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ABSTRACT Conventionally, geometric computing problems are treated as algebraic computing problems
by representing a geometric object in a global reference coordinate system. This approach has two problems.
The first problem is that the intuitive view of the interaction of objects is lost, and the second problem is that
algebraic computing is prone to errors for degenerated cases related to the interaction of (e.g., notable case of
‘‘divided by zero’’). In this paper, we propose a new approach to geometric computing especially to analyze
the interaction of two objects (e.g., two triangles). The main idea behind this new approach is a specially-
tailored local coordinate system for two interacting objects is defined, which makes the projection of the
objects on this local coordinate system represent the true geometry of the objects. This idea significantly
departs from the conventional approach which is primarily based on the concept of the global coordinate
system. Three examples are provided to illustrate the effectiveness of the proposed approach. Among them,
one example is related to the robustness of methods for analyzing the relations of two interacting objects,
which is still an open issue in the field of geometric computing and suggests that the proposed approach
could have some benefit to robustness in analysis.

INDEX TERMS Geometric computing, geometric method, dimension reduction, projection, geometric
transformation.

I. INTRODUCTION
In product development, including both aesthetic products
(e.g., sculpture) and functional products [21], manipulation
of a set of geometric objects is an essential task. In fact,
the generic activity in the product development is nothing
but to create a geometry that occupies space [22]. Without
the loss of generality, this paper discusses the problem of
the computer analysis of interactions or relations of two
geometric objects.

A popular idea to deal with this problem is to represent
this geometric problem into an algebraic problem. However,
with this idea, the intuitive view of geometric objects is lost,
leading to a degraded contribution to human cognitive activi-
ties (understanding, description, manipulation, and inference)
for the original geometric problem. Besides, the robustness
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of methods to analyze relations of two geometric objects is
still in question. A well-known example of the concept of
robustness may refer to the problem of the so-called singu-
larity in robotics [1], [23]. For a robot shown in Fig. 1a,
there are two relative positions with two links, as indicated
by the dashed line, which correspond to the relations that
the link 1 and the link 2 are coincident (i.e., extended and
folded). The two positions correspond that the determinant
of the Jacobian matrix of the system is zero (Fig. 1b). As one
can see, the visual presentation of the two relations of Fig. 1a
is lost if the relations are represented algebraically (Fig. 1b),
i.e., the matrix along with the singularity of the matrix.
Another robustness problem with this example is related to
the matrix computation; in particular the computational error
surrounding the singular position can lead to the computa-
tional instability. By the way, the robustness of methods for
detecting relations of two geometric objects or objects is still
an open issue in geometric computing [17].
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FIGURE 1. Singularity in robots [1]. (a) Geometric meaning of singularity
of Jacobian matri; (b) The Jacobian matrix representing the relationship
between the velocity at point P and angular velocity at the two joints.

Effort has been taken in literature on finding an approach
to geometric computing, particularly analysis of relations of
two geometric entities in space, that can retain visual interpre-
tation at most while at the same time can be effective. A well-
known approach is the one to find a series of projection
planes, where part of the dimension of a geometric entity
can be truly represented, and algebra can be employed to
represent these planes along with true geometric elements
on these planes [9]. Fig. 2 illustrates this approach, where
Fig. 2a shows a line segment AB (neither parallel nor vertical
to the projection planes H, V, W). Fig. 2b shows a series of
projections, completed in 2D, to find the true length of AB.
Fig. 2c is its analytical solution. This approach is robust to
degenerative cases but not a general one.

Another approach in literature is as this: first to find a
particular feature with a 3D geometrical problem in the 2D
domain [6], [7], and then to solve this 2D problem and sub-
sequently, the original 3D problem is solved. This approach
only works out for a small set of problems and besides,
the projection plane is not tailored to the two objects under
consideration. Yet, another approach is based on imaging
technology, particularly the possibility of reconstructing 2D
images of a 3D geometric entity to their origin [6], [8]. This
approach involves intensive numerical computations, and its
efficiency is a concern. Besides, cons associated with any
numerical approach may present with this approach.

