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ABSTRACT In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-
to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking
ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves
several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar
spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is per-
formed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based
classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of
each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced
to select the unlabeled samples with representativeness and informativeness advantages by employing the
BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled
class labels are put into the training set to retrain the classifier. Experimental results manifest that the
proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy
in few labor costs. Thus, it has certain feasibility in practical application.

INDEX TERMS Hyperspectral imagery, active learning, structure density, breaking ties, sampling criterion.

I. INTRODUCTION
With the advance of spectroscopy sensor technology, hyper-
spectral image (HSI) with high spectral dimensionality and
spatial resolution has been constantly becoming more avail-
able. Considering the abundance of spatial and spectral
information, numerous classification algorithms exploiting
remote sensing images have played a primary role in a vari-
ety of applications, such as precision agriculture [1], [2],
environmental monitoring [3], land cover [4], and urban
expansion [5].

For HSI classification [6]–[9], traditional supervised
classifiers such as kernel-based techniques [10]–[12], sparse
representation [13]–[15], genetic algorithm [16], support vec-
tor machines (SVMs) [17], neural networks [18]–[20], and
Bayesian estimation method [21] have given evidence of
rock-solid properties in aspects of high classification accu-
racies. However, when the number of labeled samples is
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limited, most of the classifiers mentioned above cannot
achieve a well-pleasing classification performance due to
the constraints of sample conditions. Basically, there is a
challenging task that obtaining the labeled samples of land
cover classification is costly and time-consuming in prac-
tical applications as some districts may be relatively inac-
cessible. Meanwhile, a larger number of unlabeled samples
with rich feature information did not play its role improving
performance of classifier in supervised learning. In order
to overcome the problem, many scholars and researchers in
hyperspectral domain are willing to devote oneself to study
advanced machine learning and classification methods, such
as semi-supervised learning (SSL) [22], active learning (AL)
[23], [24], semi-supervised active learning (SSAL) [25]–[28],
and spectral-spatial classification [29]–[32].

The focus of AL is that try to conquer the labeling
choke point by asking queries in the form of unlabeled
samples to be annotated by an oracle [33]. In particular,
AL is successfully applied to deal with classification prob-
lem in the HSI applications as a new machine learning
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method [34], [35], its main goal is to effectively find high-
information samples in the unlabeled sample dataset and
then retrain the pixelwise classifier efficiently by iteratively
expanding the labeled samples with an iterative manual label-
ing processing. By choosing unlabeled samples in a smart
active query strategy, the amount of initial labeled sam-
ples (training samples) required for training a robust clas-
sifier can be observably reduced, consequently, lessening
the labeling costs and time [36]. For instance, Rajan et al.
introduced active learning technological means to classify
hyperspectral data [34]. Di et al. proposed anALmethodwith
multi-view adaptive inconsistent and conducted an in-depth
study on view generation [37]. Sun et al. investigated AL
method with Gaussian process classifier for the HSI clas-
sification [38]. In general, compared with traditional HSI
classifiers, the above method has the unique advantages of
automatically selecting unlabeled samples under the condi-
tion of labeled samples, and has strong discriminative ability
and higher classification accuracy.

In addition to research on how to solve the HSI classi-
fication with AL, another popular research topic for robust
sampling criterion of AL is how to get the utmost out of
the informativeness information of unlabeled samples to find
the samples enhancing the generalization ability of the model
and further improve the classification accuracy. Specifically,
uncertainty sampling is widely used as a simplest and most
currently employed query framework for a probabilistic clas-
sifier inAL [39]. In uncertainty sampling framework, the con-
cern of an active learner is how to label the unlabeled samples
about which it is least certain. Recently, the some uncertainty
sampling criterion are concerned and introduced into AL
methods, such as mutual information (MI) [40], breaking ties
(BT) [41], and modified breaking ties (MBT) [42]. As the
Fig.1 seen, above three sampling criterion and SD sampling
criterion have been graphical description with a toy example.
1) Due to the MI criterion focuses on the most complex area,
the sample selected by MI criterion lies in the boundary of
the four regions. But it is easy to generate bias sampling
[40]. 2) The samples which come from the boundary of
the two regions or four regions have been selected by BT
criterion. Because the BT criterion aims to correct aforemen-
tioned disadvantage of the BT sampling tactics, by adding the
posterior of the second most likely label. The BT sampling
strategymainly pay attention to the boundary district between
two classes, which aims to composition of training set more
diversified, but it may be trapped within the boundary of
a single class [41]. 3) For the MBT criterion, the samples
are located at the boundary of the two regions. The MBT
criterion considering all the class boundaries was proposed in
order to promote more diversity of the sampling process [42].
However, for these sampling criterion, these methods only
pay attention to the diversity of samples but ignore the local
representativeness of samples.

