
Received April 5, 2021, accepted April 12, 2021, date of publication April 20, 2021, date of current version April 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3074360

A Framework for Radio Resource Allocation and
SDMA Grouping in Massive MIMO Systems
WESKLEY V. F. MAURÍCIO 1,2, DANIEL C. ARAÚJO1,2, TARCISIO FERREIRA MACIEL 1,2,
AND FRANCISCO RAFAEL MARQUES LIMA 1,3, (Senior Member, IEEE)
1Wireless Telecommunications Research Group (GTEL), Federal University of Ceará, Fortaleza 60455-760, Brazil
2Department of Teleinformatics Engineering, Federal University of Ceará at Pici, Fortaleza 60440-900, Brazil
3Department of Computer and Electrical Engineering, Federal University of Ceará at Sobral, Sobral 62010-560, Brazil

Corresponding author: Weskley V. F. Maurício (weskley@gtel.ufc.br)

This work was supported in part by the Innovation Center Ericsson Telecomunicações S.A., Brazil, through Technical Cooperation
Contract under Grant EDB/UFC.44, in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), in part by
the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), and in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)-Finance Code 001. The work of Tarcisio Ferreira Maciel was supported by
the CNPq under Grant 308621/2018-2. The work of Francisco Rafael Marques Lima was supported by the FUNCAP (edital BPI) under
Grant BP4-0172-00245.01.00/20.

ABSTRACT This work proposes a framework for multiuser massive Multiple Input Multiple Output
(MIMO) systems which is composed of three parts – clustering, grouping, and scheduling – and aims at
maximizing the total system data rate considering Quality of Service (QoS) constraints. We firstly use
a clustering algorithm to create clusters of spatially correlated Mobile Stations (MSs). Secondly, in the
grouping part, we select a set of Space-Division Multiple Access (SDMA) groups from each cluster. These
groups are used as candidate groups to receive Scheduling Unit (SU) in the scheduling part. In order to
compose a group, we employ a metric that takes into account the trade-off between the spatial channel
correlation and channel gain of MSs. In this context, it is proposed a suboptimal solution to avoid the high
complexity required by the optimal solution. Thirdly and finally, we use the candidate SDMA groups from
the grouping part to solve the data rate maximization problem considering QoS requirements. The scheduling
part can be solved by our proposed optimal solution based on Branch and Bound (BB). However, since it
has high computational complexity, we propose a suboptimal scheduling algorithm that presents a reduced
complexity. In the simulation results, we evaluate the performance of both optimal and suboptimal solutions,
as well as an adaptation of the Joint SatisfactionMaximization (JSM) scheduler to amassiveMIMO scenario.
Although the suboptimal solution presents a performance loss compared to the optimal one, it is more suitable
for practical settings as it is able to obtain a good performance-complexity trade-off. Furthermore, we show
that the choice of a suitable trade-off between the spatial channel correlation and channel gain improves the
system performance. Finally, for a low number of available SDMA groups, the suboptimal solution presents
near optimal outage and a throughput loss of only 10% in comparison to the high-complexity optimal solution
while it outperforms the JSM solution in terms of outage and system throughput.

INDEX TERMS Massive MIMO, channel hardening, SDMA grouping, radio resource allocation, quality of
service.

I. INTRODUCTION
Nowadays, industry and academy intensified the research
over Fifth Generation (5G) networks [1]. The main moti-
vations for its development are the search for better QoS,
higher transmit data rates, new services (multimedia) and
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evolution/massification of digital technology with new and
increasingly powerful devices [2].

We highlight here massive MIMO as a technology capable
of meeting the data rate requirements of 5G systems [3]. It
allows the Base Stations (BSs) to be equipped with tens to
hundreds of antennas, enabling them to create many narrow
beams to serve simultaneouslymultipleMSs at the same SU.1

1The SU is the smallest unit of resources that can be allocated to a MS.
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This is an attractive feature that especially fits to crowded
areas as stadiums or concerts, where there is a very dense MS
distribution over a typical area [4]. However, the use of classi-
cal digital beamforming in massive MIMO systems leads to
low energy-efficiency solutions, as it is necessary that each
antenna element has its own Radio Frequency (RF) chain [3].
As an alternative to the classical beamforming, the hybrid
analog/digital architecture termed hybrid beamforming is the
target of considerable attention nowadays for its reduced cost
and power consumption [3]. In this architecture, the number
of RF chains is reduced by splitting the signal precoding into
analog and digital domains.

Massive MIMO systems need the Radio Resource Allo-
cation (RRA) to manage the scarce available resources of
the system (frequency, time, and beams associated to SUs)
aiming to increase the system performance e.g., in terms of
throughput, fairness, and QoS [5]. The large dimensionality
of RRA problems in multi-user massive MIMO systems,
on its own, drastically increases complexity and, when com-
bined with the stringent target requirements of 5G, RRA
problems become even more difficult to be solved. Therefore,
the development of new RRA algorithms is particularly chal-
lenging into those scenarios [6].

Another difficulty of RRA in multi-user massive MIMO
is that it should be designed jointly with SDMA. Since
the scheduling at the same SU of different MSs with
nearly orthogonal channels leads to high Spectral Efficiency
(SE) [7]. We can classify the search for the best group of MSs
to share a SU, i.e., SDMA grouping, into two categories: a
solution that spatially splits the MSs into clusters followed
by a scheduler that builds an SDMA group by choosing MSs
from different clusters as shown in [8]; and a solution that
places MSs into the SDMA groups iteratively based on some
spatial compatibility metric [7]. However, in both cases the
number of possible groups to schedule is high due to its
combinatorial characteristics that increase with the minimum
between the number of MSs and of transmit antennas [9].

One of major issues in Frequency Division Duplex (FDD)
massive MIMO is the Channel State Information (CSI) feed-
back. The aforementioned work [8] proposes a solution to
overcome this issue by employing the hybrid beamforming.
Therefore, it is the base for several studies that investi-
gate MS clustering and downlink SDMA group schedul-
ing as [10]–[15]. In [10], the authors proposed an algorithm
that performs joint dynamic clustering and CSI acquisition,
and a scheduler that selects semi-orthogonal MSs. In [11],
the authors used graph theory to propose a clustering and
scheduling method. Their solution has polynomial computa-
tional complexity and deals with fairness amongMSs. In [12],
the authors propose a new hierarchical clustering method that
builds the groups by merging clusters. In [13], the authors
propose a method to jointly optimize the number of clus-
ters, the clustering procedure, and the beamforming strategy.
Furthermore, the authors in [12] and [13] propose a sched-
uler that utilizes a metric based in Signal to Leakage plus
Noise Ratio (SLNR) to suppress inter-cluster and intra-cluster

interference. In [14], the authors propose a greedy MS
scheduling aiming to mitigate the inter-cluster and intra-
cluster interference. However, the digital precoders of this
method are calculated for each MS until the number of MSs
per cluster is reached. Therefore, computational complexity
becomes prohibitive as the number of MSs and cluster size
increase. In [15] it is proposed a reinforcement learning based
scheduling with the objective of maximizing the throughput
while guaranteeing fairness among MSs. The main idea is
to model the optimization problem as a Markov decision
process, where the fairness is modeled in the transitions
order. Note that, none of the aforementioned works [10]–[15]
considers hybrid precoding.

Since hybrid beamforming gained a lot of attention by
allowing the use of massive MIMO, [16]–[18] propose new
scheduling methods for massive MIMO under hybrid beam-
forming architecture. The authors in [16] propose a schedul-
ing based on statistical CSI with the objective of system
throughput maximization. The scheduler main idea is to bal-
ance the channel gain and spatial channel correlation of the
selectedMSs leading to a high system throughput. In [17] it is
proposed a scheduling based on matrix vectorization aiming
at maximizing the system throughput. The scheduler main
idea is to pre-select different sets ofMSs based on the Pearson
correlation coefficient, whose MSs are scheduled afterwards
to maximize the throughput. In [18] the authors propose
a scheduling based on contextual bandits to maximize the
system throughput while satisfying the QoS. The main idea
is that the scheduler learns over time the best scheduling
strategy and adapts it to maximize the system performance.
The authors in [19] propose a scheduling based on genetic
algorithm and competitive learning to maximize the system
throughput. The work in [20] propose a scheduler that jointly
selects the beam and the MSs. The authors propose two
schedulers, one based on stable matching and another based
on greedy search. However, the works [16]–[18] do not con-
sider the scheduling of multiple SUs.