This paper presents a new approach to geometric com-
puting. The approach is based on two ideas. The first idea
is to establish a local projection plane (LP for short) for
the two interacting geometric entities by tailoring it to two
concerned geometric objects such that they are in parallel,
vertical, or symmetrical to the LP, and subsequently estab-
lishing a local coordinate system (LCS) based on the LP.
The philosophy behind this idea is that the relation between
two interacting objects can be captured and represented most
effectively and efficiently by the local coordinate system,
which is primarily based on the geometric feature of the
two objects in interaction, rather than a general-purpose local
coordinate system, which is the case in other geometric com-
puting methods in literature [28], [29]. The second idea is

FIGURE 2. An example to show the basic projections in DG. (a) 3D; (b) 2D
drafting; (c) analytical solution.

to computerize the 2D process of solving the 2D interaction
problem in the LP after the interacting feature of the two con-
cerned objects is projected on the LP. The proposed approach
thus enjoys the benefits of visual intuition, efficiency, and
robustness in the manipulation of geometric entity, which
are fundamental in the context of human-centered computer
aided design [10], [15].

It is worth to mention that the benefit of the proposed
approach is mainly to the developer of the software for geo-
metrical design rather than to the user of the software. The
example of such a developer is the joint team of Europe and
Israel who developed a robust software library of geometric
algorithms and data structures [16] and computer integrated
design and manufacturing of machines [24].

The remaining part of this paper is organized as follows.
The proposed approach is presented in Section 2. In Section 3,
three examples are given to illustrate the effectiveness of
the proposed approach. Finally, a conclusion is given in
Section 4.

II. THE PROPOSED APPROACH
The general principle behind any approach of meeting the
foregoing two requirements is to convert the 3D problem
to the 2D problem by a specially-tailored local coordinate
system. The fundamental reason that the 3D problem is more
difficult to be solved than the 2D problem is because of the
limitation in the capability of the human visual system for

VOLUME 9, 2021 60259



H. Yu et al.: New Approach to Analyzing Interactions of Two Objects in Space

FIGURE 3. The construction of new coordinate system.

the 3D object perception. For instance, it is very difficult to
visually judge whether two line segments in 3D space are in
an intersection state or not. However, when two objects (e.g.,
two line segments) in a special plane (on which the two line
segments represent their true geometry), it is easy to visually
judge whether the two line segments are in an intersection
state or not. To generalize this point, one can conclude that
a special projection plane (and subsequently a specially-
tailored coordinate system which builds on the projection
planes) is needed, on which the human can visually see the
true geometry of objects and then judge their relationships.
The foregoing discussion has led to the two ideas as described
before.

A. SPECIALLY-TAILORED LOCAL COORDINATE
SYSTEM (F∗)
Let us denote F as the original coordinate system and F∗ as the
specially-tailored coordinate system between two concerned
objects (e.g., one: line; the other: sphere). Let us take a
line segment BA as an example to illustrate how the F∗ can
be established (Fig. 3). Take BA as a normal vector of the
specially-tailored projection plane and as one of the coordi-
nate planes of F∗. The unit vector BA is also written as BA for
simplicity. This unit vector is further defined as the z∗-axis of
F∗, and as such the plane corresponding to the z∗-axis is the
x∗-y∗ coordinate plane of F∗ (Fig. 3). The origin of F∗ is set
up at point B (Fig. 3). Define the x∗-axis as an arbitrary vector
in the x∗-y∗ plane, and accordingly the y∗-axis can be defined
based on the right-hand rule. For the convenience of later
discussions and in the context of projection, the specially-
tailored coordinate system F∗ is expressed as (H∗/V∗/W∗),
where H∗ is the x∗-y∗ plane, and V∗ andW∗ are the x∗-z∗ and
y∗-z∗ planes, respectively. The projection of the line segment
AB on the F∗ is thus as follows: (1) on the z∗-x∗ plane (or
V∗), the projection of the line AB is a line AVBV (which is
the line AB itself; see Fig. 4), and (2) the projection of the line
AB on the x∗-y∗ plane (or H∗) is a point AH ≡BH (which is
also the origin O∗; see Fig. 4).

In the above, F∗ is a specially-tailored local coordinate
system established by tailoring two interacting entities such

FIGURE 4. Transforming a general line to a vertical line.