In this paper, an new AL strategy is proposed based on
a novel unlabeled samples sampling strategy concentrated
on the BT-assisted structure density (SD). Unlike the above

FIGURE 1. Graphical description of the MI, BT, MBT, and SD sampling
criterion with a toy example.

traditional methods, the proposed sampling criterion intro-
duces the density information to constrain the selection of
unlabeled samples, so that the selected unlabeled samples
can not only improve the diversity of training samples but
also ensure their own local representation (see the graphi-
cal description of SD in Fig.1). The proposed SD sampling
criterion in active learning is used for the HSI classifica-
tion, and its contributions are as follows: First, superpixel
segmentation is conducted on 2-D false-color image con-
structed by first three principal components of the original
HSI, and the pixels with similar spectral-spatial structure are
clustered into the same homogeneous region. Then, density
peak clustering algorithm is performed on the each super-
pixel block to acquire structure density of the pixels with
representativeness. Meanwhile, probability-based classifier,
i.e., SVM, EPF, and LORSAL-ERW, is employed to achieve
the probabilities of pixels in the hyperspectral image. Next,
according to the probability distribution, the BT score of
each pixel is used to find unlabeled samples with information
content. Additionally, a fusion mechanism is introduced that
combines the structural density and BT value of each pixel to
select unlabeled samples with representative and information
advantages. Please note that, LORSAL-ERW is employed to
satisfy active learning strategy in this paper. Finally, the sam-
ples with manual labeled class labels are put into the training
set to retrain LORSAL-ERW classifier. Experiments indi-
cate that the spectral-spatial AL method can select valuable
unlabeled samples with much less artificial cost needed and
promote the classification accuracy of classifier obviously.
Therefore, the proposed method will have a certain value in
practical application.

Section II describes the superpixel segmentation, and
breaking ties sampling. Section III introduces the proposed
structural density sampling criterion based active learning
method for HSI classification in detail. Experiment results
are presented in Section IV. Finally, conclusions are given in
Section V.

II. RELATED WORK
A. SUPERPIXEL SEGMENTATION
Graph theory based entropy rate superpixel (ERS) [43]
has been widely applied in remote sensing image pro-
cessing. Its advantage compared to simple linear iterative
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clustering (SLIC) algorithm [44] is that superpixel blocks
generated by the ERS algorithm can obtain adaptive size and
shape according to various spatial information. So assume
that the total number of superpixel blocks is K and the ith
superpixel block is referred to as Si, an image I can be
compactly represented as follows:

I =
K⋃
i=0

Si, and Si ∩ Sj = ∅, (i 6= j) (1)

As shown in the superpixel generation process, the ERS
algorithm that graph-based clustering firstly maps the base
image I to a graph G = (V ,E), where V is the vertex set cor-
responding pixels of the image, and E is the vertex set, which
can measure the pairwise similarities between nearby pixels.
Then, a subset of edges Q ⊆ E is picked to distribute the
base image I into K linked subgraphs. Next, an entropy rate
term H (Q) and a balancing term B(Q) are introduced into the
superpixel segmentation in order to achieve the homogeneous
superpixel block as follows:

H (Q) = −
∑
i

µi
∑
j

pi,j(Q) log(pi,j(Q)) (2)

B(Q) ≡ H (ZQ)− NQ

= −

∑
i

pZQ (i) log
(
pZQ (i)

)
− NQ (3)

where pi,j refers to the transition probability function and µi
is a stationary distribution, NQ refers to the number of con-
nected components in the graphG, and ZQ be the distribution
of the cluster membership. Finally, H (·) and B(·) are linearly
combined into a objective function to generate superpixel
blocks as follows:

max
Q
{H (Q)+ ηB(Q)} subject to Q ⊆ E (4)

where the parameter, η > 0, is the weight controlling the
balancing term in the objective function. And the greedy
algorithm can effectively solve optimization problems [45],
[46].

B. BREAKING TIES SAMPLING
To increase the sample diversity of the training set, BT sam-
pling in active learning [41] focuses on more information
samples, which are usually located in the boundary area
between the two classes. The BT score for sample xt is
defined as:

x̂BTt = argmin
xt∈C

{
max
c∈κ
= p(yt = c|xt , ω̂)−

max
c∈L\{c+}

p(yt = c|xt , ω̂)
}

(5)

where c+ = argmax
c∈L

p (yt = c|xt , ω̂) is the largest posterior

probability based the most probable class label for sample xt ,
C represents the sample candidate set, ω̂ refers to supervised
learning of logistic regressor set ω, yt refers to the class label
of tth sample, c represents cth class in class label set L, and
L\{c+} indicates a class label that does not contain c+ in L.

FIGURE 2. Outline of the proposed SD sampling criterion in hyperspectral
classification.

III. PROPOSED METHOD
The proposed SD sampling criterion-based AL method for
HSI classification is given in detail, which consists of the
two main steps, i.e., SD sampling strategy and active learn-
ing strategy using LORSAL-ERW classifier. Note that the
other probability-based classifier is acceptable here, but this
paper sets LORSAL-ERW as the default classifier. In addi-
tion, Fig. 2 shows outline of the proposed SD sampling
criterion in hyperspectral classification and the pseudo-code
of SD sampling criterion based AL strategy is illustrated in
algorithm I to clearly describe application of the SD sampling
criterion in hyperspectral image classification.

