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ABSTRACT Matrix Factorization (MF) is one of themost successful Collaborative Filtering (CF) techniques
used in recommender systems due to its effectiveness and ability to deal with very large user-item rating
matrix. However, when the rating matrix sparseness increases its performance deteriorates. Expanding
MF to include side-information of users and items has been shown by many researchers both to improve
general recommendation performance and to help alleviate the data-sparsity and cold-start issues in CF.
In regard to item feature side-information, most schemes incorporate this information through a two stage
process: intermediate results (e.g., on item similarity) are first computed based on item attributes; these
are then combined with MF. In this paper, focussing on item side-information, we propose a model that
directly incorporates item features into the MF framework in a single step process. The model, which we
name FeatureMF, does this by projecting every available attribute datum in each of the item features into
the same latent factor space with users and items, thereby in effect enriching item representation in MF.
Results are presented of comparative performance experiments of the model against three state-of-the-art
item information enriched models, as well as against four reference benchmark models, using two public
real-world datasets, Douban and Yelp, with four training:test ratio scenarios each. It is shown to yield the best
recommendation performance over all these models across all contexts including data-sparsity situations,
in particular, achieving over 0.9% to over 6.5% MAE recommendation performance improvement over the
next best model, HERec. FeatureMF is also found to alleviate cold start and to scale well, almost linearly,
in regard to computational time, as a function of dataset size.

INDEX TERMS Collaborative filtering, matrix factorization, item features, cold start, data sparsity.

I. INTRODUCTION
In the modern ‘Big Data’ era, recommender systems have
become the essential tools that address a myriad of services
for Internet users, e.g., in the context of the vast range of infor-
mation and services readily available such as web browsing
[1], [2] or IoT scenarios [3], by assisting users to discover
what they need or receive timely personalized suggestions
and recommendations. Collaborative Filtering (CF) based
recommendation techniques are among the most widely used
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in recommender systems, e.g., [3]–[7]. CF is fundamentally
based on assessing and making use of relations and interac-
tions between users and items over large populations of both
to make recommendations to other users or of other items,
effectively to identify items that would be preferred by a
particular user. However, it is still a challenge to deal with
the increasing sparseness of user-item rating matrix and the
cold-start problem, which occurs when users/items are just
added to a system with only a few ratings [6], [7].

To tackle such issues, hybrid CF methods that combine
CF methods with various kinds of additional information
sources, sometimes referred to as side-information, related
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to both the users and the items in the recommendation pro-
cess have been extensively studied in recent years. Among
different CFmethods, Matrix Factorization (MF) is one of the
more popular ones due to its scalability and its flexibility in
incorporating additional information; cf, for instance, [4], [5],
[8]. User side-information, e.g. extracted via social networks
[9], [10], user demographics [11], [12] or reviews [13], [14],
has been widely used to incorporate into MF and proven
being helpful at improving the recommendation performance.
However, for natural personal and privacy rights and rea-
sons, users are usually resistant to having their personal
information accessed by a third-party agent or to spending
extra time on supplying their opinions (i.e. tags, comments,
reviews, etc.) [15]. Compared to user side-information, item
side-information is more readily available and easier to col-
lect in real-world applications. Item side-information, such
as item features that are generated by domain experts to
represent item characteristics, has been popular as a source of
information to be tapped and incorporated into MF schemes
[16], [17].

Among the more notable MF-based approaches incor-
porating item side-information are those either using item
features to compute item similarities [16]–[19] or learning
embedding representations of users and items based on item
features [20]. These approaches predict users’ ratings in
two stages, where the item similarities or user/item embed-
dings are first computed based on item features and then
incorporating the result into MF. Besides the complexity of
it being a two step process, the approach brings an addi-
tional uncertainty. This may be inferred from the variety of
similarity measures that have been proposed, and it is still
unclear which of these works best reflects the closeness of
two items.