As previously mentioned, the QoS satisfaction is of utmost
relevance in mobile networks. Therefore, the resources need
to be managed in a smart way to guarantee minimum QoS
and servemoreMSs [5], [9]. From the aforementionedworks,
only [10] and [11] consider QoS requirements. However,
different traffic services can have distinct QoS requirements.
Therefore, from the operator’s point of view, different ser-
vices should be provided with sustainable quality. Thus,
another drawback of those works is that a multi-service sce-
nario is not considered. In [21] the authors study the problem
of throughput maximization guaranteeing the QoS require-
ments consideringmultiple services. The proposed scheduler,
namely JSM, utilizes the derivatives of the sigmoidal func-
tion that are dynamically adapted to protect the most priori-
tized service satisfying the MSs QoS requirements. However,
although the authors in [21] consider QoS requirements and
multiple services they did not consider a MIMO scenario.
According to the presented literature review, none of the

aforementioned works jointly considers hybrid beamforming,
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QoS, multiple SUs and a multi-service scenario. Therefore,
this work proposes a framework for multiuser massiveMIMO
systems considering all those issues, which is composed
of three parts: clustering, grouping, and scheduling. In this
paper, the proposed framework is used to solve the data rate
maximization problem considering QoS requirements and a
multi-service scenario, where it firstly clusterizes the MSs
by means of a classification algorithm that exploits chan-
nel covariance matrices [8]. Although the clustering process
helps to accomplish the task of finding the most suitable
SDMA groups, an exhaustive search over all groups is still
infeasible, especially in very dense urban scenarios. There-
fore, we select a given number of MSs within each cluster to
compose the SDMA groups by solving a quadratic problem
that takes into account MS channel gains and spatial corre-
lations [7]. The same set of SDMA groups is employed in
all SUs (whole bandwidth) exploiting the channel hardening
in massive MIMO systems [22]. Finally, those groups are
the input to a scheduling problem aiming at maximizing the
total system data rate and satisfying the QoS requirements of
the MSs. We show in our results that this approach reduces
the intra-cluster interference and, consequently, improves the
overall system SE while satisfying a required number of MSs
served in each service. Basically, the main contributions of
this paper are:

• Proposal of a framework for RRA in massive MIMO
systems that is divided into three parts: clustering,
grouping and scheduling. The clustering and grouping
steps aim at reducing the scheduling search space by
creating low-correlated clusters of MSs and, afterwards,
exploiting the channel hardening characteristic to gener-
ate a suitable set of SDMA groups that are going to be
used in the scheduling step. The scheduling step assigns
SUs to the SDMA groups generated in the previous step
aiming at maximizing a given objective;

• Mathematical formulation of the grouping problem aim-
ing at maximizing the throughput and satisfying QoS
constraints considering multiple SUs and reducing the
intra-cluster interference. Also, it uses only statistical
CSI and exploits the channel hardening effect;

• Adaptation of the problem from data rate maximization
considering QoS [9] to a massive MIMO scenario using
hybrid beamforming;

• Proposal of an efficient and low complexity solution for
the creation of SDMA groups considering the selection
ofmore than oneMS per cluster while reducing the intra-
cluster interference;

• Proposal of an efficient and low complexity solution
for the considered data rate maximization with QoS
guarantees and a hybrid beamforming massive MIMO;

• Calculation of the computational complexity of the
involved algorithms and their performance evaluation by
means of computational simulations.

In Section II, we describe the system model and define
the problem. Afterward, we propose a general framework to

solve it. In Section III, the step 1 of the framework (cluster-
ing procedure) and hybrid beamforming design are shown.
After that, Section IV presents the step 2 of the framework
(grouping procedure) considering multiple SUs, fairness, and
channel hardening, as well as its low complexity solution.
Section VI describes the step 3 of the framework (schedul-
ing procedure) and its low complexity solution. Section VII
shows the performance evaluation step by step of the pro-
posed framework in comparison with reference solutions.
Finally, in Section VIII we present our conclusions.

II. SYSTEM MODEL
We consider the downlink of a cellular multi-user MIMO
system based on Orthogonal Frequency Division Multiple
Access (OFDMA) composed of a BS serving a set J of MSs
randomly distributed within linearly spaced hotspots with a
determined radius, where |J | = J and |·| denotes the set
cardinality. As we are dealing with a multiservice scenario,
we assume that the number of services provided by the system
operator is S and that S is the set of all services. We consider
that the set ofMSs from service s ∈ S isJs and that Js = |Js|.
Note that

⋃
s∈S Js = J and

∑
s∈S Js = J . Moreover,

we consider that the BS is equipped with a Uniform Planar
Array (UPA) composed of Nt antenna elements.
The MSs are equipped with a single omnidirectional

antenna. Therefore, each Transmission Time Interval (TTI),
K out of the J MSs are selected to receive data at the same SU.
We also consider that the number of RF chains available at the
BS is equal to the number of scheduled MSs K . Moreover,
N is the set of available SUs and |N | = NSU. Before
transmission, for a given SU and TTI, the symbol xk to be
sent to MS k is prefiltered at the BS by the precoding vector
fk ∈ CNt×1. The filtered symbols are then transmitted through
the channel associated with the SU. Figure 1 illustrates the
considered system model.

The downlink channel vector between the BS and the MS
k is denoted by hk ∈ CNt×1, where this MS k belongs
to a given SDMA group. The coefficients in the channel
vector of a given SU refer to the middle subcarrier and the
first Orthogonal Frequency Division Multiplexing (OFDM)
symbol in a TTI, and these channel coefficients are assumed
to remain constant within a TTI. Thus, the prior-filtering
receive symbol yk at the k th selected MS is

yk = hTk fk
√
pk xk +

∑
i6=k i∈M

hTk fi
√
pi xi + zk , (1)

where pk is the power allocated to the k th MS; the second
term on the right-hand side of (1) represents the multi-user
interference, also known as intra-cell interference, generated
by the other K − 1 MSs sharing the same SU; and zk is the
additive Gaussian noise, which is Independent and Identically
Distributed (IID) as CN (0, σ 2), with standard deviation σ .

A. PROBLEM DEFINITION
Note that a smart design of precoders needs to be consid-
ered to avoid the degradation of system SE caused by the
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FIGURE 1. System model with massive MIMO system serving K MSs
distributed in a set of linearly spaced hotspots, these MSs are using one
of the different services provided by the system operator.

intra-cell interference. The creation of SDMA groups con-
taining spatially compatible MSs can avoid poor SE. In this
sense, the total number of possible groups assuming J single-
antenna MSs and Rf RF chains is given by [9]

min (Rf,J )∑
l=1

(
J
l

)
. (2)

The exhaustive search can be used to evaluate the best
SDMA group among all possibilities. However, this brute
force method leads to high computational costs. Therefore,
low-complexity solutions to obtain the SDMA groups are
required.

As previously mentioned in this work, we propose a gen-
eral framework for RRA inmassiveMIMO systems. The pro-
pose framework is divided into three parts and summarized
in Figure 2.

The first one, called clustering procedure, divides all MSs
into NC clusters, where each cluster contains MSs with simi-
lar spatial channel characteristics (correlated channels). This
step can make the grouping process easier since, in gen-
eral, MSs from different clusters will have spatially com-
patible channels. In this way, a grouping procedure is able
to reduce the search space of SDMA groups. However,
the resulting number of SDMA groups might still remain
impracticable. In the second part, called grouping procedure,
we select MSs from each cluster to form several SDMA
groups. Intelligent strategies to build spectral efficient SDMA
groups are employed here since the number of SDMA groups
should be limited in order to not increase the complexity
of the next step. Therefore, we build a total of Ng SDMA
groups according to a metric that will be defined in details
in Section IV, i.e., we drastically reduce the number of
candidate SDMA groups through clusterization and group-
ing procedures. Finally, in the third part called scheduling

FIGURE 2. Proposed framework composed of three steps: clustering,
grouping and scheduling.

procedure, we assign SUs to the SDMAs groups selected in
the second step aiming at optimizing a predefined objective.
Thus, we allocate SUs to those built SDMA groups aiming to
satisfy theQoS requirements andmaximizing the total system
data rate.