A. STRUCTURAL DENSITY SAMPLING STRATEGY
For HSIs, the same type of pixels usually represent the same
ground materials and have the same spectral characteristics.
Given an original HSI I ∈ RM×N ,M andN respectively refer
to the amount of samples and dimension of a sample in the I ,
the first three principal components I3d of the hyperspectral
image I can be initially achieved based on PCA algorithm as
follows:

I3d = PCA(I ) (6)

The I3d based 2-D false-color map Ipc then is exploited
as the input of ERS algorithm to segment Ipc into K 2-D
nonoverlapping superpixel blocks Sblock = {Si}Ki=1. Next,
S′block = {S

′
i}
K
i=1 can be determined by mapping Sblock of Ipc

to the original HSI I , namely, the boundaries of superpixel
blocks are migrated from Ipc to I as follows:

Sblock = fERS(Ipc); fERS : Ipc→ I (7)

After that, density ρ = [ρ1, ρ2, . . . , ρK ] of pixel within
superpixel blocks can be acquired by employing the DP
clustering algorithm. The details are as follows:

1) Compute Correlation Coefficient: The correlation
coefficient is a spectral metric and widely used in HSI

VOLUME 9, 2021 61795



Q. Li et al.: Spectral-Spatial AL With SD

supervised classification [47]. In the SD sampling crite-
ria, the Euclidean metric is replaced by the correlation
coefficient, which is formulated by:

Cor i =
cov

(
x iu, x

i
v
)√

var(x iu) ·
√
var(x iv)

(8)

whereCor i is a symmetric matrices of correlation coef-
ficient for ith superpixel block, x iu and x

i
v respectively

refer to uth and vth in the ith superpixel block, cov(·)
and var(·) respectively represent the covariance and
variance of the pixel vector.

2) Obtain density of pixel: Calculating the density of pix-
els within each superpixel block based on the Cor i

includes major two steps: Firstly, the cut-off correlation
coefficient 3i

dc is defined by:

3i
dc = �

i(ξ ) s.t. ξ=<
Ni · (Ni − 1)

100
· β> (9)

where �i(ξ ) is a vector that consist of ascending
non-zero elements of upper triangular in the symmetric
matrices Cor i, β represents a default free parameter in
the DP clustering algorithm [48], Ni on behalf of the
amount of pixels of the ith superpixel block, and< · >
refers to the round operation. Secondly, the structure
densities ρi of the samples of tth superpixel block can
be calculated based on 3i

dc as follows:

ρi =
∑

e
−

(
Cori

3idc

)
(10)

Finally, structure density distribution map ρ =

[ρ1, ρ2, . . . , ρK ] will be obtained by incorporating ρi into
the corresponding position in HSI I.

B. ACTIVE LEARNING STRATEGY
Here, many typical spectral classifiers, such as SVM, EPF,
can be exploited to estimate the probability distribution. How-
ever, considering the performance of AL classification based
on SD sampling criteria, we set the LORSAL-ERW classifier
as the default classifier to achieve probability. Assuming that
Tτ = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∈

(
RM
× L

)n is initial
training set, Te = ∅ is initial extended training set, n is
the total number of samples in the initial training set, L =
{1, 2, . . . , l} represents the label set corresponding to training
set. The probability map O = {Ot

1,O
t
2, . . . ,O

t
l }
N
t=1 is first

achieved by exploiting the LORSAL-ERW classifier to infer
the class distributions. Then, the classification map will be
obtained by selecting the maximum of probability.

Next, the global distribute map of braking ties scores
BTscore can be easily achieved by using the solution of
(9) based on the probability map O. Here, taking into
account some of the aforementioned limitations BT sampling,
the BTscore is first incorporated structural density distribution
ρ to construct a comprehensive consideration [see Fig. 2] Ft
as follows:

Ft = (1− λ) · BTscore + λ · (1− ρ̂) (11)

Algorithm 1 SD sampling criterion based AL strategy.
Input:
Initial training samples:
Tτ ≡ {(x1, y1), (x2, y2), . . . , (xn, yn)} ∈

(
RM
× L

)n.
Initial extended training samples: Te = ∅.
Original hyperspectral image: I ∈ RM×N .
Active query size: u.
Stopping criterion for the total number of samples: U .

1: Construct 2-D false-color Ipc with PCA based first
three principal components.

2: Segment Ipc with ERS to obtain the 2-D nonoverlapping
superpixel blocks Sblock = {Si}Ki=1.

3:Map the Sblock to I to obtain S′block = {S
′
i}
K
i=1.

4: Compute pixel density ρ for S′block based on DP.
5: Repeat
6: Train classifier with Tτ ∪ Te to obtain initial probability
map O.

7: Calculate the global BT scores of I based on the O.
8: Introduce the structural density of superpixels and per-
form decision fusionFm = (1−λ) ·BTscore+λ · (1− ρ̂).

9: Select u data Te = {xi}ui=1 from candidate set C based
on the Fm active query strategy.