FIGURE 5. Transformation from frame F to F∗.

that the corresponding two geometric entities are in a parallel
or vertical or symmetrical relation to the coordinate planes
of F∗. Suppose F is a global reference coordinate system.
F
F∗T (the relations matrix between {F} and {F∗}). F

F∗T is a
4 × 4 matrix including a rotation matrix F

F∗R and a translation
matrix F

F∗O, where
F
F∗R captures the difference of F and F∗

in orientation and F
F∗O captures the difference of F and F∗

in translation, particularly the coordinates of the origin of
F∗ in the frame F. FF∗T can be written as follows:

F
F∗T =

[F
F∗R3×3 FO∗3×1
0 0 0 1

]
4×4

(1)

where

F
F∗R =

cos(x, x∗) cos(x, y∗) cos(x, z∗)cos(y, x∗) cos(y, y∗) cos(y, z∗)
cos(z, x∗) cos(z, y∗) cos(z, z∗)

 (2)

From F
F∗T, we can also find F

F∗T. Then, to any point with
respect to the frame F (or F∗), we can find their correspond-
ing representation on the frame F∗(or F), respectively, with
Equation (2) and Equation (3), respectively.

FP = F
F∗T

F∗P (3)

FP = F
F∗T

FP (4)

where FP =


Fx
Fy
Fz
1

 and

FxFyFz
 is the coordinates of P in the

frame F; FP =


F∗x
F∗y
F∗z
1

 and


F∗x
F∗y
F∗z

 is the coordinates of P

in the frame F∗; and the number ‘1’ in FP and F∗P has no
meaning but for the homogeneous matrix representation only.

There are 25 basic geometric entities, e.g., line segment,
sphere, etc. F∗ is established for each pair of the basic entities.
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The total number of combinations of the 25 basic entities is
325, which is found from

(25
2

)
+ 25. The proposed approach

includes a computer program to create F∗ for all these com-
binations (Supplemental material 1 of the present paper). For
instance, for the pair of a line segment and a sphere, F∗ is
defined as follows: (1) to have the origin of the F∗ be the
center of the sphere, (2) to have one coordinate plane be
parallel to the line segment, and (3) to have another coordi-
nate plane be vertical to the line. As such, two coordinate
planes are determined, and the third one can be naturally
determined based on the right-hand rule. It is noted that there
is no need to find the transformation matrix from F∗ to F if
one is only interested in the interacting relation of the two
concerned entities (e.g., whether the two entities overlap),
as F∗ is designed exactly for facilitating the representation
of this interacting relation, and this is the benefit of F∗ over
other approaches in literature. The transformation matrix
F
F∗T is needed when the information such as the location
where the interaction occurs with respect to Frame F needs
to know.

B. COMPUTERIZING THE 2D DRAFTING PROCESS
After F∗ is established for two interacting objects under
consideration, their relation has been represented on the
coordinate planes (or projection planes). Therefore, further
completing the characterization of the relation will involve
2D drafting operations.

There are about 10 basic drafting (BD) operations, upon
which more operation drafting operations are constructed.
Examples of the BD operations are drafting a line through
2 points, finding the intersection point of 2 lines, draw-
ing a line that is perpendicular to another line and passes
through a point, and so forth. These basic operations can be
computerized as computer program functions or procedures
(Supplemental material 1). As such, to a particular geometric
manipulation problem, say object A and object B, the follow-
ing steps can be followed. The first step is to find the F∗ for
them and subsequently the 3D interaction problem reduces to
the 2D interaction problem. The second step is to analyze the
2D interaction problem by the 2D drafting operations. It may
be clear that both steps are automated by the computer.

Take it as an example to draw a circle through three points
(P1, P2, P3) for the illustration purpose. The whole task can
be completed with the following tasks. Task 1: draw a vertical
line which passes through the middle point of the line that
connects two points P1 and P2. Let the computer function
for this be denoted by LPPN(); in particular LPPN(A, B, L),
where A and B are two points, and L is the resulting line.
As such, Task 1 is expressed by LPPN(P1, P2, L1). Task 2:
LPPN(P2, P3, L2). Task 3: get the intersection point of any
two lines, which is expressed as PLL As such, Task 3 can be
expressed as PLL(L1, L2, C), where L1 and L2 are two lines
and C stores the information of the intersection point of the
two lines L1 and L2. The expression of the overall task can
then be expressed by CPPP() = {LPPN(); LPPN(); PLL()},
where CPPP(P1,P2,P3) is a function that finds the circle given

FIGURE 6. Intersection of a line with a sphere. (a) A 3D geometric
problem; (b) Transformation to computing coordinates; (c) Dimension
reduction of 3D geometries; (d) Construction of 2D solution.

three points. Clearly, any complicated 2D drafting can be
decomposed into a set of the basic drafting operations.

