Feature

4F 2F 4F 2F
FMRR (Mean+SD) 411.58+15.17* 469.49+£17.70 417.51£9.80* 477.61£33.08
FSDRR (Mean+SD) 22.94+8.45 19.29+5.80 22.73+£10.51 20.9949.82
FRMSSDRR (Mean+SD) 7.80+2.99 7.41+1.86 6.28+1.97 7.58+2.47
r 0.52 0.71 -0.89 0.83
p-value - - 1.69x1072 7.89x10~2
mRMSE (Validation) (weeks) 5.09 3.69 4.75 2.67

FMRR, mean value of fetal R-R intervals; R-R intervals, interbeat intervals between all successive heartbeats; FSDRR, standard deviation of R-R
intervals in fetal heart rate; FRMSSDRR, root mean square of successive fetal R-R interval differences; r, Pearson correlation coefficient; mRMSE,

mean root mean square error.
*p < 0.05.

maternal influences on fetal development. Indeed, not only
do electrophysiological parameters contribute to the estima-
tion of GA, but their interrelations are also a vital element.
In addition to this, it is interesting to observe that HR coupling
strength for a specific ratio is not constant for all fetal ages;
in fact, it varies throughout gestation.

Furthermore, the results of the linear mixed approach pre-
sented in Table 1 show that HR coupling (A-based) variables
for different maternal-fetal coupling ratios were also selected
as contributing terms to the estimate of the GA. For exam-
ple, the One-Min model includes A[1:2], A[3:4], A[2:3] and
A[2:4]; in contrast, A[1:3], A[3:5], A[2:3] and A[2:4] exist in
the Five-Min model (also see (5) and (6)).

Considering the coupling ratios that are different between
the two models, it is interesting to note that the Five-Min
model generally accommodates ratios with higher fetal heart-
beats considering the same maternal heartbeat. Consider for
example the coupling of fetal heartbeats with 3 maternal
beats, the dominant ratio in the Five-Min model is 3:5. In con-
trast, there exist 4 fetal heartbeats for every 3 maternal beats in
the One-Min model, forming a dominant ratio of 3:4. In other
words, more fetal heartbeats exist in a fixed window of mater-
nal beats when considering the Five-Min model as compared
to the One-Min model. Further, it is notable that coupling with
3 fetal heartbeats (i.e. A[1:3] and A[2:3]) is more prevalent
in the Five-Min model. A previous study showed that for
5 min recording of magnetocardiogram signals, there exists
coordination between maternal and fetal cardiac systems for
higher synchronization ratios [16]. It can thus be speculated
that coupling with higher fetal heartbeats in the Five-Min
model is more prevalent due to longer recording length, and
higher FMRR value (p < 0.05) in FBS 4F (see Table 2)
compared to the One-Min model.

With respect to coupling ratios that are common between
the two models, it is notable that A[2:3] and A[2:4] appear
in the two models (see (5) and (6)). In particular, a posi-
tive correlation was found between A[2:3] and GA, whereas
A[2:4] is found to be negatively correlated with GA in both
models (see Figs. 4 and 5). Interestingly enough, including
one more fetal heartbeat within the same window of maternal
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beats flips the direction of the correlation relationship. It is
worthwhile noting that FMHR and A[2:4] (in both models)
are higher in younger fetuses compared to more mature ones
in this study. This is in line with the results presented in
[16] with regards to FHRV. As the fetus develops, FMHR
drops causing a decrease in A[2:4] because, at present, a lower
number of maternal heartbeats (every 2 maternal R-peaks)
includes 4 fetal beats. In analogy, the correlation trend of
coupling variables for the other ratios can be speculated.
Furthermore, A[2:3] is considered a remarkable coupling ratio
in the characteristics of maternal-fetal heart rates of pregnant
mothers while at rest [33].

The trend lines connecting the mean absolute differences
between gold standard GA identified by CRL and estimated
GA values by the two models for the different age groups
(Fig. 8) clearly show that the overall error produced by the
Five-Min model is lower compared to the One-Min model.
Additionally, the errors produced by the Five-Min model
have lower standard deviation bars around mid-gestation.
Moreover, the Five Min model produced higher values of
r and lower mRMSE (for both of training and validation),
suggesting the use of longer recordings which are likely
susceptible to allow for the proper conditions to initiate the
coupling [16].

An important issue investigated in this paper is the associ-
ations of maternal and FHR coupling variables with FBSes.
The One-Min and Five-Min models produced lower mnRMSE
values for behavioral state 2F (active sleep) compared to
4F (active awake). This is as expected due to the highly
nonstationary nature of fetal ECG and its coupling strengths
in state 4F. The One-Min model produced an average error
value of 3.69 weeks for the sleep behavioral state (2F), imply-
ing 47.3% error improvement compared with conventional
methods [34] used to estimate GA. The lowest error value
of 2.67 weeks was produced by the Five-Min model for
the same state (i.e. 2F) with error percentage improvement
of 61.9% compared with the same conventional method.

The proposed novel approach utilizing longer signal
recordings can be easily implemented into a software pro-
gram to assist physicians in accurately estimating fetal age.
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However, the study requires further validation on a large
sample size. Nonetheless, the outcomes of this research work
would make fundamental as well as translational research
outputs for fetal neurological screening and its potential to
reduce fetal deaths.

The conducted research activities in this paper addressed
some of the barriers associated with estimating the GA in fetal
development studies by combining maternal-fetal heartbeat
coupling parameters with maternal and fetal HRV parame-
ters. The proposed novel approach is fully automated, does
not require heavy computational resources, and can be uti-
lized by nonexperts with little training or limited resources.
In addition, it has the potential to detect health issues related
to the fetus at early stages of pregnancy. This could possibly
reduce obstetric interventions which could have been avoided
in an attempt to reduce morbidity and cost savings. Consid-
ering the large number of annual births and the high rate
of interventions, such improvements could have important
implications worldwide.

V. CONCLUSION

The results presented in this paper successfully showed
that maternal and fetal physiological parameters including
maternal-fetal HR coupling parameters at various ratios and
maternal/fetal HRV parameters produce a reliable estimate
of the GA utilizing a multivariate regression model based on
recorded ECG signals for 5 min rather than 1 min recordings.
Further research related to work done as part of this paper
include considering the effect of a variety of abnormal devel-
opments of human fetuses on the estimated GA for the various
cases of heart anomalies and arrhythmias.
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