10: Label Te by human experts, and updata Tτ ≡ Tτ ∪ Te.
11: Until Stopping criteria is met, i.e., sizeof (Tτ ) > U .
12: Return Classifier

where ρ̂ ∈ [0, 1] is the normalized expression of ρ, λ is a
tradeoff parameter that control the balance between infor-
mativeness and confidence information. From the solution
of (9), it can be seen that BT sampling favors samples with
a lower BTscore. Therefore, the introduction of (1 − ρ̂) is
to comprehensively consider the sample selection method
of BT sampling criteria. In addition, through comprehensive
consideration score, the active query size of extended sample
set Te is given human experts to label its class label. Finally,
this labeled extending samples is put into Tτ to train classifier
until satisfied stopping criterion of active learning as follows:

Tτ ≡ Tτ ∪ Te subject to sizeof (Tτ ) ≤ U (12)

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATASETS
In order to verify the effectiveness of the proposed SD sam-
pling criterion, experiments are performed on four hyper-
spectral datasets1, i.e., Indian Pines scene, Salinas scene,
University of Pavia scene, and Center of Pavia scene. The
details of these scenarios are as follows:

1) The Indian Pines image is over the Indian Pines test
site in the northwest of Indian, which was acquired
by the airborne visible/infrared imaging spectrome-
ter (AVIRIS) sensor. The image has a spatial dimension
of 145 × 145 and 220 spectral bands with a spatial

1Datasets can be downloaded at: http://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes
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FIGURE 3. Indian Pines dataset. (a) False-color composite. (b) Reference
data. (c) Distribution of 48 initial training samples (cyan) and 200 new
labeled samples (red) for a single experiment. (d) Color code.

FIGURE 4. Salinas dataset. (a) False-color composite. (b) Reference data.
(c) Distribution of 16 initial training samples (cyan) and 200 new labeled
samples (red) for a single experiment. (d) Color code.

resolution of 20 m per pixel (20 water absorption chan-
nels were removed before experiments). As the scene
was captured in June, some crops, such as corn and
soybean, are still in the early stage of growth. Fig. 3
shows the false-color composite of the Indian Pines
image, the corresponding reference data, and distribu-
tion of samples in a single experiment for comparative
analysis. In the reference classification map, the scene
is divided into 16 different classes.

2) The Salinas image was collected by the AVIRIS sensor
over the Salinas Valley, California; it has 224 bands of
size 512 × 217 pixels. In the experiments, 20 water
absorption and noisy bands (no.108-112, 145-167, and
224) have been removed. The false color composite
of the Salinas image and the reference classification
map are shown in Fig. 4(a) and (b), which includes
16 different classes.

3) The University of Pavia image was acquired with the
ROSIS 03 sensor over the campus at the University
of Pavia, Italy. The image is of size 610 × 340×120,

FIGURE 5. University of Pavia dataset. (a) False-color composite.
(b) Reference data. (c) Distribution of 27 initial training samples (cyan)
and 200 new labeled samples (red) for a single experiment. (d) Color
code.

FIGURE 6. Center of Pavia dataset. (a) False-color composite.
(b) Reference data. (c) Distribution of 9 initial training samples (cyan) and
200 new labeled samples (red) for a single experiment. (d) Color code.

with a spatial resolution of 1.3 m per pixel and a
spectral coverage in the range 0.43-0.86 µm. Twelve
spectral bands were removed before the classification
due to high noise. Fig. 5(a) and (b) show the false-color
composite of the University of Pavia image and the
corresponding reference data, which includes 9 classes.

4) The Center of Pavia image was captured by the
ROSIS sensor. After discarding 13 water noisy bands,
the image contains 102 bands of size 1096×492, which
contains 9 classes different objects. The false-color
composite and the corresponding reference data are
shown in Fig. 6.

B. QUANTITATIVE METRICS
In order to evaluate the performance of the proposed SDP-AL
method, three widely used objective indicators are used,
namely overall accuracy (OA), average accuracy (AA) and
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FIGURE 7. Effect of parameters Sn and λ on the proposed method on the (a) Indian Pines dataset (the initial training samples is set to 48, U=200,
u=20), (b) Salinas dataset (the initial training samples is set to 16, U=200, u=20), (c) University of Pavia dataset (the initial training samples is set
to 27, U=200, u=20), (d) Center of Pavia dataset, (the initial training samples is set to 9, U=200, u=20).

Kappa coefficient (Kappa) statistics. The OA index repre-
sents the percentage of pixels that are correctly classified.
The AA index refers to the average percentage of correctly
classified pixels for each class. The Kappa is introduced to
estimate the percentage of classified pixels suffering from
uncertainty factors.

C. PARAMETER TUNING
In this part, our experiments were performed on four hyper-
spectral datasets (Indian Pines, Salinas Valley, University
of Pavia, and Center of Pavia) to discuss the influence of
parameters in our method respectively. The initial training
samples are randomly selected, and the number of samples
per class is respectively set as 3, 1, 3, and 1 on the four
datasets. Total number of new labeled samples U = 200 and
the size of active query per iteration u = 20 are the same on
each dataset.