III. EXAMPLES
Three examples are taken to show how the proposed approach
works. The first example is analysis of the interaction of a line
and a sphere. The second example is to check whether a point
is in a bounded box. The third example is a line interacting
with a view frustum (or view frustum clipping). Details of the
three examples along with the computer code can be found in
Supplemental Material 1.

Example 1: Finding the intersection points of a line L with a
sphere S (Fig. 6a)
Given: line L is defined by point P1 and P2, and sphere S is
defined by its center and radius R.
Find: intersection points I and II.

The entire solving process can be decomposed into two
steps as follows (Fig. 6):
Step 1: to define F∗. The steps of defining F∗ is shown

in Fig. 6b: (1) to have the origin of F∗ be the center of the
sphere, (2) to have one coordinate plane be parallel to the
line segment, and (3) to have another coordinate plane be
vertical to the line. As such, the projection of the sphere and
the projection of the line onto F∗ are as follows: On V and
H, respectively, (1) the projection of the 3D line is a 2D line
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parallel to the x-axis, and (2) the projection of the sphere is a
circle (the center of the circle is the origin of F∗ and the radius
of the circle is the radius of the sphere R), and the circle is
denoted as circle (O, R) (Fig. 6c).
Step 2: to decompose the entire task to find the relation

of the sphere and line into several 2D drafting tasks: Task
1: on V, to find intersection points of lineP1VP2V and circle
(O, R) (marked as Circle¬ in Fig. 6d). The computer function
for this is denoted by PLC(), in particular PLC (P1VP2V, Cir-
cle¬, CV, DV), where CV and DV are the intersecting points.
Task 2: on H, to draw a circle (marked as circle in Fig. 6d),
whose center is the origin, and radius is the x-coordinate of
CV. Then, PLC(P1HP2H, Circle, IH,IIH), where IH and IIH are
the intersecting points. Task 3: find IV and IIV (according to
IH and IIH), respectively. The intersection points I (x1,y1,z1)
and II (x2,y2,z2) can be represented by their projections;
particularly, IH is defined as (x1,y1), IV is defined as (x1,z1);
IIH is defined as (x2,y2), IIV is defined as (x2,z2).
It is noted that the aforementioned 2D computer functions

can be found in Supplemental material 1.

Example 2: Detecting the location of a point P to a bounding
box (Fig. 7)
Given: Point P and a box defined by its length, width and
height denoted by 2hu, 2hv and 2hw, respectively.
Find: whether P is in the box.

We will give both the conventional method and proposed
method in this paper for a comparison in the following.
(1) The conventional method

First, the equation of each plane of a bounding box is estab-
lished and is then substituted with the coordinates of point
P. Finally, by detecting the sign of the substituted equation,
the relation of this point and each plane is obtained. In this
method, the normal vector of all the planes should all be
outward or inward.
(2) Our method

Step 1: to define F∗. F∗ is defined by O-u-v-w. O is the center
of this box, and u, v and w are three normal vectors of the box
(Fig. 7). Then, the coordinate of point P is transformed to F∗,
denoted as (Pu, Pv, Pw).
Step 2: the problem can then be expressed by inequalities

(4). The point P is not in the bounded box if one of the
inequalities (4) is satisfied:

pu > hu or pu < −hu or pv > hv or pv < −hvor pw
> hw or pw < −hw (5)

where hu, hv, and hw are the distance of O to three planes or
the half of the length, width, and height of this box, respec-
tively. Our method only involves the standard transformation
and simple yes-or-not judgment operation.

Example 3:View Frustum Clipping (Fig. 8)
Given: Line P1P2 and a View Frustum defined by Pe, Pt and
Pb and four points on the bottom plane.
Find: Intersecting points.

FIGURE 7. The location relation of a point P with a bounding box.

FIGURE 8. A view frustum and the construction of the frame F∗.

FIGURE 9. The view frustum clipping algorithm with our method.