III. CLUSTERING PROBLEM
The goal in this first step is to find MS clusters based on
their channel characteristics. This classification is performed
based on the knowledge of the long term CSI, which is
represented by means of the covariance matrix

�j =
1
τ

τ∑
t=1

ht,jhHt,j, (3)

where ht,j ∈ CNt×1 is the channel vector of MS j at TTI t
and τ indicates the number of channel samples considered to
estimate the covariance matrix. The eigen decomposition of
the covariance matrix is expressed as

�j = Dj3jDH
j , (4)

whereDj ∈ CNt×Nt and3j ∈ CNt×Nt contain the eigenvectors
and the eigenvalues of �j, respectively. The BS calculates
the dominant eigenvector and eigenvalue of �j and this
information is used as input by a classification algorithm.2

Each cluster has a central characteristic,3 or centroid, defined
by ψ i ∈ CNt×1, where i is the cluster index. Specifically,
we adopt the K-means algorithm [8]. The algorithm selects
NC out of J MSs to randomly initialize the centroids. Then,
the cluster assignment is followed by a centroid update in
each iteration. In the cluster assignment step, each MS j ∈ J

2In the simulation presented in this article, we used (3) to estimate �j.
However, the estimation process and signaling schemes to make�j available
at the BS can be solved using prior art [8].

3The central characteristic of a cluster can be modeled as a matrix if the
number of chosen eigenvectors is larger than one.
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with dominant eigenvector dj is assigned to the cluster i based
on

argmin
i
‖dj − ψ i‖

2
2, (5)

where ‖·‖2 is the Euclidean norm.
Then, in the centroid update step, the BS computes new

values to ψ i as the mean of the eigenvectors dj of the MSs
belonging to that cluster. The algorithm performs the assign-
ment and centroid update steps until it reaches the conver-
gence. Afterwards, the algorithm outputs the MSs clusters.

One specific drawback of K-means is the determination of
the number of cluster, NC. This is an important problem in
clustering analysis since most clustering algorithms assume
knowing a priori the number of clusters NC. There is a variety
of clustering validation measures and methods in the liter-
ature for evaluating clustering algorithms and determining
the optimal number of clusters. In [23], the authors evaluate
and compare 30 proposed methods to determine the optimal
number of clusters. The silhouette index, proposed in [24],
shows how good each item (MSs, in our case) is classified.
However, although there are some works in the literature
that focus on the clustering algorithm design and, therefore,
on the optimum number of clusters, our work uses clustering
as part of a more complex framework. More specifically, our
focus lies on the scheduling and resource allocation, which is
performed after the clustering stage. Therefore, for the sake
of simplicity, we used the well-known K-means algorithm
to solve the clustering problem, which needs (as many other
clustering algorithms) as input the desired number of clusters
in advance.

It is important to notice that our proposed framework is
independent of the clustering algorithm since it only needs to
know the clusters and the MSs belonging to them. Therefore,
other clustering algorithms, besides K-means, can be used,
such as the agglomerative clustering [12] that determines the
number of clusters by either the average leakage level or the
target number of clusters.

IV. GROUPING PROBLEM
The clustering procedure of Section III reduces the number of
possible candidates SDMA groups, since selecting too many
MSs from the same cluster does not make sense as they have
correlated channels. However, the number of possible SDMA
groups still remains unpractical. Therefore, a solution for
further reducing the number of possible SDMAgroups is nec-
essary. In this section, we formulate a grouping problem that
deals with such a challenge. The goal consists of generating
Ng spatially compatible groups to maximize the sum-rate and
meet QoS constraints. Therefore, instead of the scheduling
step go through the whole search space to find the best SDMA
group per SU, the grouping step will reduce the number of
possible SDMA groups (Ng) that are pre-selected with the
objective of maximizing the sum rate.

Assuming that the inter-cluster interference is negligible
thanks to clustering and precoding, a grouping problem is
applied to each cluster separately where a set of MSs is

selected to form SDMA groups. In this selection process,
we choose spatially compatible MSs to keep the intra-cluster
interference at acceptable levels, if possible. One of the
advantages of the grouping step is to evaluate spatial compat-
ibility, without computing the precoding vectors as described
in Section III for all possible MSs groups. Moreover, our
grouping method exploits the channel hardening character-
istic which avoids the computation of SDMA groups for
each SU. Therefore, by exploiting channel hardening in the
massiveMIMO system, where the instantaneous channel gain
of eachMS can be approximated by its mean in the frequency
domain, we can reduce the complexity of this task [22].

A. GROUPING SOLUTION
Let us define the matrix D̂ ∈ CJc×Nt containing all MSs
dominant eigenmodes of a given cluster measured for the SU
in the center of the bandwidth (middle SU):

D̂ =
[
(d1λ1) (d2λ2) . . . (dJcλJc )

]T
=

[
d̂1 d̂2 . . . d̂Jc

]
. (6)

where λj is the highest eigenvalue obtained from 3j.
Consider a ∈ RJc×1 as the attenuation vector containing

the inverse of the dominant eigenmode (channel gain) for the
middle SU of all Jc MSs in a cluster. Then, we can express a
using D̂ as:

a =
[
‖d̂1‖−22 ‖d̂2‖

−2
2 . . . ‖d̂Jc‖

−2
2

]T
. (7)

Then using (6) and (7), we can write the spatial correlation
matrix C ∈ RJc×Jc as

C = |∗|
√
diag(a)D̂D̂H

√
diag(a). (8)

Therefore, using (8) and considering Ng as the number of
groups to be generated as output of the grouping step, we can
define the following block diagonal spatial correlation matrix
Ĉ ∈ RJcNg×JcNg as

Ĉ = INg ⊗ C, (9)

where IJc is the Jc×Jc identity matrix and⊗ is the kronecker
product.

Analogously, let us define the following attenuation vector
â ∈ RJcNg×1 as

â = 1Ng ⊗ a, (10)

where 1Ng is the Ng × 1 vector composed of 1’s and â is a
concatenation of attenuation vectors from all MSs of each
SDMA group. Therefore, the block diagonal spatial correla-
tion matrix Ĉ and the stacked vector of channel gains â refers
to Ng independent SDMA groups.
Consider the binary selection vector

u =
[
u1 u2 . . . uJc·Ng

]T
, (11)

which selects MSs of each SDMA group, where ui is equal to
1 when the k th MS of a given cluster belongs to SDMA group
gwith i = g ·Ng+k . We can formulate a convex combination
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TABLE 1. Description of main variables considered in the grouping part.

that takes into account both the total spatial correlation and
channel gains of all SDMA groups. Such a combination is
defined as

m(5̂) = (1− β)
uTĈu

‖Ĉ‖F
+ β

âTu
‖â‖F

, (12)

where 5̂ is the set of MSs belonging to a SDMA group, and
0 ≤ β ≤ 1 is a parameter to control the trade-off between
spatial correlation and channel gain. We also introduced the

normalization factors
1

‖Ĉ‖F
and

1
‖â‖F

to balance Ĉ and â,

i.e., to make the β parameter unbiased [7].
Let us define the matrix T ∈ {0, 1}Jc×JcNg as

T = 1TNg
⊗ IJc , (13)

where T is a matrix that we introduce to cope with fairness
constraints of the SDMA groups. Indeed each row of the
matrix T is associated to MS j and all SDMA groups, and
it will be used to guarantee that each MS will be present in at
least one of the Ng generated SDMA groups.

Let us define the following matrix Vi ∈ {0, 1}JcNg×JcNg

Vi = Gi ⊗ IJc , ∀i ∈ {1,Ng}, (14)

where Gi ∈ {0, 1}Ng×Ng is a diagonal matrix whose unique
non-zero element corresponds to the ith element in the main
diagonal and its value is 1; and Vi is a matrix introduced to
guarantee the MS diversity in the SDMA groups as it will be
explained later, which helps to satisfy the QoS requirements.
The description of variables considered in the grouping prob-
lem is shown in Table 1.