In the first experiment, the number of superpixel blocks
(Sn) and the size of tradeoff parameter (λ) will be determined
for the proposed SD sampling criterion based active learning
method. The influence of the two parameters Sn and λ are
analyzed by evaluating the classification accuracy OAs of
LORASL-ERW on the four datasets. As shown in Fig. 7
that OA generally show first increased and then decreased
trend as the two parameters increase. For Indian Pines and
Salinas datasets [see Fig. 7(a)-(b)], the tradeoff parameters λ
for both of them are set to {0, 0.1, . . . , 1} and the number of
superpixel blocks Sn are set to {1200, 1300, . . . , 1600} and
{1000, 1100, . . . , 1400}, respectively. Specifically, the pro-
posed SD based LORSAL-ERW can achieve the highest
overall classification accuracy when Sn = 1600, λ = 0.7
on the Indian Pines dataset and Sn = 2000, λ = 0.7
on the Salinas dataset. As can be observed that the Indian
Pines dataset (image size: 145×145) requires less superpixel
parting than the Salinas dataset (image size: 512×217), when
the classifier obtain a optimal performance. One explanation
is that a small Sn is more likely to generate an incomplete
uniform area on the Salinas data set, thereby affecting the
pixel structure density distribution. Therefore, the number
of superpixel changes with the size of the image in order
to obtain a more reliable homogeneous region for different
images. Furthermore, the parameter analysis is conducted on

FIGURE 8. Effect of the number of new labeled samples on the proposed
method on the India Pines (the initial training samples is set to 48),
Salinas (the initial training samples is set to 16), University of Pavia (the
initial training samples is set to 27), and Center of Pavia (the initial
training samples is set to 9) datasets, respectively.

the University of Pavia and Center of Pavia urban datasets.
In Fig. 7(c)-(d), the proposed method can achieve outperfor-
mance on the University of Pavia (OA=99.40%) and Center
of Pavia (OA=99.15%), respectively. Therefore, the (Sn =
2100, λ = 0.8) and (Sn = 2300, λ = 0.7) is set to fault
parameter corresponding to the two datasets, respectively.
Through experiments on four data sets, it is found that the
trade-off parameter a is greater than 0.5, that is, the contribu-
tion of structure density in the process of selecting unlabeled
samples is greater than BT.

In the second experiment, the effect of diverse active
query u values {2, 5, 10, 20} to the performance of the SD
sampling criterion based LORSAL-ERW-AL is analyzed on
the before-mentioned four dataset. The parameter u controls
the number of unlabeled pixels that are manually labeled
(exploiting ground truth) in each iteration. As can be seen
in Fig. 8, for diverse active query u values, the OA obtained by
the LORSAL-ERW classifier. The initial training sets respec-
tively contains 48, 16, 27, and 9 samples on the different
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FIGURE 9. Influence of the different sampling criterion on classification accuracy. (a) Indian Pines dataset (the initial training samples is set 48),
Salinas dataset (the initial training samples is set 16), University of Pavia dataset (the initial training samples is set 27), and Center of Pavia dataset
(the initial training samples is set 9), respectively.

FIGURE 10. Classification results obtained by the (a) RS, (b) MI, (c) BT,
(d) MBT, (e) De, (f) DeMI, (g) DeMBT, and (h) SD on the Indian Pines
dataset (The training set contains 48 initial randomly selected training
samples and 200 new labeled samples).

dataset. First, at the center of the Indian Pines dataset and
Pavia dataset, when the number of newly labeled samples is
between 0 and 200, different values of u can often achieve
the same OA convergence speed[see Fig. 8(a), (d)]. There-
fore, taking time complexity into account, the active query
size u = 20 is set to fault parameter on the Indian Pines
dataset and Center of Pavia dataset, respectively. Further-
more, in Fig. 8(b)-(c), query u = 5 and u = 10 values can
obtain better performance for the classifier on the Salinas
dataset and University of Pavia dataset, when the number of
new labeled samples are ranged from 140 to 200. Therefore,
taking into consideration balance of classification accuracy
and time consumption, the size of active query u = 10 is set
to fault parameter on the Salinas dataset and University of
Pavia, respectively.

D. COMPARISON OF DIFFERENT SAMPLING CRITERION
In this subsection, the effect of six diverse sampling criterion
of active learning to the performance of the classification
performance is analyzed, such as, random selection (RS), MI
[40], density (De), BT [41], MBT [42], and the proposed SD
sampling criterion. The total number of new labeled samples
U is set to 200 and the size of active queries u is set to 20 on
the Indian Pines data, Salinas dataset, University of Pavia
dataset, and Center of Pavia dataset respectively. The number

FIGURE 11. Classification results obtained by the (a) RS, (b) MI, (c) BT,
(d) MBT, (e) De, (f) DeMI, (g) DeMBT, and (h) SD on the Salinas dataset
(The training set contains 16 initial randomly selected training samples
and 200 new labeled samples).

of initial training samples of each dataset are the same IV.C.
As diagrammatized in Fig. 9, the LORSAL-ERW invariably
achieve optimal classification accuracy by active learning
using the proposed SD sampling criterion. Moreover, through
this experiment, the effectiveness of the proposed sampling
criterion in active learning will be verified for hyperspectral
image classification. It can be seen in Fig. 9(a)-(d) that the
classification accuracy of LORSAL-ERW classifier using
the proposed SD sampling criterion finally 98.68%, 99.91%,
98.61%, and 99.40% on the four real hyperspectral datasets
respectively. Specially, it can be found that the accuracy of
MI criterion decrease as the number of new labeld samples
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TABLE 1. Classification accuracy of the RS, MI, BT, MBT,De, DeMI, DeMBT, and SD sampling criterion on the Indian Pines dataset, the training samples is
set to 3 per class, the total number of new labeled samples is set to 200, the size of active learning is set to 20, and the highest accuracy are presented in
bold.

raises. It is because that the MI criterion only consider the
multual information, but it is easy to generate bias sampling.
This will lead the sample imbalance problem. The character-
istic of most labeled samples (belong to one class) are very
concentrated, causing a small number of remaining labeled
samples (belong to other classes) to be ignored, and it will
decrease the overall accuracy. By contrast, our SD sampling
criterion integrates the structural density and BT score, and
it can be found that the roubustness of proposed sampling
critirion is significantly better than other.