View frustum clipping is one of the basic techniques in 3D
display system [18]. View frustum is a pyramid for perspec-
tive transformations. Fig. 8 is a view frustum. The following
is the solving process with our method.
Step 1: to define F∗. The two symmetric planes and the

bottom plane of the frustum are chosen as three coordinate
planes of F∗, and the vector PbPt is taken as the z-axis for
F∗ (see Fig. 8). In F∗, the projections of the view frustum to
V and W are both isosceles trapezoids (denoted by Tv and
Tv) and the projections of the 3D line P1P2 on V and W
are denoted by P1vP2v and P1wP2w, respectively, as shown
in Fig. 9.
Step 2: to decompose the 2D drafting task into two clipping

functions of LineClipTrapezoidal() (the computer function
for finding the intersecting points of a isosceles trapezoid
and a line in the code; see Supplemental material 1) and the
intersection of the two clipping leads to the final result in
F∗. See the following tasks for details: Task 1: on V, find
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FIGURE 10. The test results of the algorithm for the view frustum clipping.

the intersecting points of Tv and P1vP2v, denoted by Q1v and
Q2V, i.e., LineClipTrapezoidal (P1vP2v,Tv, Q1v,Q2V). On W,
LineClipTrapezoidal (P1wP2w,Tw, Q1w,Q2w). Task 2: check
the validity of the 2D intersection points. Q1v, Q2V and Q1w,
Q2w may not be the projections of the 3D clipping points. The
validity is checked by the following rules: Rule 1: Qv is valid
only when its corresponding Qw on or in Tw. Rule 2: Qw is
valid only when its correspondingQv must be on or in Tw. For
example, in Fig. 9, the Q1v and Qn2w are the valid projections
of the intersecting points (marked as‘‘•’’). This operation
is in fact a function of finding the intersecting set. Task 3:
compose the 3D coordinate in F∗. From the valid points, get
their corresponding projections on the other projection plane
(Fig. 9, marked as‘‘⊕’’). The view frustum clipping algorithm
can be put in the supplemental material 1. Fig. 10 shows some
test results of the view frustum clipping algorithm. A compar-
ison of our algorithm with the Liang-Barsky algorithm [25]
reveals that our algorithm runs slightly faster than the Liang-
Barsky algorithm but apparently; besides, our method enjoys
the intuitive geometrical representation.

IV. CONCLUSION WITH FURTHER DISCUSSIONS
This paper presented a new approach to geometric comput-
ing. There are two common goals with any approach to geo-
metric computing: Goal 1: it should preserve the geometric
intuition as much as possible; Goal 2: it should enable the
computer processing as much as possible (i.e., automating
the processing). The two goals may be conflicting. In that
sense, it can be said that the proposed approach has provided
a trade-off between the two goals. Specifically, the approach
has two steps. The first step is to find a specially-tailored
coordinate system (F∗) such that the geometric elements are
parallel, vertical or symmetrical to the coordinate plane of
F∗. A computer program was developed to automate this
step. This step can be analogous to the construction of solid
geometry, which decomposes a complex geometric entity into
a group of standard solids such as sphere, square, rod, and
so on and then, construct the 3D geometric entity from this
set. It is noted that on the coordinate planes of F∗, the two
concerned objects have the highest possibility that their true
dimensions are displayed, so the 3D problem becomes the
2D problem against this local coordinate system rather than
a global coordinate system in many existing approaches. The
second step of the approach was to computer-process the 2D

problem (e.g., interaction of two line segments, a point on
line, etc.), which is readily available. It is noted that F∗ is a
local coordinate system defined by tailoring to the interacting
relation of two objects, and this is a point of departure from
the notion of the local coordinate system in literature, which
ignores the interacting relation of two objects.

The main benefit of the proposed approach is that the
feature of the geometrical problem is kept in F∗. For instance,
the problem of finding the workspace of the robot as
described in Fig. 1 can be described by stating that Link
1 and Link 2 are either folded in one line or extended in one
line instead of being stated as the singularity of the Jacobian
matrix. Apparently, if the problem is solved by the concept
of singular Jacobian matrix, there may be some numerical
challenge in terms of the definition of the determinant of the
Jacobian matrix being zero.

In a separate paper, we will show benefits with the pro-
posed approach to solving some well-known geometrical
interaction problems in terms of robustness over the existing
approach in the literature, such as the 3D triangle-triangle
interaction problem [11]. Supplemental material 2 of the
present paper gives a brief description of the theory, algo-
rithm, computational robustness and performance of a 3D
triangle-triangle interaction method which is based on the
approach presented in this paper.