Using the definitions above, the multiple groups and
fairness optimization problem, which should be solved

separately for each cluster, can be formulated as

u? = argmin
u

{
(1− β)

uTĈu

‖Ĉ‖F
+ β

âTu
‖â‖F

}
(15a)

subject to: (INg ⊗ 1TJc )u = 1Ng J̄c, (15b)

T u ≥ 1Ngb∗c
Ng

Jc
, (15c)

1NgJc (Vi − Vg)u 6= 0, ∀i, g ∈ {1,Ng},

and ∀i 6= g, (15d)

u ∈ {0, 1}JcNg , (15e)

where u? is the solution containing the best Ng SDMA
groups containing J̄c MSs of a given cluster that have low
total spatial correlation and low total channel attenuation,
depending of the chosen β. Constraint (15b) ensures that
only J̄c MSs per group are selected, totalizing a number of
NgJ̄c MSs selected per cluster assuming all SDMA groups.
Constraint (15c) ensures that every MS is present in at least
b∗c

Ng
Jc

SDMA groups, i.e., we impose a fairness constraint
among MSs. Constraint (15d) ensures that we do not form
groups containing the sameMSs, i.e., we impose a variability
constraint among SDMA groups. The last constraint assures
that u is binary. Problem (15) can be solved by exhaustive
search, which consists by enumerating all the possible SDMA
group compositions and choosing the best one. However, this
method has impractical computational complexity. There-
fore, efficient suboptimal algorithms are required, as pre-
sented in the following.

B. PROPOSED ALGORITHM FOR GROUPING
The proposed low complexity solution for the grouping part is
presented in Algorithm 1. The main idea here is to select MSs
from each cluster to compose all Ng SDMA groups that will
be used in the scheduling part. In lines 7 to 13, the proposed
algorithm firstly selects an initial MS in order to calculate
the correlation metric m(g). The chosen MS is the one with
highest eigenmode gain. This selected MS will have a low
priority to be chosen as the initial MS of other SDMA groups
to fulfill constraint (15c). After that, in lines 14 to 18, the algo-
rithm employs a greedy search to find the MS which can
form a possible and different combination (constraint (15d))
that minimizes the metric m(g) when the MS is added to the
group. Thus, the metric is calculated for each MS that does
not belong to the SDMAgroup formed by the already selected
MSs of the cluster. Then, the same procedure is repeated
until J̄c MSs associated with each cluster are selected, as to
respect constraint (15b). In line 19, we remove the selected
combination from the set of all possible combinations. In
lines 20 to 24, if a given MS has already formed all of its
possible SDMA groups, then this MS cannot be chosen to
compose another SDMAgroup. These steps are repeated until
Ng groups are formed for each cluster. The pseudo-code of the
proposed algorithm is presented in Algorithm 1.

At this point, it is also important to present a computational
complexity analysis for the proposed algorithms. Therefore,
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Algorithm 1 Proposed Algorithm for Grouping
1: Define5c,g as the set of MSs from cluster c that belongs

to SDMA group g
2: for c = 1 to c = NC do
3: Define Jc as the set of MSs belonging to cluster c
4: Sort Jc in descending order of dominant eigenvalue
5: DefineA as the set with all possible combinations of
J̄c MSs taken from Jc F Constraint (15d)

6: for g = 1 until g = Ng do
7: 5̂ = ∅

8: Define u as the binary selection vector for group
g

9: u← 0Jc
10: j?← first element of Jc F Constraint (15c)
11: Put j? in the last position in the set Jc F

Constraint (15c)
12: ûj? ← 1
13: 5̂← {j?}
14: while 1TJcu 6= J̄c do F Constraints (15b)

15: j?← argmin
j

{
m(5̂)

}
,∀5̂ ⊆ A

16: ûj? ← 1
17: 5̂← 5̂ ∪ {j?}
18: end while
19: A← A \ {5̂}
20: for each MS j in 5̂ do
21: if j * A then
22: Jc← Jc \ {j}
23: end if
24: end for
25: 5c,g← 5̂

26: end for
27: end for
28: return 5

as in [9], we consider summations, multiplications, and com-
parisons as the most relevant and time-consuming operations.
We use the asymptotic notation O(·) to represent the worst
case computational complexity. Thus, in the following we
calculate the worst-case computational complexity of Algo-
rithm 1. It sorts the MSs within a cluster based on the domi-
nant eigenvalue. Note that, in the worst case a simple sorting
of the Jc MSs can have a complexity of O(Jc log(Jc)) per
cluster. Then, Algorithm 1 selects the first MS, i.e., the MS
with highest dominant eigenvalue. Note that,NCNg selections
are done. Then, the selected MS is excluded from the search
for the next MS to compose the SDMA group. If we need
to select more than one MS per cluster, i.e., if the number of
streams per cluster is greater than one, the algorithm chooses
another MS that minimizes the compatibility metric in (12).
The process is repeated until the number of MSs selected
per cluster is equal to the number of streams per cluster.
Based on this, the total number of comparisons considering
all the clusters and SDMA groups are NCNg

∑J̄c−1
i=0 (Jc − i).

Therefore, the algorithm worst case complexity is
O(NCNg(1+

∑J̄c−1
i=0 (Jc− i))), which is polynomial. Note that

this solution has a very low complexity compared to solvers
based on the well-known BB methods that have exponential
complexity [25].

V. HYBRID BEAMFORMING AND DATA RATE
To perform the scheduling part, we need to know how the
data rate are calculated and, in consequence, the hybrid beam-
forming scheme. Therefore, in this section, we present the
hybrid precoding scheme and the data rate calculation. We
assume that the BS already performed the clustering step
and built the SDMA groups. Consider a given SDMA group
g that is composed of Gg MSs and consider that J̄c is the
number of MSs from SDMA group g belonging to cluster c.
Then, let us define the matrix Ec ∈ CNt×Nt as the average of
the eigenvector matrices Dj (defined in (4)) belonging to the
cluster c, i.e.

Ec =
1
Jc

∑
j∈Jc

Dj (16)

where Jc is the set of MSs belonging to cluster c and
|Jc| = Jc. Thus, let us define Kc ∈ CNt×J̄c as the matrix
containing the J̄c strongest eigenvectors of matrix Ec for each
cluster c as

Kc =
[
ec,1 ec,2 . . . ec,J̄c

]
, (17)

where the vector ec,b is the bth strongest eigenvector from
matrix Ec of cluster c. Therefore, Kc contains the J̄c best
beams of the cluster c.
In the following, we present the computational complexity

analysis to obtain the J̄c strongest eigenvectors of the covari-
ance matrix. We are using the Singular Value Decomposition
(SVD) to decompose (4) and, according to [26], the compu-
tational complexity to compute the SVD of a m× n matrix is
O(m2n+ mn2 + n3). After that, we need to employ a sorting
algorithm in the eigenvalue matrix. In general, according to
[27], the worst-case computation complexity to sort a vector
of size m is O(m2). Substituting m and n by Nt, the computa-
tional complexity to obtain the strongest eigenvectors of aMS
is O(N 3

t ). Therefore, we perform those operations J̄c times to
obtain the J̄c strongest eigenvectors, which give us a worst
case computational complexity of O(J̄cN 3

t ).
Herein, the analog precoder FRF

g ∈ CNt×Gg from SDMA
group g is obtained using (17) for each cluster, and can be
written as

FRF
g =

[
K1 K2 . . . KNC

]
. (18)

The precoder (18) does not fulfill the constant amplitude
constraint of analog beamformers. However, it is possible to
implement such a precoder by combining two RF chains for
each MS stream, as discussed in [28]. According to [28], this
approach achieves the same performance of digital precoding
with the requirement that the number of RF chains should be
twice the number of spatial streams. There are other methods,
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such as those presented in [28] that enable the use of one
RF chain per stream up to a negligible performance loss. We
choose the simplest approach that consists in constructing the
analog beamforming using the phases of each entry in the
matrix defined in (18).