In addition, the classification performance of different
of sampling criterion are represented in detail on the four
datasets. the different sampling criterion include RS, MI,
De, BT, MBT, fusion structure density and MI sampling
criterion (DeMI), MBT sampling criterion (DeMBT), and
BT-assisted structure density (SD), respectively. In this exper-
iment, the number of initial training samples is set to one,
three, one, three per class on the Indian pines, Salinas, Univer-
sity of Pavia, and Center of Pavia, respectively. the parameter
settings of U and u are the same as described above. The
quantitative results are shown in Table 1-4, the best results of
each quantitative index are marked in bold, and the classifica-
tion diagrams corresponding to different sampling standards
are shown in Fig.10-13.

1) AVIRIS INDIAN PINES DATASET
As can be seen in Table 1, the classification accuracy of
the different sampling criterion based LORSAL-ERW is
analyzed to demonstrated the effectiveness of the proposed
SD sampling criterion for HSI classification on the Indian
Pines dataset. In this experiment, the training set contains
the initial randomly selected 3 samples per class and the
200 new labeled samples. As can be observed that the
proposed sampling criterions, i.e., DeMI, DeMBT, and SD

can basically yield better classification performance than
another typical sampling criterion, such as RS, MI, BT,
and MBT. For the proposed DeMBT and SD sampling cri-
teria, the DeMBT sampling criteria has the highest level
category with the highest accuracy, but the huge difference
between the high-precision category and the low-precision
category causes the overall accuracy to decrease, SD sam-
pling criteria-based on each The classification accuracy rate
of the category exceeds 97%, which is stable compared with
the DeMBT sampling standard. From the Table 1, it can
also be found that the BT-assisted structure density based
SD sampling criterion can achieve the highest classification
performance, i.e., OA, AA, and Kappa, compared to BT and
De sampling criterion. In addition, Fig. 10 illustrates the
classification results obtained by diverse sampling criterion
of the Indian Pines image associated with the correspond-
ing OA. Similarly, compare with other sampling criterions,
the proposed SD sampling criterion has the highest classi-
fication accuracy. The LORSAL-ERW classifier based on
SD sampling criterion can obtain classification results more
similar to the reference data [see Fig. 3(b)].

2) AVIRIS SALINAS DATASET
An experiment is conducted on the Salinas image which
includes 16 diverse classes. Fig. 11 illustrates the classifi-
cation results acquired by the different sampling criterion,
including the RS, MI, BT, MBT, De, DeMI, DeMBT, and
SD sampling criterions. It can be observed that, compared
with the different sampling criterion based LORSAL-ERW,
the classification result achieved by the SD sampling criterion
looks more similar to the reference data in Fig. 4(b). Table 2
records the average and standard variances of OA, AA, and
Kappa of classification result using LORSAL-ERW classifier
under different sampling criterion, when the quantity of new
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TABLE 2. Classification accuracy of the RS, MI, BT, MBT,De, DeMI, DeMBT, and SD sampling criterion on the Salinas dataset, the training samples is set to
1 per class, the total number of new labeled samples is set to 200, the size of active learning is set to 20, and the highest accuracy are presented in bold.

TABLE 3. Classification accuracy of the RS, MI, BT, MBT,De, DeMI, DeMBT, and SD sampling criterion on the university of Pavia dataset, the training
samples is set to 3 per class, the total number of new labeled samples is set to 200, the size of active learning is set to 20, and the highest accuracy are
presented in bold.

labeled samples is set to 200 and the size of initial training
samples is set to 1 per class. The proposed sampling criterion
demonstrates the optimal performance in all cases. In partic-
ular, the classification accuracy of seven covers (Weeds_1,
Weeds_2, Fallow, soil, Lettuce_4wk, Lettuce_5wk, and Vin-
yard_T) reach the highest accuracy 100%. Comparing with
other sampling criterion, the classification accuracy of the
ground coverings (except for the Lettuce_6wk ground cover-
ing) based on the SD sampling criterion are greater than 99%.
Therefore, the effectiveness of the AL with the recommended
SD sampling standard can be proven in the HSI classification
application.

3) ROSIS UNIVERSITY OF PAVIA DATASET
To verify the applicability of AL strategy using SD sam-
pling criteria on urban dataset, an experiment is performed
on the University of Pavia image. Fig. 12 demonstrates the
classification results acquired by diverse sampling criterions
when the total quantity of labeled samples is set to 227. Form

this figure, it can be seen that the LORSAL-ERW classifier
based on the proposed SD sampling criterion can achieve
higher classification accuracy and retain detail information
of covers at the same time under the same sample conditions.
In other words, the SD sampling criterion can select the unla-
beled samples with informativeness and representativeness
to retrain classifier and improve its performance. In addi-
tion, Table 3 records the mean and standard variance of the
individual classification accuracies, i.e., OA, AA, and Kappa,
of different sampling criterion. The LORSAL-ERW classifier
based on the proposed SD sampling criterion also shows the
best performance in terms of OA = 99.09%, AA = 98.88%,
Kappa = 98.80%.