In the future, a new concept called the resilience of
computational methods for geometric computing will be
studied, which is different from the robustness of computa-
tional methods. The difference of these two concepts is now
clear in scheduling methods for service and manufacturing
systems [26], [27].

REFERENCES
[1] J. J. Craig, Introduction to Robotics: Mechanics and Control. Reading,

MA, USA: Addison-Wesley, 1992.
[2] J. Malkevitch. (2003). Mathematics and Art, American Mathemati-

cal Society Feature Column. [Online]. Available: http://www.ams.org/
samplings/feature-column/fcarc-art1

[3] H. Stachel, ‘‘What is descriptive geometry for?’’ in Proc. Dresden Symp.
Geometry Process., 2003, pp. 327–336.

[4] P. Paukowitsch, ‘‘Fundamental ideas for computer-supported descriptive
geometry,’’ Comput. Graph., vol. 12, no. 1, pp. 3–14, Jan. 1988.

[5] M. Kreveld, ‘‘The power of parallel projection,’’ Inf. Process. Lett. vol. 46,
no. 4, pp. 185–191, 1993.

[6] H. Stachel, ‘‘Descriptive geometry meets computer vision-the geometry of
two images,’’ J. Geometry Graph., vol. 10, no. 2, pp. 137–153, 2006.

[7] Y. T. Lee and F. Fang, ‘‘3D reconstruction of polyhedral objects from single
parallel projections using cubic corner,’’ Comput.-Aided Des., vol. 43,
no. 8, pp. 1025–1034, Aug. 2011.

[8] Y. T. Lee and F. Fang, ‘‘A new hybrid method for 3D object recovery
from 2D drawings and its validation against the cubic corner method and
the optimisation-based method,’’ Comput.-Aided Des., vol. 44, no. 11,
pp. 1090–1102, Nov. 2012.

[9] H. Zhu, Advanced Descriptive Geometry. Shanghai, China: Shanghai Sci-
ence and Technology, 1985.

[10] S. Modi, M. K. Tiwari, Y. Lin, and W. J. Zhang, ‘‘On the architecture of a
human-centered CAD agent system,’’ Comput.-Aided Des., vol. 43, no. 2,
pp. 170–179, Feb. 2011.

[11] M. Held, ‘‘ERIT—A collection of efficient and reliable intersection tests,’’
J. Graph. Tools, vol. 2, no. 4, pp. 25–44, Jan. 1997.

[12] L. X. Fan, M. Y. Cai, Y. Lin, and W. J. Zhang, ‘‘Axiomatic design theory:
Further notes and its guideline to applications,’’ Int. J. Mater. Product
Technol., vol. 51, no. 4, pp. 359–374, 2015.

VOLUME 9, 2021 60263



H. Yu et al.: New Approach to Analyzing Interactions of Two Objects in Space

[13] W. J. Zhang and J. W. Wang, ‘‘Design theory and methodology for
enterprise systems,’’ Enterprise Inf. Syst., vol. 10, no. 3, pp. 245–248,
Mar. 2016.

[14] W. J. Zhang, Y. Lin, and N. Sinha, ‘‘On the function-behavior-structure
model for design,’’ in Proc. 2nd CDEN Conf., Alberta, CA, Canada,
Jul. 2005, p. 8.

[15] Y. Zeng and I. Horváth, ‘‘Fundamentals of next generation CAD/E
systems,’’ Comput.-Aided Des., vol. 44, no. 10, pp. 875–878,
Oct. 2012.

[16] The Computational Geometry Algorithms Library. The Cooperative
Association for Internet. Accessed: May 4, 2016. [Online]. Available:
http://www.cgal.org

[17] D. Halperin, ‘‘Robust geometric computing in motion,’’ Int. J. Robot. Res.,
vol. 21, no. 3, pp. 219–232, Mar. 2002.

[18] R. Parekh, Principles of Multimedia, 2nd ed. New York, NY, USA:
McGraw-Hill, 2013, p. 413.

[19] A. Gomez and M. Shin, ‘‘3D structure development using a three-layer
self-folding technology,’’ J.Mech. Sci. Technol. vol. 32, p. 2107, Oct. 2018,
doi: 10.1007/s12206-018-0613-y.

[20] W. Sun, L. Gu, R. Wang, and T. Qi, ‘‘Adaptive finite element analysis
of steel girder deck pavement,’’ J. Mech. Sci. Technol., vol. 32, no. 2,
pp. 593–603, Feb. 2018.

