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ABSTRACT Synchrophasor technology improves power grid visibility by installing phasor measurement
units (PMUs) over a wide area in the power system. Big data received from PMUs contains important
information about grid behavior. This information is useful in monitoring the safety and security of the
grid. An extensive state-of-the-art review of big data analytics and its prime applications in power systems
are expressed in this paper. It presents, a general background in data analysis techniques such as exploratory
data analysis, statistical data analysis, and unsupervised data mining techniques like clustering. Two 400 kV
transmission line tripping events are analyzed from the data recorded by the PMUs installed in the western
part of the Indian grid i.e., Maharashtra State Electricity Transmission Company Limited (MSETCL) grid.
The box plots, Correlogram, and the formation of clusters carried out for the PMU data recorded under
ambient and disturbance events. This provides insights on how effective big data helps to make the right
decision at right time for effective management of the power grid under normal and contingency conditions.

INDEX TERMS Phasor measurement unit (PMU), box plot, connectivity index, correlation technique, Dunn
index, Hierarchical clustering, K -means clustering, partitioning around medoids (PAM), Silhouette width.

I. INTRODUCTION
Synchrophasor technology is a potential tool for diagnosing,
preventing, and control for the grid system. Synchrophasor
is a phasor measurement unit (PMU) used for finding the
health of the power grid. The Indian power grid has also
taken major steps to implement smart grid technology like a
wide-area measurement system (WAMS) after blackouts in
the northern and north-eastern parts of India in July-2012
by launching a pilot project. Power transmission utilities
have installed PMUs for the reliable wide-area monitoring,
protection, and control (WAMPAC) system. The national
WAMS project called Unified Real-Time Dynamic State
Measurement (URTDSM) project includes the furnishing
of 1740 PMUs in the transmission terminals i.e. extra-high
voltage (EHV) substations across India. Thirty-two Phasor
Data Concentrators (PDCs) shall be installed at the State
level, Regional level, and National level.

Super PDCs will collect data from PMUs at inter-State
transmission stations and inter-State power plants as well
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as from Master PDCs. Super PDC shall be installed at
each Regional Load Dispatch Center (RLDC). They will be
equipped with data storage, analytical tools, and a graphical
software package. For better management, the Indian power
grid is geographically divided into five regions. These regions
are Northern, Eastern, Western, North Eastern, and Southern
grids. Therefore, the five super PDCs shall be placed at five
RLDCs. At the end of 2020, PMU placement is greater than
1500 in India. After the installations of all these PMUs under
the WAMS project, the data collected by PMUs and their
applications shall increase manifold [1].

Research articles relevant to the application of PMU
technology are rigorously surveyed in [2]. It represents a
panorama of research progress lines. A discerned compres-
sion method that employs the ingrained correlation within
PMU data by dimensional and temporal redundancies is
described in [3]. In [4], the wavelet transform and matrix
pencil (WTMP) approach is used to extract the dominant
oscillations and power system parameters from wide-area
measurements. The singular value decomposition (SVD) is
applied to abate the covariance signals attained by the natural
excitation technique. Only thereafter, the orders and range of
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the corresponding frequency are estimated by SVD from the
positive power spectrummatrix. The computation data size is
also reduced.

In [5], an online data-driven technique is explained for the
disclosure of substandard synchrophasor measurements. This
method clouts the Spatio-temporal analogies with different-
time-instant synchrophasor measurements and contrives the
low-grade synchrophasor data as Spatio-temporal outliers.
In [6], event detection and its characterization are explained
according to physical disturbance. Some statistical features
are extracted from the transient signals to demonstrate
the associated practical phenomenon in every event type.
In [7], the big data issues of the smart grid are super-
vised. The multisource of energy data and features of a
smart grid are explained. Some theoretical and practical
implemented applications for big data analysis are demon-
strated. A short history of the PMU concept and applications
of synchrophasor technology are discussed in [8]. In [9]
feasible solution for wind power management using data
mining algorithms for an enormous quantity of data accu-
mulated from the PMU is described. However, the defined
clusters are used as subservient variables using classifica-
tion and regression tree algorithms. In [10], PMUs have
been treated for detecting disruptions and deflation in the
grid. However, this requires time-based clustering as it
limits the PMU population to search in a small limited
region.