4) ROSIS CENTER OF PAVIA DATASET
In order to further prove the availability of the SD sampling
standard in active learning and the generalization ability of
LORSAL-ERW hyperspectral image classification based on
the SD sampling standard, a comparison with other widely
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TABLE 4. Classification accuracy of the RS, MI, BT, MBT,De, DeMI, DeMBT, and SD sampling criterion on the center of Pavia dataset, the training samples is
set to 3 per class, the total number of new labeled samples is set to 200, the size of active learning is set to 20, and the highest accuracy are presented in
bold.

FIGURE 12. Classification results obtained by the (a) RS, (b) MI, (c) BT,
(d) MBT, (e) De, (f) DeMI, (g) DeMBT, and (h) SD on the University of Pavia
dataset (The training set contains 27 initial randomly selected training
samples and 200 new labeled samples).

used sampling standards was carried out on more complex
and larger samples. The experimental data set is the Center
of Pavia image.. In this experiment, the number of labeled
samples required for different sampling standards is set to
209. Fig. 13 shows classification results obtained by dif-
ferent sampling criterion based LORSAL-ERW classifier,
and the mean and standard variance of classification accu-
racy of different sampling criterion based LORSAL-ERW
classifier is recorded in Table 4. As can be observed that
the results yielded by the SD sampling criterion based
LORSAL-ERW classifier are better than other methods in
terms of the highest OA, AA, and Kappa. Similarly, from
Fig. 13, it can be observed that the SD sampling cri-
terion based LORSAL-ERW classifier can achieve opti-
mal classification accuracy OA=99.13%, comparing with

FIGURE 13. Classification results obtained by the (a) RS, (b) MI, (c) BT,
(d) MBT, (e) De, (f) DeMI, (g) DeMBT, and (h) SD on the Center of Pavia
dataset (The training set contains 9 initial randomly selected training
samples and 200 new labeled samples).

other different sampling criterions under the same sample
condition.

Through comparison experiments on four data sets,
i.e., Indian Pines, Salinas, University of Pavia, and University
of Center, as can be observed that the proposed SD sampling
criterion based active learning method can achieve the best
performance classification accuracy for HSI classification.
The reason is that SD sampling standards are concentrated
on unlabeled samples that have a lot of information and are
highly representative. Unlabeled samples with high infor-
mation content and representativeness usually play a role
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FIGURE 14. OA (The first-row), AA (The second-row), and Kappa (The three-row) achieved by the LORSAL-ERW-AL, MPM-LBP-AL, and LORSAL-AL-MLL
on the Indian Pines [(a), (e), and (i)], Salinas [(b), (f), and (j)], University of Pavia [(c), (g), and (k)], and Center of Pavia datasets[(d), (h), and (l)],
respectively. The widths of the line areas refer to the standard variances of accuracy obtained in ten independent Monte Carlo runs.

TABLE 5. Classification accuracy (in percent) of the classification methods using RS and SD sampling criterion on the Salinas dataset. Num in parenthesis
indicates the standard variance of repeated experiments. Marking 48 initial training samples and 132 new labeled samples as 48(I) + 132(N).

in improving the performance of the classifier. Therefore,
the proposed SD sampling criterion can be used as a robust
sampling criterion in many machine learning applications
(i.e., semi-supervised active learning).

E. COMPARISON WITH DIFFERENT CLASSIFICATION
METHODS
In this subsection, to appraise the applicability of SD sam-
pling criterion from the perspective of classification meth-
ods, the classification performance of the widely used
classification methods, i.e., the extend morphological pro-
files (EMP) [49], the edge preserving filtering (EPF)-based
method [50], the superpixel via multiple kernels (SC-MK)-
based method [51], and the extended random walk (ERW)-
basedmethod [52] is analyzed under different training sample

conditions on the Indian Pines dataset. The training sample
condition refers to that the training samples required for the
classification method come from diverse sampling criterion
(the RS and SD sampling criterion). In this experiment,
the number of the initial train sample is set to 48, the number
of new labeled sample with the RS sampling criterion and the
SD sampling criterion is the same. To avoid any bias, these
experiments are repeated 10 times and the average classifi-
cation results are reported, i.e., OA, AA, and Kappa. In the
Table 5, the classification performance of the EMP, EPF, SC-
MK, and ERW is achieved under RS sampling criterion (left
side of the table) and SD sampling criterion (right side of the
table). The OA of the ERW increase form 88.52% (RS) to
93.15% (SD). Similarly, EMP, EPF, and SC-MK can increase
the accuracy of training samples using SD sampling criterion
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FIGURE 15. Classification results obtained by (a) the AL-LORSAL-MLL
(OA = 92.10%), (b) the MPM-LBP-AL (OA = 93.55%), (c) the
LORSAL-ERW-AL (OA = 99.94%) on the Salinas data set (The training set
contains 16 initial randomly selected samples and 200 new labeled
samples).