In this paper, a novel MF-based model, FeatureMF,
that incorporates item features directly, without a pre-
computational stage, into the MF framework, is proposed.
It is primarily focused on alleviating the data-sparsity prob-
lem but with an expectation of helping to alleviate the
cold-start item problem also. FeatureMF treats the feature
information of items as item-feature relations and aims to
project available attributes in each of the features into the
same latent factor space as the one for users and items. There-
fore, each item is represented by not only its own latent-factor
vector but also its related attributes. Performance compari-
son experiments using two real-world datasets are presented.
These demonstrate that FeatureMF performs better than both
the traditional MF models (where no item side-information
is taken into account) -as of course might be expected- and
more recent the state-of-the-art item information enriched
MF-based models [18]–[20].

The key contributions of this work are summarised in the
following:

1) A novel MF-based model, FeatureMF, that integrates
item features with the MF framework is proposed. This
model represents attribute data in each of the item
features as latent vectors that share the same latent

space as the one for users and items, and does this in
a single computation stage.

2) In a performance comparison of FeatureMF against
three established competing CF models which exploit
item features information, it is shown to yield better
recommendation performance. It is also shown to do
better in alleviating the data-sparsity and cold-start
problems, and to be approximately linearly scalable.

The remainder of this paper is organized as follows.
Section II covers relevant related work, introducing the MF
technique and various published approaches taken to incorpo-
rating additional information into the recommender scheme.
Section III introduces the preliminary knowledge utilized in
this work. The proposed recommendation model, FeatureMF,
is presented in Section IV. Section V presents the perfor-
mance comparison experiments and their analysis. Finally,
our conclusions and suggestions for future research directions
are summarized in Section VI.

II. RELATED WORK
A. COLLABORATIVE FILTERING ENRICHED
WITH SIDE INFORMATION
CF has achieved success in recommender systems because
it only requires user-item interactions to make recommen-
dations [6]. However, CF approaches usually are challenged
in the performances they yield in data-sparsity and cold-
start situations. In these circumstances, many works have
proposed to adopt information from additional sources, also
known as side information, to improve recommendation per-
formance [5], [6]. For example, side information that may
be extracted via social networks [9], [10], [21], user demo-
graphics [11], [12] or reviews from users [13], [14], has
been successfully incorporated into CF and has been proven
helpful at improving recommendation performance. In terms
of approaches that exploit side information, works such as
[18]–[20], [22], [23] propose the construction of a hetero-
geneous information network (HIN) based on user/item side
information in order to learn relations between user/items.
Other works, taking a different approach, i.e. [24]–[26], pro-
pose the use of deep learning models for learning latent
features from side information of users and items. Rec-
ommendation models using deep learning techniques have
become a particularly popular area of research in recent years,
following their success in multiple application domains such
as computer vision and natural language processing (NLP)
[27]. However, recent results have pointed out that models
based on deep learning are not as strong as expected while
also being computationally complex [28], [29]. Matrix Fac-
torization (MF) is still among the most popular CF methods
that allow integration of additional information [5], [6], [18],
[19].

MF consists in factorizing the user-item rating matrix
into two low-rank matrices, which present users and items,
respectively. The basic form, along with variants of that form,
of theMFmodel popular among Netflix Prize contestants [8],
[30] is regularized singular value decomposition, RegSVD,
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proposed by Paterek in [31] in 2007 and by others around the
same time. The SVD concept quickly became the core for
many other published models, such as NMF [32], PMF [33]
and BPMF [34], which still today enjoy standing as reference
baselines for current MF-based recommendation research
and hybrid models that make use of side information related
to users/items that achieve further improvements, such as [9],
[20].

B. MATRIX FACTORIZATION ENRICHED WITH ITEM
FEATURES
Item features, which are generated by domain experts to
represent item characteristics [17], have been utilized with
different techniques proposed for combining them with MF
to improve the recommendation performance. For instance,
Nguyen and Zhu [16] propose the incorporation of con-
tent information into MF, whereby the similarity between
items, utilizing the ‘Simple Matching Similarity’ measure-
ment, is first computed, followed by extending theMF frame-
work with the computed similarities. Yu et al. [17] propose
a similar enhanced MF model, where item similarities are
calculated by a more accurate measure, ‘Coupled Object
Similarity.’ These MF-based approaches first calculate item
similarity and then incorporate the pre-processed similarity
into the basic MF models as a regularization term to ensure
that item-latent feature vectors are close to those of similar
items. More recently, several works report modeling item
features as a HIN, and incorporate results from a HIN into
MF to address the data-sparsity and cold-start problems, and
yield improved performances on [16] and [17]. Shi et al.
[18] propose a semantic path based personalised recommen-
dation model, SemRec, that computes entity similarity in a
HIN on weighted meta-paths. In [19], Zheng et al., in their
model DSR, combine similarities between users and items
calculated from a HIN with MF using dual similarity regu-
larization, which can impose a constraint on users and items
with either low or high similarities. Shi et al. [20], in their
model HERec, used a scheme to learn embeddings for users
and items from HINs, which are then integrated with MF.