Let us define the group channel matrixHg ∈ CGg×Nt of the
MSs belonging to the SDMA group g as

Hg =
[
hζ1,g hζ2,g . . . hζGg,g

]T
, (19)

where ζk,g is the MS k of SDMA group g. The group chan-
nel matrix Hg and the group analog precoder FRF

g form the
equivalent channel matrix

H̄g = HgFRF
g ∈ CGg×Gg . (20)

To suppress the residual inter-cluster interference, we exploit
the digital beamformer, that is part of hybrid precoding, using
the Zero-Forcing (ZF) digital filter defined as [5]

FBB
g =

H̄H
g (H̄gH̄H

g )
−1

‖H̄H
g (H̄gH̄H

g )−1‖F
, (21)

where ‖ · ‖F represents the Frobenius norm.
The total power constraint is enforced by normalizing the

digital and analog filters, such that ‖FRF
g FBB

g
√
Pg‖2F = pSU,

where Pg ∈ RGg×Gg
+ is a diagonal power matrix with the

power allocated to each MS belonging to the SDMA group g
and pSU is the transmit power for a given SU.We consider that
the number ofMSs in the SDMAgroup is equal to the number
of streams. Finally,FRF

g andFBB
g can be combined to compose

the hybrid precoding matrix Fg = FRF
g FBB

g ∈ CNt×Gg .
The receive information vector ŷg ∈ CGg×1 of the SDMA

group is given by

ŷg = HgFg
√
Pg xg + zg, (22)

where xg ∈ CGg×1 is the group symbol vector and
zg ∈ CGg×1 is the group noise vector. The average Signal to
Interference-plus-Noise Ratio (SINR) perceived by a selected
MS i from group g can be calculated as

0i =
|qi,i|2∑

j6=i
|qi,j|2 + σ 2 , (23)

where qi,j is the element at the ith row and jth column of
Qg = HgF

√
Pg ∈ CGg×Gg and σ 2 is the noise power. The

data rate of MS i is calculated according to Shannon capacity
formula and is given by

Ri = B log2(1+ 0i), (24)

where B is the bandwidth of the SU.
Note that, when RRA is concerned, our presented scenario

has similar challenges to the conventional MIMO scheduling,
which is combinatorial. However, there are additional issues
in our scenario, such as the higher number of antennas and,
therefore, the number of multiplexed MSs, as well as the
assumption of hybrid beamforming. In this scenario, the data

rate of each MS thus depends on the employed analog and
digital precoders, which, in their turn, depends on the chosen
SDMA group and clusterization. So, there is a hard inter-
dependence of scheduling and hybrid beamforming. Conse-
quently, in order to find an optimal solution, it would be
necessary to use brute force enumeration to estimate the data
rate of each MS at each possible SDMA group, which is
impracticable for massive MIMO systems.

VI. SCHEDULING PROBLEM
This section presents the maximization of total data rate con-
sidering QoS and a multiservice scenario. This problem has
been already studied in [9] for a conventional MIMO system.
However, in [9], the authors optimize the system performance
by evaluating the possible transmit data rates considering
all possible combinations of SDMA groups, as shown in
(2), which is impracticable in real systems, especially with
massive MIMO.

A. OPTIMAL SOLUTION
Let us define some relevant variables. Assume that O ∈
{0, 1}Ng×NSU is an assignment matrix whose element og,n
assumes the value 1 if the SU n is assigned to the SDMA
group g and 0 otherwise. Let R ∈ RNg×J×NSU be a tensor
whose element rg,j,n is the system data rate of the MS j in SU
n if MS j belongs to SDMA group g and 0 otherwise. Let us
define the vector ρ ∈ {0, 1}J×1 as a binary selection vector
whose element ρj assumes the value 1 if MS j is selected
to be satisfied and 0 otherwise. The vector l ∈ RJ×1 is
defined as a vector whose element lj is the required data rate
necessary to satisfy MS j. Note that, as in [9], we map the
long-term data rate requirements as instantaneous data rate
requirements. The minimum satisfaction constraint for each
service is defined as a vector w ∈ ZS×1 whose element ws
is the minimum number of MSs from service s that should
be satisfied. Note that, we sequentially dispose the index of
MSs in rg,j,n and in lj according to the service, i.e, the MSs
j = Js−1 + 1 to j = Js are from service s, where Js is the
number of MSs from service s. The description of variables
considered in the scheduling problem is shown in Table 2.

According to the previous considerations, the resource
assignment problem can be formulated as the following opti-
mization problem:

max
x,ρ

∑
g∈G

∑
n∈N

∑
j∈J

og,nrg,j,n

 , (25a)

subject to:
∑
g∈G

og,n = 1,∀n ∈ N , (25b)

∑
g∈G

∑
n∈N

og,n rg,j,n ≥ ρj lj,∀j ∈ J , (25c)

∑
j∈Js

ρj ≥ ws,∀s ∈ S, (25d)

og,n ∈ {0, 1},∀g ∈ G and ∀n ∈ N , (25e)

ρj ∈ {0, 1},∀j ∈ J . (25f)
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TABLE 2. Description of main variables considered in the scheduling part.

The objective function shown in (25a) is the maximization
of the total downlink data rate transmitted by the BS. The first
constraint (25b) assures that an SU will not be shared by dif-
ferent SDMA groups. Constraints (25c) and (25d) state that a
minimum number ofMSs should be satisfied for each service.
Problem (25) is a combinatorial optimization problem with
linear constraints (25d). Hence depending on the problem
dimension, its optimal solution has prohibitive computational
complexity [9].

In order to write this problem in a compact form we will
represent the problem variables and inputs in vector and
matrix forms. Thus, let us define the matrix R̃ ∈ ZJ×NgNSU

as follows

R̃ =


r1,1,1 r2,1,1 . . . rNg,1,1 r1,1,2 . . . rNg,1,NSU

r1,2,1 r2,2,1 . . . rNg,2,1 r1,2,2 . . . rNg,2,NSU
...

...
. . .

...
...

. . .
...

r1,J ,1 r2,J ,1 . . . rNg,J ,1 r1,J ,2 . . . rNg,J ,NSU

 .
Therefore, we can rewrite problem (25) as

max
O,ρ

(
1TJ R̃ vec(O)

)
, (26a)

subject to: (1TNg
⊗ INSU ) vec(O) = 1NSU , (26b)

R̃ vec(O) ≥ diag(l) ρ, (26c)

(1Js ⊗ IS )Tρ ≥ w, (26d)

O ∈ {0, 1}Ng×NSU , (26e)

ρ ∈ {0, 1}J , (26f)

where the operator vec (·) maps a matrix to a vector by
stacking its columns on top of each other and returns a
column vector. Therefore, the original problem is recasted as
a standard Integer Linear Problem (ILP) and can be solved
using BB methods.

In the following, we calculate the worst-case computa-
tional complexity to obtain the optimal solution of problem
(26). For an arbitrary number of integer variables υ, the num-
ber of linear programming subproblems to be solved is at

least (
√
2)υ [25]. Since in problem (26) there are NgNSU + J

integer variables andNSU+J+S constraints, and by retaining
only the high order operations, the worst-case computational
complexity for problem (26) is O

(√
2
(NgNSU+J )

)
. Motivated

by this exponential computational complexity, we present in
the next section a low-complexity suboptimal solution.

B. LOW COMPLEXITY SOLUTION
We propose a low complexity heuristic algorithm for the
scheduling, which is divided into two parts: unconstrained
maximization and reallocation. The unconstrainedmaximiza-
tion part is responsible for allocating the SUs into groups
to maximize the throughput without taking into account the
QoS constraints. The reallocation part is responsible for
distributing the SUs that have been assigned in the previ-
ous part to another group to satisfy the QoS constraints.
Flowcharts describing unconstrained maximization and real-
location parts are shown in Figures 3 and 4, respectively.

Before initializing our proposed algorithm, we consider
that the achievable data rates of all MSs on all resources
when belonging to any SDMA group formed by the grouping
problem (15) are known. One way to do this is by calculating
the precoders (as explained in Section V), then the SINR
and the capacity according to (24). In the unconstrained
maximization part, the basic idea is to have a good initial
solution that gives us a capacity upper bound. Firstly, in step
1, we define the set of available MSs composed of all MSs
that is used along the algorithm. In step 2, we assign the SUs
to the SDMA groups with the highest data rate (maximum
rate allocation). After that, we define a set with the MSs
that have fulfilled their data rate requirements and another
set with the ones that are still unsatisfied. If the minimum
number of satisfiedMSs for all services is fulfilled (according
to the constraint (25d)), we have found the optimum solution
to problem (25). However, in general, only a few groups
get assigned most of the SUs due to the unfairness of the
employed assignment.