WAMS-based coherency detection methodology for
renewable power generation is explained in [11]. The Kernel
principal component analysis, coherency detection method,
and clustering analysis vested on intimacy propagation are
applied. It is observed that the weakly damped oscillations
induced by a large penetration level of renewable power
resources can be detected correctly. Thus, it is possible
to enhance the situational awareness of the anxious power
system with momentous uncertainty. A bagged equating of
multiple linear regressions model to recoup the uncounted
synchronized frequency data is explained in [12]. This
method is based on altogether learning by resetting and equat-
ing numerous linear regressions to estimate the missing data.
An online event identification technique in a wide-area power
system by PMU is described in [13]. In this, offline zonal
analysis and an online event location estimation technique
are combined. An assessment of the conspicuous aspects
in large data analytics advancement in the power systems
is given in [14]. Here, the classifications of the enduring
and the faltering ingredient in the structures are executed.
In [15], the state-of-the-art techniques corresponding to big
data in the smart grid have been reviewed. Efficient data
investigation for a big volume of data is challenging in power
systems due to the incorporation of more advanced infor-
mation and communication technology. A multi-scale PMU
data compression technique by clustering inquiry of wide-
area power systems is demonstrated in [16]. Spatial clustering
(density-based) with noise is applied for the preconditioning
of synchrophasor data.

PMU data corresponding to phase angle difference of bad
quality is screen out in [17] by clustering technique. However,
if the error in phase angle difference is less, it may not be pos-
sible to discriminate between the correct data and wrong data.
A critical review of various methods carried out in [18] for the
optimal placement of PMUs and their utilization. An adaptive
Matrix Pencil algorithm entrenched onwavelet soft-threshold
de-noising is explained in [19] to deal with the low-frequency
oscillation (LFO) signals deduced from the WAMS in power
systems. The identified LFO signal can be fitted only after
calculating the appropriate modal parameters of the signal.
The accuracy of the fitting index (AFI) is used to indicate the
similarity between the fitting signal and the genuine signal.
In general, efficient mode recognition can be acknowledged
only if the value of AFI is more than 10 dB. Otherwise, it is
imperative to endeavor for mode identification.

Gaussian assimilation clustering approach is explained
in [20]. This is for the characterization of the errors noticed in
PMU data. That might be due to the saturation of the current
transformer and/or burden of the connecting cables. In [21],
the data compression is performed on PMU data received
from eight important substations of the power grid. It accom-
modates two major events in the Maharashtra State Electric-
ity Transmission Company Limited (MSETCL) transmission
network. The data compression is carried out by singular
value and the eigenvalue decompositions. Effective grid man-
agement is possible if the correct and useful data is accessible
by the system operator. The data useful for effective grid
management consist of parameters, such as the magnitude
and phase of the current and voltage phasors, frequency,
rate of change of frequency (ROCOF), active and reactive
power flow, the status of the circuit breakers, oscillations
during ambient and contingency conditions, etc. This data
is used to examine power system dynamics, such as the
effect of a disturbance as it disseminates to nearby regions.
Thus, it creates transient real-time swings in the system. The
data applications cover wide-area monitoring, fault location,
state estimation, islanding detection, protective relaying, etc.
These applications help real-time grid operations by fur-
nishing wide-area power system visualization and situational
awareness.

Synergy manifests participation, association, or combine
response of components connected in the system. The con-
vention of synergy tells that the joint interaction of sys-
tem components attends a result greater than the elemental
sum of parameters. In a modern power system, PMUs are
commissioned at important substations and at power plants
for WAMS applications. PMUs collect the data all the time
(24 hrs. × 7 days) and feed it to load dispatch centers.
Whenever any disturbance appears in a power grid, this PMU
data contains important information about the nature of the
disturbance. The data of every PMU have certain co-relation
or attachment pertain to that specific disturbance. The union
or alliance or connection of the data among all the PMUs
is termed Synergy. Having synergy means trust, collabora-
tion, connectivity, and ultimately co-creation among the data
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received from PMUs, it helps to create prominent effects and
results. It also propagates better solutions to problems and
accomplishes the vision and mission of power utilities. The
objective of this research is to identify the synergy among the
data obtained from various locations in the powers system.
This is achieved by applications of data analysis techniques.