Most of the aforementioned item features enriched models
involve a two stage process, whereby intermediate results
(e.g. item similarities) are first calculated based on item
features, which are then incorporated in the second stage into
MF in various kinds of forms. However, there is no guarantee
that the intermediate results are accurate, which observation
is reflected in the variety of similarity measures proposed,
with each seeming to propose a different measure. Hence,
it is unclear which is the best one. Meanwhile, some of the
similarity measures have limitations for features, for exam-
ple, similarity measures proposed in Nguyen and Zhu et al.
[16] and Yu et al. [17], can only deal with the situation that,
for each item, every feature can only contain one attribute
value. This characteristic of the scheme constrains its use in
performance comparison experiments such as those reported
on here below. This does not apply to the latter three, so in this

paper we compare the performance of our model with these
in Section V.

In this work, the novel item feature enriched MF model
proposed incorporates item information directly into the MF
framework, without a pre-processing stage, and allows for
one or more attributes of each item feature.

III. PRELIMINARY KNOWLEDGE
In this section, the preliminary knowledge related to the
proposed item feature enriched recommendation model is
introduced. First, the notations used in the remainder of this
paper are presented, and then a brief introduction to MF is
given.

A. NOTATIONS AND NOMENCLATURE
A typical recommendation scenario involves a set of m users
U = {u1, u2 . . . um}, a set of n items I = {i1, i2 . . . in}, and
their interactions represented by a rating matrix R ∈ Rm,n.
Typically, R is very sparse, since the observed number of
user-item interactions is much smaller than m × n. The set
of (u, i) pairs with observed ratings is denoted by K .
In the case when item side information is available, each

item i ∈ I can be represented by a set of item features
F = {F1,F2 . . . ,FN }, where N is the number of features.
These features are extracted from item content information,
and are predefined based on the item domain. For example,
a movie item can be represented by features such as Director,
Actor, Type, etc. In addition, each feature has categorical
values, referred to as attributes in this work, e.g., Action,
Crime, Drama, etc. for the Type feature. The set of attributes
belonging to an item i ∈ I for each feature Ft is denoted as
Ft (i). Table 1 demonstrates a structured representation for a
movie instance using its content information.

TABLE 1. Content information structure for the movie instance The
Godfather.

The nomenclature used in this paper is presented in Table 2.

B. MATRIX FACTORIZATION
The goal of MF is to map both users and items into the same
low-rank latent factor space by approximating the observed
ratings, where users and items are represented by a set of
feature vectors, P ∈ Rm,d and Q ∈ Rn,d , respectively, where
d is the number of latent factors, Rm,d is an m×d matrix and
Rn,d is an n×d matrix. The predicted rating of item i by user
u is computed as:

r̃ui = PuQTi =
d∑
f=1

Pu,fQTi,f (1)
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TABLE 2. Nomenclature.

where row Pu in P, and row Qi in Q represent the vector
representation of user u and item i, respectively.
For the rating prediction task [6], the user and item latent

feature matrices are usually found by minimizing an MF
objective function OMF , which is the regularized squared
error on the observed ratings, as follows in (2):

OMF =
∑

(u,i)∈K

(
(rui − r̃ui)2 + λ(‖Pu‖2 + ‖Qi‖2

)
(2)

where ‖ · ‖2 is the Frobenius norm [35].

IV. MATRIX FACTORIZATION ENRICHED
WITH ITEM FEATURES
In this section, the proposed item feature enriched MF model
is described, in which item features are incorporated directly
into the MF framework.