In case the satisfaction constraint for any service is not
fulfilled, a MS of the available MS set will be disregarded.
By disregarding a MS, we mean it will not contribute to the
reallocation metric (28) at the current TTI, i.e., the algorithm
will not try to satisfy this MS. The criterion to select the MS
j? to be disregarded is given by

j? = argmin
j∈J

(∑
g∈G

∑
n∈N

0g,j,n

κj · NSU

)
lj

, (27)

where 0g,j,n is the SINR of the MS j in SU n belonging to
the SDMA group g, κj is the number of SDMA groups that
MS j belongs to and NSU is the number of available SUs. The
adopted criterion to disregard a MS is quite reasonable: we
disregard the MS that requires, on average, more SUs to be
satisfied. The selectedMS is taken out of the availableMS set.
After that, if the SDMA groups that contain the MS j? have
only disregardedMSs, then these groups are also disregarded.
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The next step is to check whether the service of the MS j?,
chosen using (27), can have another MS disregarded without
infringing the minimum number of MSs necessary to satisfy
the QoS constraint (25d). If so, we perform the maximum rate
allocation considering the remaining SDMA groups. Other-
wise, no MSs from this service will be disregarded anymore
and all theMSs from this service are taken out of the available
MS set. This procedure is repeated until we find a feasible
solution, or no MS can be disregarded anymore.

Finally, we check if at least one MS is satisfied. If so,
we define the receiver set R and available resource set
D. The receiver set is composed of the unsatisfied MSs,
which have to receive SUs from the donors to satisfy their
data rate requirements, where the donors are the satisfied
MSs, which can donate/share SUs to/with unsatisfied MSs.
Finally, the available resource set is composed of all SUs
that are assigned to MSs of the donors, and which can be
donated/shared to/with MSs of the receiver set. In case there
is no satisfied MS after executing the first part, the proposed
algorithm is not able to find a feasible solution, i.e., the
algorithm is not able to satisfy the constraints of problem (25).

As the unconstrained maximization part does not deal with
QoS guarantees, it is necessary to reallocate the SUs that were
previously allocated in order to satisfy the QoS requirements.
Therefore, in the reallocation part, we exchange SUs among
SDMAgroups, changing the initial allocation provided by the
unconstrained maximization part, to satisfy the MSs from the
receiver set.

We start by creating the setG that is composed of all SDMA
groups that contain the MS j?, which is the most difficult
MS to be satisfied from receiver set R. This MS can be
found according to (27). The main motivation for choosing
the most difficult MS to be served firstly is to assign the
minimum number of SUs to satisfy theMSs in an unfavorable
situation and assign the remaining SUs to MSs with better
channel conditions. After that, we must identify the SDMA
groups and SU pairs that are candidate to be chosen in the
reallocation procedure. Therefore, the next step is to calculate
the number of MSs that each pair of SDMA group from G
and available SU from D can satisfy. Then, we can compose
the set F containing the pairs of G and D that maximize the
number of satisfied MSs.

The next step is to define a metric to reallocate an SU to
the SDMA group that leads the receivers (R) to satisfaction,
while not causing a high SE loss. This can be achieved by the
following metric

ϕg,n =


∑
j∈Rj?

|lj − (l̂j + rg,j,n − rg′,j,n)|∑
j∈Rj?

|lj − l̂j|

 8cur

8new
g,n · πg

, (28)

where Rj? is the set of receivers that belong to the SDMA
group g of the chosen MS j?, l̂j consists in the required data
rate of MS j according to the current resource assignment,
8cur is the sum of the data rate achieved by all User Equip-
ments (UEs) in all Resource Block (RB) according to the

FIGURE 3. Unconstrained maximization part.

current resource assignment, 8new
g,n is the sum of the data rate

when the SDMA group g receives via reallocation the SU
n without modifying the assignment on the other SUs, and
πg is the number of receivers in SDMA group g. This is an
adaptation of the reallocation metric used in [9].

We consider that g′ is the SDMA group that was chosen to
SU n in the first part of the proposed solution (unconstrained
maximization). Also, rg′,j,n is the data rate of MS j on SU
n when present in SDMA group g′. Note that 8new

g,n ≤ 8
cur

since we begin with the maximum rate solution in the uncon-
strained maximization part of our solution and to satisfy
MSs we lose spectral efficiency. The SDMA group and SU
chosen in the reallocation part are those that minimize the
reallocation metric (28).

The next step is to check whether the reallocation would
lead any MS from the donor SDMA group to become unsat-
isfied. If so, the reallocation is not performed, and the chosen
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TABLE 3. Description of main variables considered in the low complexity
solution.

SU is removed from the available SU set and cannot be cho-
sen anymore. Otherwise, the reallocation is performed, and
the MSs’ data rates are updated. Then, the algorithm checks
whether any receiver has become satisfied after reallocation.
If so, theseMSs are taken out from the receiver set. After that,
the SU that was assigned to a new SDMA group is removed
from the available SU set. Then, it is checked whether the
MSs of all services became satisfied. If so, the algorithm ends,
and a feasible solution is found. Otherwise, the reallocation
process should continue. An outage event happens when
still exist MSs in the receiver set, and there is no SU for
reallocation. The variables used in the algorithms are those
already presented in Table 2 and the remaining variables are
defined in Table 3.
In the following, we present the computational complexity

analysis of the proposed algorithm. Part 1 of the proposed
solution in Figure 3 is clearly dominated by the maximum
rate allocation which needs NSUNg comparisons. Part 2 is
dominated by the calculation of the reallocation metric in
(28), which is calculated for every available SU and group.
This is repeated until the SU set becomes empty. Therefore,
as the reallocation metric needs to be calculated for each
available SU andMS, the worst-case computational complex-
ity is O(NSUNg + N 2

SU Ng). Thus, by retaining only the high
order operations, the worst-case computational complexity
is O(N 2

SU Ng).

VII. PERFORMANCE EVALUATION
In this section, we evaluate the framework proposed step
by step. In Section VII-A we evaluate the step 1 using
the K-means algorithm. In Section VII-B we evaluate the
step 2 comparing the Proposed Grouping (G-PROP) algo-
rithm against the Optimal Grouping (G-OPT) solution, con-
sidering that the K-means algorithm was utilized in step
1. In Section VII-C we evaluate the step 3 comparing
the Proposed Scheduling (S-PROP) algorithm proposed in

FIGURE 4. Reallocation part.

Section VI-B against the Optimal Scheduling (S-OPT) solu-
tion obtained using the CPLEX solver [29] and an adap-
tation of the JSM algorithm [21]. The JSM algorithm [21]
determines the MSs’ priority using the derivative of a sig-
moidal function. Since the JSM solution needs to estimate the
instantaneous data rate, we estimate it by using the dominant
eigenvalue and eigenvector that are the CSI available for the
others algorithms. Furthermore, in order to deal with the
interference among clusters and keep fairness when com-
paring with our proposed framework, the JSM algorithm is
employed after step 1.

The simulation scenario consists in a Urban Micro (UMi)
Line Of Sight (LOS) [30] single cell system with an 8 × 8
UPA (Nt = 64). We also assume that the system works with
a bandwidth of 100 MHz, a frequency of 28 GHz and that
the MSs are equipped with a single-antenna. Based on [31,
Table 2], we generate a set of 125 SUs, each composed of
12 equally spaced subcarriers of 60 kHz. Moreover, each
frame has 10 subframes carrying 14 symbols each and the
TTI duration is 0.25 ms. The considered channel model is the
3-dimensional Quasi Deterministic Radio Channel Generator
(QuaDRiGa) [30]. We consider that a set of 40MSs is equally
divided into two groups (forming two circular hotspots) with
15 m of radius. The MSs are uniformly disposed inside
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TABLE 4. Simulation parameters.

hotspots, which are linearly distributed in a 60◦ cell sector.4

The total power is fixed and Equal Power Allocation (EPA)
among SUs and among spatial subchannels is employed.
Since we are using hybrid precoding, as many other works in
literature [16]–[18], [20], [32], we are considering the number
of available RF chains as at most 10% of the number of
BS antennas. Also, we are considering that the BS serves
2 or 3MSs per SU and cluster. Therefore, the BS can simulta-
neously serve more than 100MSs since we are considering in
our simulations 2 clusters and 25 SUs. Furthermore, the num-
ber of simulated MSs is limited by the complexity to obtain
the optimal solution that has an exponential computational
complexity. Other relevant simulation parameters are listed
in Table 4.