The contributions of this research paper are summarized as
follows:

1. The outlier detection using box plots analysis was per-
formed on PMU data of MSETCL substations to determine
the power system behavior under normal and abnormal con-
ditions. In data mining, outlier detection is meant for the
determination of patterns in data.

2. The correlation technique is applied to PMU measure-
ments to quantify the degree of system parameters from dif-
ferent locations during events. This particular type of analysis
is useful to the system operator for efficient gridmanagement.

3. Thereafter, the clustering technique is applied to practi-
cal PMU data by which a given data set is divided into groups
called clusters. This prevents the loss of valuable time and
information if a server fails.

The remainder of this paper is harmonized as follows.
Section II presents a general background in data analysis
techniques. Section III of the paper describes line tripping
events in the MSETCL grid under investigation. Section IV
illustrates in detail the application of various data analysis
techniques to synchrophasor data under investigation along
with its interpretation. Conclusions are given in Section V.

II. PRELIMINARIES
Good quality data having hidden information about system
behavior is required to analyze and also to upgrade the attain-
ment of the power system. A brief overview of some of the
important data analysis techniques applied to PMU data is
given in this section. It includes exploratory data analysis
techniques like box plots and statistical analysis techniques
like correlation. It also covers brief information on popular
unsupervised data mining techniques like clustering. These
techniques are applied to PMU data available during distur-
bance to have better insight for power system management.

A. EXPLORATORY DATA ANALYSIS TECHNIQUE:
BOX PLOTS
The box and whisker plot is represented by the box at the cen-
ter, with three quartiles marked along-with two whiskers at
both sides of the box. These two whiskers on both sides touch
maximum and minimum points in the data. Figure 1 illus-
trates a typical box plot. It depicts data distribution informa-
tion like Minimum; first quartile (Q1) is that tab under which
25% of data points lie, whereas 50% data is down (Q2) or
Median. The third quartile (Q3) is that mark below which
75% of data points lie.

The difference between the Q1 and Q3 is termed as
Inter-Quartile Range (IQR). The minimum value is given
by Q1-(3/2)IQR, whereas the maximum value is given by
Q3+ (3/2)IQR. For any arbitrary number ‘‘n’’, the data point

FIGURE 1. Typical box plot representation.

n × (Q3- Q1) above Q3 and n × (Q3 - Q1) below Q1 gives
outliers [22]. Thus information on outliers and related values
is obtained. It also gives information related to data like its
symmetry, whether it is tightly bounded or skewed in nature.

B. STATISTICAL DATA ANALYSIS TECHNIQUE:
CORRELATION ANALYSIS
The correlation indicates a relationship among two or more
variables. The correlation or interrelationship coefficient is an
outcome of correlation analysis and is obtained in terms of a
value establishing a bond within the variables. It denotes the
strength and direction of association amongst variables. The
Pearson’s Correlation Coefficient (PCC) is one of the widely
used interrelationship coefficients to understand correlation
amongst variables. When applied to sample data, it is called
as Sample Pearson Coefficient. PCC measures the statistical
correlation among two reciprocated variables. It is recog-
nized as an excellent method of aligning the alliance with
variables of significance as it is dependent on the covariance
method [23]. It provides intelligence about the amplitude and
the direction of the association or relationship.

Let us consider, X and Y are the PMU measurements from
two different substations. To investigate correlations among
X and Y , the PPC formula is given as,

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
√

n∑
i=1

(yi − ȳ)2
(1)

where xi and yi are the individual sample points indexed with
i and the mean of sample x and y are given as

x̄ =
1
n

n∑
i=1

xi, ȳ =
1
n

n∑
i=1

yi

The correlation coefficient bounds between−1 and 1. A value
1 denotes a linear equation showing perfect consociation
between X and Y . It means all data points on a line for which
Y increases as X increases. Whereas, a value−1 indicates all
data points on a line for which Y decreases as X increases.
And a value of 0 depicts that there is no linear relationship
within the variables [24]–[25].