A. THE FEATUREMF MODEL
The assumption of FeatureMF is that the predicted rating for
user u to item i is not only related to latent representations
of u and i, but also relies on the feature attributes of item i.
In line with this assumption, we propose to project attributes
of item features into the same latent factor space as the one for
users and items, so as to incorporate attribute representations
of items into the MF framework. Let {yt |yt ∈ R|Ft |×d , t =
1, 2 . . . ,N } be the set of latent-factor matrices representing
each of the item features, where each row yt (a) in yt is

the vector representation of an attribute belonging to Ft and
|Ft | is the number of attributes representing each feature.
Figure 1 illustrates how item features are incorporated into
the item rating prediction of FeatureMF, as per (3) below,
i.e., to jointly represent item representations. As shown there,
in Figure 1, each attribute a in each of the features Ft (e.g.,
attribute Action in feature Type from Table 1) is represented
by a latent factor vector in the same latent space as the
item factors. For any item i, its final representation using
FeatureMF consists of two parts: (a) the item-specific latent
factors Qi, and (b) sum of the average representations of
the attributes in each of the features that item i possesses∑N

t=1 |Ft (i)|
−1∑

a∈Ft (i) yt (a). As an example, the movie The
Godfather in Table 1 may be considered. According to Fea-
tureMF, the movie representation learned from the ratings
is augmented by the vector representation of its Director,
i.e., Coppola, average vector representation of its Actors,
i.e., Brando, De Niro, Pacino and average vector representa-
tion of its Type, i.e., Action, Crime, Drama.

FIGURE 1. An illustration of item representation for FeatureMF.

Hence, FeatureMF, with this item-feature influencing term,
can predict the rating, r̃ui, of item i by user u as follows:

r̃ui = PTu (Qi +
N∑
t=1

|Ft (i)|−1
∑
a∈Ft (i)

yt (a))+ bui (3)

where bui = µ + BUu + BIi, µ is the global average rating,
BUu and BIi indicate the user and item bias.
Clearly, also as (3) implies, even in a cold-start situation,

when an item has received only a few ratings, FeatureMF
is capable of computing the rating prediction only based
on the item features, thereby alleviating the cold-start item
problem.

In the literature, CF methods considering item features,
e.g. [16]–[20], are also proven to be effective in improving
the recommendation accuracy and dealing with cold-start
problems. However, as indicated earlier, they typically work
in two stages: first utilize item information to estimate item
similarities or item embeddings, the result of which is then
combined with MF. The computational complexity of the
first stage is usually quadratic with respect to the number
of items [16], [17]. Unlike the methods mentioned above,
as FeatureMF considers the influence of item ratings and item
features in one stage, it is less computationally complex and
scales linearly with the dataset size, which is an advantage
over some of these competing models, especially the best
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TABLE 3. Computational complexity comparison between HERec and
FeatureMF.

Algorithm 1: Learning the FeatureMF Model
Input : R, λ, α, γ (learning rate), d ,c, iter ← 0
Output: rating predictions r̃ui

1 Initialize the low-rank matrices for users (P), items (Q) and
features (Y = {yt |t = 1..N }), the bias vectors for users
(BU ) and items ( BI )

2 while iter < maxIter or error on validation set decrease do
3 while (u, i) ∈ K do
4 r̃ui ← PTu (Qi+

∑N
t=1 |Ft (i))|

−1∑
a∈Ft (i) yt (a))+bui

5 eui ← r̃ui − rui
6 BUu ← BUu − γ (eui + λ · BUu)
7 BIi ← BIi − γ (eui + λ · BUi)
8 Pu ← Pu − γ (eui(Qi +∑N

t=1 |Ft (i)|
−α
∑

a∈Ft (i) yt (a))+ λ · Pu)
9 Qi ← Qi − γ (euiPu + λ · Qi)

10 foreach yt ∈ Y do
11 foreach a ∈ Ft (i) do
12 yt (a)← yt (a)−γ (eui|Ft (i)|−1Pu+λ ·yt (a))
13 end
14 end
15 end
16 iter ← iter + 1
17 end

of these, HERec, [20]. This is revisited in the following
‘complexity analysis’ subsection C and in the final section
of our experimental analysis below.