A. K-MEANS ALGORITHM EVALUATION (STEP 1)
In Figure 5 we evaluate the effectiveness of the employed
clustering (step 1 of the proposed framework) in the proposed
scenario with two hotspots. Let us clarify the difference
between the terms hotspot and group of MSs, a hotspot is a
group ofMS in a confined area, and the cluster is the grouping
done by the clustering step, which can even select MSs of
different hotspots. For this analysis, basically, we increase the
angle between the line segments from the BS to the center
of the two hotspots. With this, the channel among MSs of
different hotspots tends to be more uncorrelated. As the angle
increases, we expect that the probability of the clustering
algorithm to group MSs of different hotspots decreases. We
define the expected clustering difference as the probability
of clustering together MSs that do not belong to the same
hotspot. Focusing on performance, we can see that as the
angle between hotspots increases, the formed clusters get
more and more close to the given physical clusters (hotspots).

In Figure 6 we evaluate the step 1 (clustering step) of our
algorithm by means of the mean-squared error between the
centroids formed in each iteration and those formed when the
stop criteria is met (clusters do not change or a maximum

4Note that, a UPA with 64 antenna elements radiating with the 3rd Gen-
eration Partnership Project (3GPP) antenna model has an effective coverage
of a 60◦ sector.

FIGURE 5. Expected clustering difference of K-means clustering for
different clusters dispositions.

FIGURE 6. Convergence of K-means clustering.

number of iterations). We can see that the mean-squared error
decays very fast over the iterations and converge in 8 itera-
tions. This happens because theMSs are already disposed in a
defined number of hotspots and an angle of 15◦ was assumed
between clusters, which helps the algorithm to converge.
Therefore, from the analyses provided in this subsection,
the K-means algorithm can reach a good clusterization with
a small number of iterations in the considered scenarios.

B. GROUPING ALGORITHM EVALUATION (STEP 2)
In this section we evaluate the step 2 (grouping step) in terms
of the system capacity. The capacity is the cell capacity at
the 50th percentile of the Cumulative Distribution Function
(CDF). After this step, the SUs are allocated to the SDMA
groups aiming at maximizing the system capacity. For the
sake of comparison, we implemented the optimal SDMA
grouping solution (G-OPT), that is obtained by enumerating
all the possible SDMA group compositions and choosing the
best one for each SU. Note that, due to the complexity to
obtain the optimum solution, we had to reduce the number of
SDMA groups of the problem. For this reason, we decided
to reduce the number of MSs per cluster. For example,
considering 20 MSs in each cluster, 2 clusters and 2 MS
served per cluster, the number of possible SDMA groups is
36, 100, which is impracticable.Motivated by this, the perfor-
mance analysis of the G-PROP against the G-OPT considers a
reduced scenario with 2 clusters each one containing 10MSs.
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FIGURE 7. System capacity of G-PROP and OPT solutions for a scenario
considering 2 MSs selected per cluster and different number of SDMA
groups.

In Figure 7, we evaluate the step 2 (grouping step) in terms
of total system capacity for the G-OPT and G-OPT solutions
for a scenario considering 2MSs selected per cluster when the
number of SDMAgroupsNg varies. Aswe can see, the impact
of β on the system performance decreases as the number
of SDMA groups Ng increases. This behavior happens due
to the fairness constraint 25d, which avoids aiming only at
maximizing the system capacity, i.e., the algorithm tries to
select SDMA groups that include in a balanced way all MSs
and not only groups that maximize the SE. Focusing on
performance, selecting the best β of each curve, the G-PROP
algorithm compared with the optimal solution has a loss of
21%, 8% and 6% for Ng = 1, Ng = 10 and Ng = 40,
respectively.

In Figure 8, we evaluate the step 2 (grouping step) in
terms of total system capacity for the G-PROP and G-OPT
for a scenario considering 3 MSs selected per cluster when
the number of SDMA groups Ng varies. Note that, as we
increased the number of MSs selected per cluster, the setting
of β parameter should be performed more carefully than
in the previous scenario (considering 2 MSs selected per
cluster). Therefore, differently of Figure 7, the impact of β
on the system performance can be seen even considering
40 SDMA groups. Focusing on performance, selecting the
best β of each curve, the G-PROP algorithm compared with
the G-OPT solution has a loss of 51%, 20% and 14% for
Ng = 1, Ng = 10 and Ng = 40, respectively. The reason
for the increase in the performance gap between solutions is
the increase in the complexity (search space) of the problem,
since the search space grows combinatorially with the number
of selected MSs per cluster.

The total number of possible SDMA groups evaluated by
G-OPT solution are 2, 025 and 14, 400 for the scenarios
considering 10 MSs in each cluster serving 2 and 3 MSs
per cluster, respectively. Therefore, from the analyses of
the results, the G-PROP algorithm achieves good perfor-
mance even when a very small percentage of the possible
SDMA compositions is considered. Furthermore, as shown in
Section IV-B, the computational complexity of the G-PROP
suboptimal algorithm is polynomial and much lower than that

FIGURE 8. System capacity of G-PROP and G-OPT solutions for a scenario
considering 3 MSs selected per cluster and different number of SDMA
groups.

of the G-OPT solution, thus offering a good performance-
complexity trade-off.

C. SCHEDULING ALGORITHM EVALUATION (STEP 3)
In this section we evaluate the proposed step 3 (scheduling
step) considering 40 MSs in the system, 2 clusters, 2 MSs
selected per cluster, and 25 available SUs which makes pos-
sible to serve all 40 MSs simultaneously. Note that, the total
number of scheduled MSs in an SU (4 in this section) is
limited by the number of available RF chains. In all figures of
this section, the β parameter in (12) varies from 0 to 1. We
consider three performancemetrics: the total system capacity,
the outage rate and the average number of satisfiedMSs. Note
that, only solutions that are feasible for all β are utilized. An
outage event happens when the problem constraints cannot
be fulfilled by the algorithm. Note that, the problem itself
can be infeasible, depending on the MSs’ positions, channel
gains, and data rate requirements. Thus, we can define the
outage rate as the ratio between the number of outage events
and the total number of simulation rounds. Therefore, this
performance metric represents if the algorithms are capable
of finding a feasible solution to the studied problem. The
third and final metric is the ratio between the total number
of satisfied MSs and the total number of MSs in the system.

In Figure 9, we evaluate the step 3 (scheduling step) in
terms of outage rate and the total system capacity for the
S-PROP, JSM and S-OPT solutions when the number of
groupsNg varies. As we can see, the selection of β impacts on
the system performance achieving different system capacity
and outage values as β varies. For example, we can see
that the lowest outage rate can be achieved with β = 0
(selection of MSs with lowest channel correlation within a
cluster). This behavior occurs for the rest of the figures in
this section. According to this, the spatial correlation cannot
be neglected, e.g., β = 1, since this increases the intra-
cluster interference. However, this figure also shows that
the best system outage and capacity are achieved for values
of β = 0 and β = 0.5, respectively, showing that both
channel correlation and channel gain should be carefully
taken into account, depending on the performance objectives
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FIGURE 9. System outage and capacity of our proposed and OPT
solutions for a scenario considering 2 MSs selected per cluster,
requirement of 5 Mbps per MS, requirements of 100% of satisfied MSs
and different number of SDMA groups.

of the system. Moreover, the performance loss of the JSM
algorithm in comparison with other solutions is due to the fact
that this solution does not take into account the intra-cluster
interference. This behavior occurs for the rest of the figures in
this section.

As we can see in Figure 9(a), it is possible to reduce the
outage rate by increasing the number of candidate SDMA
groups. Focusing on the relative performance among algo-
rithms we can see that, when the β parameter is close to 0,
the S-PROP algorithm performs near optimally for 50 and 60
groups, while a higher performance loss can be seen for 40
SDMA groups. Therefore, depending on the number Ng of
SDMA groups, the grouping procedure can return a solution
where the constraint (25d) might be unfeasible or hard to be
solved, i.e., as the number of SDMAgroups increases theQoS
constraints become easier to be fulfilled. However, to increase
the number of SDMA groups, it is necessary to build more
SDMA groups in the grouping procedure, that in its turn
leads to an increase in the search space for the scheduling
step and, consequently, the complexity of both procedures
increases. Thus, as the number of SDMA groups increases,
a trade-off between complexity and performance takes place.
Another observation is that we consider only a small fraction
of the total number of possible SDMA groups, which for the
considered scenario is 91, 390, according to (2). Therefore,
it is unpractical to solve the problem considering all possible
SDMA groups.