[21] Y. Lin andW. Zhang, ‘‘Integrated design of function, usability, and aesthet-
ics for automobile interiors: State-of-the-art, challenges, and solutions,’’
J. Syst. Control Eng., vol. 220, no. 18, pp. 697–708, 2006.

[22] L. Cao, A. T. Dolovich, A. Chen, and W. Zhang, ‘‘Topology optimization
of efficient and strong hybrid compliant mechanisms using a mixed mesh
of beams and flexure hinges with strength control,’’ Mech. Mach. Theory,
vol. 121, pp. 213–227, Mar. 2018.

[23] L. Cheng, Y. Lin, Z.-G. Hou,M. Tan, J. Huang, andW. J. Zhang, ‘‘Adaptive
tracking control of hybrid machines: A closed-chain five-bar mechanism
case,’’ IEEE/ASME Trans. Mechatronics, vol. 16, no. 6, pp. 1155–1163,
Dec. 2011.

[24] W. J. Zhang, ‘‘An integrated environment for CADCAM of mechanical
systems,’’ Ph.D. dissertation, Fac.Mech. Eng.Marine Technol., Delft Univ.
Technol., Delft, The Netherlands, 2012, p. 263.

[25] Y.-D. Liang and B. A. Barsky, ‘‘A new concept and method for line
clipping,’’ ACM Trans. Graph., vol. 3, no. 1, pp. 1–22, Jan. 1984.

[26] W. J. Zhang, ‘‘Towards a resilient manufacturing system,’’ Ann. CIRP,
vol. 60, pp. 469–472, May 2011.

[27] B. Han, C. L. Liu, andW. J. Zhang, ‘‘A method to measure the resilience of
algorithm for operation management,’’ IFAC-Papers Line, vol. 49, no. 12,
pp. 1442–1447, 2016.

[28] D. Cohen, ‘‘Incremental methods for computer graphics,’’ ARPA, London,
U.K., Harvard Rep. ESD-TR-69-193, Apr. 1969.

[29] M. Elliriki, C. S. Reddy, and K. Anand), ‘‘An efficient line clipping
algorithm in 2D space,’’ Int. Arab J. Inf. Technol., vol. 16, pp. 798–807,
Oct. 2019.

HAIYAN YU received the Ph.D. degree from the
College of Information Science and Technology,
Donghua University, in 2011. Since 1998, she
has been working on integrating classical descrip-
tive geometry to modern computing. In 2017, she
visited Stanford University for the collaborative
research in nano imaging. She has constructed
a batch of algorithms under the framework of
computerized descriptive geometry. She is cur-
rently active in communications with international

researchers. She has been invited as a Session Chairman for the International
Conference on Geometry and Graphics (ICGG) and made presentations,
in 2012, 2016, and 2018. She has published over 20 articles in the fields of
geometry and graphics. Her main research interests include computer graph-
ics, geometric computing and their applications in CAD, and engineering
modeling. She is a Council Member of the China Graphics Society and the
Secretary-General of the Committee of Graphics Computing.

YUANJUN HE received the degree inmathematics
fromZhengjiangUniversity, China. He is currently
a Professor of computational science with Shang-
hai Jiao-Tong University, Shanghai, China. He has
developed a CAD software called KerenCAD. He
has published five books and more than 150 arti-
cles. His main research interests include computer
graphics and geometric computing.

WENJUN ZHANG (Senior Member, IEEE)
received the Ph.D. degree from the Delft Univer-
sity of Technology, in 1994. He has published over
300 articles in refereed journals or magazines, over
200 papers in refereed conference proceedings
with his H-index of 55 (according to Google
Scholar), and held over ten patents. His one of
the focused research themes is computer aided
design and informatics. His main research interest
includes system science and engineering and their

applications to manufacturing and service systems. He is currently a Fellow
of the Canadian Academy of Engineering (CAE), a Fellow of ASME,
and a Senior Member of SME. He has been very active in editorial board
work for six reputed journals, including IEEE TRANSACTION ON MECHATRONICS

(Senior Editor since 2019), IEEE SYSTEM JOURNAL, and IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS—SYSTEM (currently).

60264 VOLUME 9, 2021

http://dx.doi.org/10.1007/s12206-018-0613-y