B. OPTIMIZATION
Parameters in FeatureMF are learned by minimizing the reg-
ularized objective function:

OFeatureMF =
∑

(u,i)∈K

((
rui − r̃ui

)2
+ λ

(
‖Pu‖2 + ‖Qi‖2

+BU2
u + BI

2
i +

N∑
t=1

∑
a∈Ft (i)

‖yt (a)‖2
))

(4)

where, as before, ‖ · ‖2 is the Frobenius norm [35].
Since the optimization problem in (4) is biconvex, stochas-

tic gradient descent (SGD) [36] is utilized to search for
a local minimum. For a given instance rui in the training
dataset, parameters with opposite direction of the gradient
are updated, and loop over all observed ratings in K . The
pseudocode for learning the FeatureMF model is shown as
Algorithm 1.

C. COMPLEXITY ANALYSIS
Most of the training time is spent on the computation of the
objective function and its gradients against different feature
vectors. To draw out the analysis of this for FeatureMF,
let the number of observed ratings be |K |, while d denotes
the number of latent factors of the low-rank matrices. Then
the worst-case computational complexity for minimizing the
objective function is O(|K |dNa), where a is the average
number of attributes an item has for a feature. The costs
of computing the gradients for BUu,BIi,Pu, Qi and yt (a)
areO(|K |),O(|K |d),O(|K |ld) andO(|K |dNa), respectively.
Thus, the overall computational complexity of one iteration
of FeatureMF is O(|K |dNa).

Since FeatureMF is designed to deal with situations involv-
ing small number of features (e.g., N = 3 and N = 2 for
the two datasets we used), and taking into account that a is
relatively small for a typically sparse ratingmatrix, the overall
computational complexity of FeatureMF is then effectively
linear with respect to the total number of observed ratings.

We compare this with HERec, which is the key lead-
ing edge competitor considered in our experiments below.
As stated in [20], the computation of HERec contains two
major parts implemented in a two step process: (1) HIN
embedding, the complexity of which isO(|P|·D ·(|U |+|J |)),
where |P| is the number ofmeta-paths, |U | and |J | are number
of users and items, and D is the embedding dimension; (2)
matrix factorization, the complexity of which for each triplet
< u, i, r > is O(|P| · D · d), where d is the number of
latent factors. Hence, due to this first process step, HERec
complexity and scaling will tend to be quadratic.

Table 3 seeks to capture this computational complexity
comparison between both models. As is evident here again,
in avoiding the first stage of HERec learning HIN embed-
dings, a benefit for FeatureMF’s is reduced complexity. Com-
pared to the second stage of HERec, FeatureMF has similar
computational complexity depending on the dataset used and
customized hyperparameters. Further, in HERec, the number
of meta-paths P used and the selection of meta-paths are
non-trivial problems and need significant effort to tune.While
in FeatureMF, N is a constant based on the dataset used.
In summary, by comparison with HERec, FeatureMF is less
complex, scales approximately linearly and, hence, will have
a faster execution time.

V. EXPERIMENTS
In this section, we report on comparative performance tests
through experiments we conducted using two benchmark
datasets. The goal was to test the effectiveness of FeatureMF
compared to four established traditional models and three
other recent state-of-the-art models. As indicated above,
the former are called ‘traditional’ in the sense that they make
recommendations using only user-item ratings, and are some-
times treated as reference models for benchmarking other
models; whereas the latter three include additional informa-
tion, besides the ratings, in their algorithms.
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TABLE 4. Statistics of the two public datasets utilized in the experiments.

A. SETTINGS
This section presents the two well known public datasets used
in the experimental work as well as the metrics employed.