FIGURE 16. Classification results obtained by (a) the AL-LORSAL-MLL
(OA = 92.11%), (b) the MPM-LBP-AL (OA = 94.35%), (c) the
LORSAL-ERW-AL (OA = 98.53%) on the University of Pavia (The training
set contains 27 initial randomly selected samples and 200 new labeled
samples).

by approximately 2% compared to the RS sampling criterion
in the terms of OA, AA, and Kappa.

F. CLASSIFICATION RESULTS OF ACTIVE LEARNING
METHODS
Here, the SD sampling criterion based LORSAL-ERW-AL
classification method is compared with other widely
used AL-based spectral-spatial classification methods,
i.e., LORSAL-AL-MLL [42], MPM-LBP-AL [53], which
adopt the same MBT-based active query strategy. The quan-
tity of initial training sample setting is set to 48, 16, 27,
9 on the Indian Pines, Salinas, University of Pavia, and
Center of Pavia dataset, respectively. The size of the new
labeled samples is all set to 200 on the above four datasets.
Fig. 15-17 demonstrates the classification map acquired
by the LORSAL-AL-MLL, MPM-LBP-AL, and LORSAL-
ERW-AL methods on the Salinas dataset, University of Pavia

FIGURE 17. Classification results obtained by (a) the AL-LORSAL-MLL
(OA = 92.11%), (b) the MPM-LBP-AL (OA = 98.01%), (c) the
LORSAL-ERW-AL (OA = 99.66%) on the center of Pavia (The training set
contains 9 initial randomly selected samples and 200 new labeled
samples).

dataset, and Center of Pavia dataset, respectively. As shown in
the figures, the classificationmaps acquired by the LORSAL-
ERW-AL method give best performance in terms of the
highest OA on the Salinas image (OA = 99.94%), University
of Pavia image (OA = 98.53%), and Center of Pavia image
(OA = 99.66%), respectively. The experiments have been
repeated 10 times, and initial training samples are randomly
selected for each iteration. As shown in Fig. 14, the average
and standard variance of OA, AA, and Kappa respectively
acquired by the LORSAL-AL-MLL, MPM-LBP-AL, and
LORSAL-ERW-AL methods on the different dataset. It can
be first found that the SD sampling criterion based LORSAL-
ERW-AL clearly achieves the highest classification results
for all case. For instance, with 200 new labeled samples,
the OA, AA, and Kappa acquired by the LORSAL-ERW-AL
method all reach values that are higher than 98% on the
different dataset. In particular, on the Indian Pines dataset, for
LORSAL-AL-MLL method, the OA reaches 84%, and AA
and Kappa reaches around 83%. For MPM-LBP-AL method,
the OA reaches around 87%, the AA reaches around 86%,
and the Kappa reaches around 85%. In addition, as shown
in these figures, the property of the proposed SD sampling
criterion based LORSAL-ERW-AL is more stable because
its standard deviation expressed by the width of the line area
is much smaller.

G. COMPUTATIONAL COMPLEXITY
In this section, Table 6 reports the running time (in seconds)
of the active learning strategy method based on the RS,
MI, BT, MBT, De, DeMI, DeMBT, and SD sampling crite-
ria to classify four hyperspectral images. All the programs
are conducted on a computer with an Intel(R) Core (TM)
i7-7800X, CPU 3.50 GHz and 32 GB of RAM, and the
software platform is MATLAB R2014a. For the running time
of the LORSAL-ERW-AL method based on each sampling
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TABLE 6. Computing time of the RS, MI, BT, MBT,De, DeMI, DeMBT, and SD sampling criterion on the Indian Pines, Salinas, university of Pavia and center
of Pavia datasets.

criterion, when the number of newly labeled samples U is set
to 200 and the size of the active learning query is set to 20,
the time taken to complete the classification task is recorded.
It can be seen fromTable 6 that theMATLAB implementation
of the LORSA-ERW-AL method based on the SD sampling
criterion proposed in this paper has been very fast (take only
5.0058s for the Indian Pines image). The reason is that the
proposed SD sampling criterion only requires BT score com-
puting to be done several times and superpixel segmentation
and density peak clustering to be done once. Therefore, it can
be concluded that the proposed SD sampling criterion has
advantages in improving classification accuracy and compu-
tational efficiency, and is indeed an effective candidate active
learning method for HSI classification.

V. CONCLUSION
In this paper, a simple yet powerful sampling criterion of
active learning has been proposed for spectral-spatial HSI
classification. Experimental results demonstrate that the pro-
posed SD-based sampling criterion active learning strategy
can improve the classification accuracy significantly in few
labor costs. In fact, structural density and BT score can
complement each other in the process of selecting unlabeled
samples. The reason is that the BT focus on unlabeled data
with informativeness but prone to bias sampling and struc-
tural density aims at selecting ones with local representa-
tiveness but easy to ignore complex areas. Therefore, the SD
sampling criterion integrates the advantages of both and focus
on unlabeled samples that are both informativeness and local
representativeness. However, one limitation of the proposed
SD sampling criterion is that it does not consider the noisy
label [54] of manual labeling in the classification processing.
In our future work, how to solve noisy label problem of active
learning and extend the SD sampling criterion based active
learning strategy to large-scene the HSI classification will be
researched.
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