Analyzing Figure 9(b), we can see that the capacity is
almost unchanged and does not depend on the number of
SDMA groups, i.e., the increase of Ng has more impact on
the outage than on the capacity. This can be justified due
to the grouping metric (15a), which tries to create SDMA
groups that maximize capacity. Due to that, the capacity for
the feasible solutions has a similar behavior. Focusing on
the relative performance among algorithms, the S-PROP and
JSM algorithms have a loss of 10% and 20%, respectively,
in comparison to the S-OPT solution.

In Figure 10, we evaluate the step 3 (scheduling step)
in terms of outage rate for the S-PROP, JSM, and S-OPT
solutions and the average number of satisfied MSs for the
S-PROP solution when the required data rate (lj) varies
from 5 to 6 Mbps. As we can see in Figure 10(a), the out-
age rate increases when the required data rate per MSs
increases. Focusing on the relative performance among algo-
rithms, the S-PROP algorithm performs near optimally for the
requirement of 5 Mbps, and a performance loss is noted for a
requirement of 6 Mbps.

In the next analyses, we evaluate the performance of the
S-PROP algorithm in scenarios which do not have a feasible
solution, or it is hard to obtain a feasible solution. We denote
this case as ‘‘unf.’’. An unfeasible solution happens when
the analyzed algorithm is not able to find a solution that
satisfies all the constraints of problem (25). Note that, it is
interesting to analyze this scenario since an important feature
that a QoS constrained RRA algorithm should seek is to
provide a good result within the presented circumstances.
This ‘‘unf.’’ case is compared against the scenario consid-
ering all the simulation rounds. Therefore, as we can see
in Figure 10(b), even when the S-PROP algorithm is not able
to find a solution, it provides a result that satisfies a good
number of MSs. Focusing on performance, the average per-
centage of satisfied MSs is almost 100% for a requirement of
5 Mbps and 98% for a requirement of 6 Mbps considering all
simulation rounds. When only unfeasible simulation rounds
are considered, the S-PROP algorithm satisfies in average
92% of the MSs for β = 0, which is reasonable considering
the hard nature of the scenario. This happens due to step 3 of
part 2 of the proposed RRA algorithm in Figure 4, wherein
at each iteration the algorithm tries to satisfy with only one
SU reallocation a high number of unsatisfiedMSs. Therefore,
although in Figure 10(a) we can see a high outage rate when
the required data rate is 6Mbps, most of theMSs are satisfied.
Thus, a way to deal with these unsatisfied MSs is to satisfy
them in the upcoming TTIs, i.e., the MSs can receive a prior-
ity inversely proportional to the data rate obtained until now.
Note that, we do not present results for the S-OPT solution
regarding the percentage of satisfied MS since the solver
only returns a valid solution when the problem is feasible.
Therefore, the average percentage of satisfied MSs cannot be
analyzed to the S-OPT algorithm. In Figure 10(a) we can see
an outage of approximately 0%whenwe consider the require-
ments of 5Mbps, therefore, the number of simulations rounds
containing only unfeasible solutions is very low (close to 0).
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FIGURE 10. System outage and satisfaction of our proposed and OPT
solutions for a scenario considering 2 MSs selected per cluster, Ng = 60,
requirement of 100% of satisfied MSs and different data rate
requirements.

Thus an analysis containing only unfeasible solutions cannot
be performed for those requirements. Moreover, we skip the
analysis of the average percentage of satisfied MSs to the
JSM algorithm since it has a higher loss in outage rate in
comparison to our proposed algorithm.

In Figure 11, we evaluate the step 3 (scheduling step)
in terms of outage rate for the S-OPT, JSM, and S-OPT
solutions and the percentage of satisfied MSs for the S-PROP
solution when the number of satisfiedMSs per service varies.
As we can see in Figure 11(a), the outage rate increases with
the number of MSs that need to be satisfied. Note that the
gap among S-PROP, JSM, and S-OPT solutions is reduced
when the number of required satisfied MSs decreases. This
behavior is similar to that one seen in Figure 10(a) when the
required data rate decreases. Focusing on the relative perfor-
mance among algorithms, when β is close to 0, the S-PROP
and JSM solutions present a higher performance loss. How-
ever, despite this higher loss in Figure 11(a), we will see in
the sequel that the S-PROP solution is capable of satisfying,
on average, almost the target satisfaction percentage.

In Figure 11(b) we present the percentage of satisfied
MSs for the scenarios in Figure 11(a) that presented higher
performance losses. As in Figure 10, we consider both the
case where all simulation rounds are considered and the
case where only unfeasible rounds are taken into account,
i.e., unf. In both cases, we can see that the S-PROP solution

FIGURE 11. System outage and satisfaction of our proposed and OPT
solutions for a scenario considering 2 MSs selected per cluster, Ng = 60,
requirement of 6 Mbps per MS and different number of satisfied MSs
per service.

can satisfy almost the required satisfaction target (95% and
100%). In Figure 11(b), when we aim to satisfy 100% and
95% of the MSs, the S-PROP solution is capable of satisfying
98% and 94% of them considering the optimal β value and
all simulation rounds. First of all, it is important to clarify
the meaning of the outage rate. The outage rate, as already
defined previously, consists in the percentage of the simula-
tion rounds in which an algorithm is not able to satisfy the
problem constraints, namely, data rate guarantees for MSs
andminimum number of satisfiedMSs. Consider for example
that in a given simulation round, our proposed solution satis-
fied 95% of MSs but the requirement was to satisfy 100% of
them. This simulation round is considered as an outage. In
this sense, an outage rate of 15% for a solution means that
this solution was not able to satisfy the problem constraints
in 15% of the simulation rounds. However, the outage rate
does not provide information on how close the algorithm
was to meet the required number of satisfied MSs in the
simulation rounds that were in outage. This is our idea with
the plots with the percentage of satisfied MSs. We plot the
percentage of satisfied MSs assuming two cases: considering
the average over all simulation rounds (with and without
outage) and assuming only the simulation rounds in outage
(unf. in the plots). Even if the outage rate is relatively high,
e.g., 15%, the percentage of satisfied MSs can be close to the
target. This result indicates that even in outage events, our
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proposed solution manages to satisfy a high number of MSs
that is just below the target. Considering only the unfeasible
simulation rounds, we can see that the gap between the target
and obtained satisfaction is reduced when the number of
required satisfied MSs decreases. As explained before, a way
to deal with these unsatisfiedMSs is to satisfy them in the next
TTIs. We did not simulate this priority mechanism, letting it
for future works.

In summary, from the analyses of the results, the proposed
S-PROP algorithm achieves good performance compared to
the S-OPT solution considering the problem objective and
constraints. As shown in Section VI, the computational com-
plexity of the S-PROP suboptimal algorithm is polynomial
and much lower than that of the S-OPT solution, thus offering
a good performance-complexity trade-off.

VIII. CONCLUSION
In this study, we proposed and evaluated a framework for
resource allocation for hybrid precoding massive MIMO
communication systems that consists of three parts. First,
the MSs were partitioned into clusters containing spatially
correlated MSs using the K-means clustering algorithm. The
analog part of the hybrid precoder is obtained from the cluster
centroids. In this case, it was necessary to consider a low
complexity metric to find suitable MSs from each cluster to
allocate them to SUs while avoiding the computation of the
digital precoders for every possible candidate group of MSs.
Secondly, an optimization problem was formulated using a
spatial compatibility metric to build SDMAgroups. The solu-
tion to this problem generates a set of SDMA groups suitable
for all SUs exploiting the channel hardening characteristic.
Finally, it was necessary to allocate the SUs to SDMA groups
to meet QoS requirements while maximizing the data rate.
Moreover, a suboptimal algorithm was proposed to solve the
scheduling part, and it was compared against the optimal
solution.

Simulation results showed that our proposed framework
presented a good performance especially in low and mod-
erated system loads. In high loads, even when the proposed
algorithm was not able to find a feasible solution, it provided
good results in terms of MS satisfaction. We also show that a
suitable trade-off between the spatial channel correlation and
channel gain should be chosen to improve the system perfor-
mance. Also, there may have an optimum trade-off to the out-
age rate and another to capacity, i.e., this choice depends on
the system objective. Moreover, the spatial compatibility and
channel hardening characteristics can be exploited to reduce
drastically the possible number of SDMA groups that need to
be built in a system. Furthermore, the proposed suboptimal
solution presented a good performance-complexity trade-off.
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