1) DATASETS
The first is the Douban dataset, created by Shi et al. [19],
[20], [37] from Douban,1 a popular social media platform
in China. It provides user ratings and reviews for movies,
books, and music. The utilized dataset was collected from
13,367 users with a total of 1,068,278 user ratings (ranging
from 1 to 5) of 12,677 movies. The second is the Yelp2 chal-
lenge dataset, which includes 198,397 user ratings (ranging
from 1 to 5) of 14,284 local businesses from 16,239 users.
Both datasets contain not only the user ratings data, but also
content information related to both users and items. Since
the assumption in this paper is that only user ratings data
and item features are available, only information related to
items was selected in both datasets for the experiments. The
relevant parameters being considered from these two datasets
are summarized in Table 4. There, it may be observed that the
rating matrices of both datasets are sparse, and the density of
Douban dataset (0.63%) is higher than that of Yelp dataset
(0.08%).

2) EVALUATION METRICS
Two popular error-based metrics were used in the evaluation
- the mean absolute error (MAE) and the root mean square
error (RMSE) [38], [39], which are defined in (5) and (6),
respectively:

MAE =
1
|Z |

∑
(u,i)∈Z

|rui − r̃ui| (5)

RMSE =

√√√√ 1
|Z |

∑
(u,i)∈Z

(rui − r̃ui)2 (6)

where Z is the set of observed ratings in the test set. The
smaller MAE and RMSE are, the higher the predictive power
of the model, [40].

1http://movie.douban.com/
2http://www.yelp.com/dataset challenge/

B. PERFORMANCE OF FEATUREMF
The proposed model is implemented on the top of LibRec,3

a popular Java library for developing recommender systems.
In order to study the hyperparameters’ impact on FeatureMF,
we use five-fold cross validation for training and testing on
both datasets. Specifically, each dataset is randomly split into
five folds, for each iteration, one fold is used as test set
and the remaining four folds are used for training. We con-
duct five iterations to ensure each fold is tested and report
the average results. As LibRec uses a learning rate decay
technique based on [41], [42], the initial value of the learn-
ing rate has limited influence on the model performance.
We set it to 0.01 in our experiments, which is a common
setting forMF-basedmethods. Following common parameter
settings in other item features enriched MF models [18]–
[20], we first set the number of latent factors to 10. Then,
we tune the value of the regularization parameter λ to a
value in the set {10−4, 10−3, 10−2, 10−1, 100, 101}. As the
results in Figure 2 show, the best performance of FeatureMF
is achieved when λ = 0.1 on Douban and λ = 1 on Yelp.
These λ values are used in the rest of the experiments.

FIGURE 2. RMSE performance of FeatureMF as a function of the
regularization parameter λ for the (a) Douban and (b) Yelp datasets with
the number of latent factors set to 10.

Latent Factor sensitivity: One of the most important
hyperparameters of MF-based models is the number of latent
factors and the sensitivity of the model’s performance to
this number. In order to examine the dimension impact of
FeatureMF, we vary it from five to forty in steps of five.

3https://guoguibing.github.io/librec/index.html
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FIGURE 3. Impact of number of latent factors on the RMSE performance
of FeatureMF in the two datasets.

As shown in Figure 3, the values of RMSE for different
number of latent factors are relatively close, with standard
deviation of 8.5e-4 on Douban and 1.5e-4 on Yelp. This
demonstrates the robustness of FeatureMF to variations in
feature dimensionality, where the features in our case are both
ratings and item features in a unified model [9].

Performance convergence: FeatureMF’s performance
convergence as a function of the number of iterations is
here considered. With the number of latent factors set to 10,
the convergence behaviour for the relatively dense (Douban)
and sparse (Yelp) datasets is shown in Figure 4. Convergence
can be seen to be exponential and rapid and quite similar to
results obtained by others, e.g, [20]. For the Douban dataset,
best performance is achieved at 40 or more iterations and, for
the Yelp dataset, at 20 or more. The differences likely relate
to the relative denseness/sparseness of the datasets.

FIGURE 4. FeatureMF’s performance convergence as a function of the
number of iterations for the (a) Douban and (b) Yelp datasets with the
number of latent factors set to 10.

C. COMPARATIVE STUDY
We compare FeatureMF with three recent state-of-the-art
MF-based models which make use of item information, albeit
in a different way to FeatureMF. These models are:

- SemRec [18]: a semantic path based personalized rec-
ommendation model, which integrates MF with HINs
using weighted meta-paths to obtain the prioritized and
personalized user preferences in paths.

- DSR [19]: a MF-based recommendation model with a
dual similarity regularization, which utilizes multiple

types of information in a HIN to impose constraints on
user- and item latent factors.

- HERec [20]: a heterogeneous information embedding
based model, which integrates a fused HIN embedding,
learned by usingmeta-path based algorithmswith anMF
model.

As may be observed and as briefly indicated earlier, these
are all HIN-based models and use a two stage computation
process. First, intermediate results (similarity or embedding)
are computed from a HIN using meta-path based algorithms
and then the results are integrated within the MF framework.

As [20] shows, HERec has a better performance
track-record than SemRec and DSR. Hence, we focus on it
particularly in our comparative experiments. Thus, we follow
the HERec ‘training: test’ dataset split ratios, i.e., with refer-
ence to the training part of the ratio, we experimented with
80%, 60%, 40%, and 20% of the data being used for training
on the Douban dataset, and 90%, 80%, 70%, and 60% of the
data for training on the Yelp one. Lower training percentages
are not used on Yelp as, according to [20], the dataset is
much sparser. For each data split ratio, we randomly split
the dataset five times, and average the results as the final
performance.The number of latent factors was set to 10 for
all MF-based models for fair comparison.

The performance results for the SemRec, DSR and HERec
models for this experimental set-up are taken from [20],
where it is speculated that the likely reason for HERec’s better
performance is because it considers not only the latent factor
representation for users and items learned from MF but also
HIN embeddings for them learned from HINs.

As a benchmarking exercise, we also compare Fea-
tureMF’s performance with that of four traditional refer-
ence models, RegSVD [8], [31] NMF [32], PMF [33], and
BPMF [34], which are frequently used to benchmark newMF
models but which do not exploit item side information. These
four models are obtained using the LibRec Library [43].
As would be expected, of course, FeatureMF’s performance
is much better.

Results for all seven models set against those of our
FeatureMF model are presented in Table 5, which also
includes FeatureMF’s percentage performance improve-
ment (Perf-Imp) over the other models on both the MAE
and RMSE metrics. This latter is graphically portrayed
in Figure 5.
Key observations which may be noted from these results

include:

1) While clearly it may be observed that FeatureMF
achieves better recommendation performance than all
other seven models, focusing in on HERec [20],
the next best performing model, FeatureMF may be
seen to achieve an MAE performance improvement of
approximately 1% to 2% on the Douban dataset and 3%
to 7% on the Yelp dataset over the eight test scenarios.
(The actual figures in Table 5 are 0.94% to 2.07%
and 3.40% to 6.59% resp.) For the RMSE measure,
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TABLE 5. Comparative evaluation of the performance of FeatureMF against seven other well-known models. Three, SemRec, DSR and HERec, consider
additional item features information and would be directly competitor models. The other four models, RegSVD, NMF, PMF and BPMF, are traditional
benchmarking ones which do not use item feature side information. Comparisons are on the (a) Douban and (b) Yelp datasets over four ‘training: test’
ratio scenarios each, indicated by the percentage ‘Training’ parameter. The number of latent factors, d , was set to 10. ‘Perf-Imp’ figures are FeatureMF’s
percentage of performance improvement on the MAE and RMSE performance metrics over the other models. (Note: FeatureMF’s optimised λ values used
are 0.1 on Douban and 1.0 on Yelp).

the performance improvements have a generally quite
similar pattern. Intuitively, this effectiveness of Fea-
tureMF could be attributed to the fact that it learns the
latent factor representations for item attributes directly
without the need of an intermediate computation stage
incorporating a similarity measure, –a measure for
which there are differences of views as to what should
be used, as well as constraints associated with different
measures, as indicated earlier.

2) While, as expected, the models, SemRec, DSR,
and HERec along with FeatureMF, which consider
additional item features, consistently achieve bet-
ter performance than the traditional MF-based refer-
ence models which do not, such as the well-known
RegSVD, NMF, PMF, and BPMF chosen here, it may
be observed that this happens to a greater degree
on the Yelp dataset. This indicates the more spe-
cial recommendation improvement benefit the use of
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FIGURE 5. FeatureMF’s performance improvement over that yielded by other models for the (a) Douban an (b) Yelp datasets.

additional item features brings to sparser datasets.
FeatureMF, performing best here, boosts MAE perfor-
mances, depending on the percentage training, by 4.5%
to 19.7% for the Douban dataset and from 16.2% to
30.5% for the data-sparse Yelp dataset. The RMSE
improvement varies similarly.

3) FeatureMF performs well in the case of cold-start pre-
diction, where there are very few rating records. This
can be concluded from the recommendation results of
our experiments with various item cold-start degrees,
i.e. the rating sparsity, [44]. Analysis of the data sets
shows that the percentage of items in each dataset
having 5 or less numbers of ratings (and so by our
definition, classed as a cold-start item) is considerable;
it may be shown to be a little more than 38% in the
Douban dataset and 55% in the Yelp data set. As shown
in Figure 5, the improvement ratio grows as the per-
centage of data used for training drops and hence
the item cold-start challenge increases. For instance,
the percentage improvement of FeatureMF over the
traditional models on the Yelp dataset, which is sparser
than Douban one and thus more challenging from a
cold-start alleviation perspective, may be seen, for the
MAE metric, to range from over 16% for the 90%
training scenario to just over 30% for the 60% training
scenario. The results indicate that FeatureMF is able
to utilize item features more effectively to make better
recommendations.

FIGURE 6. FeatureMF’s near-linear scalability attribute shown across
both datasets (d = 5), with the Intel i7-4500u CPU computational training
time measured in seconds.

D. COMPUTATIONAL COMPLEXITY
AND DATASET SCALING
From the analysis in Section IV-C, the computational com-
plexity of the training of a FeatureMF model was shown to
increase approximately linearly with the number of observed
ratings, leading to a near linear increase in required computa-
tional time. This analytical prediction of the scaling attribute
of FeatureMF, was investigated by training the model on
datasets of different sizes.

With the number of latent factors set to five (d = 5),
the experiment consisted in using different training data to
test data ratio settings on both datasets, ranging from 0.1
to 0.9, in steps of 0.1. The training data itself was ran-
domly selected from the user-item ratings to form the train-
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ing set. This was repeated ten times for each ratio sce-
nario and the average FeatureMF training times obtained.
These times are graphed in Figure 6 for both datasets. The
model was programmed in Java and run on an Intel i7-
4500u CPU. It may be seen there that, as predicted above in
Section IV-C, the training time grows almost linearly with the
size of training data.

VI. CONCLUSION
A novel MF model, FeatureMF, has been proposed and set
out in this paper. In a new way, it exploits item features
information where available to improve recommendation per-
formance. This novelty primarily lies in the way it diffuses the
item latent factors, derived for example from global ratings,
with latent factor representations of attributes of item features
into a singleMF computational stage. This is quite a departure
from the two-step process of other recent state-of-the-art
MF models, e.g., the HERec, DSR and SemREC models,
whereby intermediate results such as item similarities are
computed from the item features information in a first step
before the MF model proper is run.

It is shown to yield an MAE recommendation performance
improvement compared to the next best model of its kind,
HERec, of over 0.9% to over 6.5% across all contexts of the
two datasets examined (Douban and Yelp) including those of
higher data sparsity. It does this with relatively reduced com-
plexity and hence computation resource requirement, with
this scaling approximately linearly with dataset size. HERec,
which itself was a significant advance on its two main rivals,
DSR and SemREC, has a near quadratic scaling attribute.

FeatureMF, which yields better recommendation perfor-
mance than HERec, its nearest competitor, and better than six
other established CF recommendation models, was shown to
contribute to an improved alleviation of the data-sparsity and
cold-start problems, to be scalable, and to be applicable to any
recommender systemwith even only limited item information
available.

As a future work, it is planned to exploit richer sources
of item information, which are not limited to categorical
information as used in this work. Possible resources could
be item reviews, where various kinds of natural language
processing (NLP) techniques can be used to extract value
information related to items. In addition, it will be also
interesting and natural to investigate the way of combin-
ing item features with deep learning based models, such as
auto-encoders.
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