The points describe the approved protocol for translating
the correlation coefficient as 0 for no linear relationship,

63982 VOLUME 9, 2021



M. S. Ballal, A. R. Kulkarni: Synergizing PMU Data From Multiple Locations in Indian Power Grid-Case Study

< 0.9 for a very high relationship. Values of correlation coef-
ficients in the ranges 0.7 to 0.9, 0.5 to 0.7, and 0.3 to 0.5 stand
for a high, moderate, and low correlated relationship. The
corrplot() function in ‘‘R’’, the software used for analysis
conceives a graphic array of a correlation matrix [26]. It high-
lights the topmost connected variables in a data table. This
is used for the analysis purpose in this paper to establish
a correlation between PMU measurements obtained from
various field locations.

C. DATA MINING TECHNIQUE: CLUSTERING
Data mining is specified as a process passed down to
select usable data for valuable intelligence from a large
volume of raw data. This relates to extrapolating patterns
and additional information from collected data [27]. Though
there are several data mining techniques, the important ones
include; pattern recognition, allocation, organization, aber-
ration, accumulation, retrogression, and forecasting. Out of
these various data mining techniques, clustering which is the
unsupervised learning technique having objects similar to one
another put in the same cluster is focused for its use with
smart-grid data. The three important clustering techniques
used for PMU data analysis are as follows.

1) K -MEANS CLUSTERING
K -means is an elementary unsupervised training algorithm
that deals with the clustering issue. The main idea is to
designate K centers for every cluster. The key idea of
K -Means clustering is that it tries to decrease the variation
within-cluster. The determination of within-cluster variation
is instinctive and there are numerous ways to clarify it.

Let the cluster isCi, iε{1, 2, . . .K } andW (Ci) is the cluster
variation of Ci. K -Means algorithm lessens the sum of K
within-cluster variations [28]. In analytical terms, it solves
the ensuing optimization problem.

Minimize{
K∑
i=1

W (Ci)} (2)

In this case, within-cluster variation is determined by
Euclidean distance given as

W (Ck ) =
1
|Ck |

∑
i,i′∈=Ck

p∑
j=1

(xij − xi′j)
2 (3)

In (3), |Ck | is the number of elements in cluster Ck . The
double sum determines the squared Euclidean distance. The
computational cost is significantly reduced by considering
the squared distance.

The inner sum in (3) is for j dimensions in the data. For all
j dimensions, it is catching the deviation, and squaring it, and
adding it all together. The internal sum, i and i′ are firmed
and both correspond to the cluster Ck . The exterior sum is
choosing all the accessible pairs of observations in a cluster.
If there are nk observations or data points in the clusters, then

the inner sum of that cluster is given by(
nk
2

)
=
nk (nk − 1)

2
(4)

Therefore, the ratio of summation of pairwise Euclidean
distances to the number of elements in the particular cluster
gives ‘‘within-cluster’’ variations. Following are the impor-
tant steps in the K -Means clustering algorithm:

i. Randomly select K centroids in the data points or
observations

ii. Determine the Euclidean distance of all the observa-
tions across the centroids.

iii. Ascribe each observation to a cluster, positioned on the
minimum squared distance against the centroids.

iv. After step 2, absolute members in K clusters are
acknowledged. Now from these members, calculate the
centroids of the clusters.

v. Go back to step 2, re-appoint all the observations to
clusters, from the recent centroids.

vi. If the cluster accreditation is similar to the previous,
then conclude. This point is taken as the converging
point otherwise restart from step ii.

In this way, a new compelling is carried out among the
same data set points and the closest new center. A loop has
been obtained. From this loop, it came to notice that the K
centers revise their location gradually until centers do not
move anymore. Finally, this algorithmminimizes an objective
function given in (3).

2) HIERARCHICAL CLUSTERING TECHNIQUES
Hierarchical clustering is an algorithm that clubs identical
objects into block called clusters. Therefore, this is a set of
nested clusters that can be arranged as a tree. This clustering
technique is branched into two types [29].

1. Agglomerative Hierarchical Clustering Technique: At
the beginning, each data point or observation is considered as
an independent cluster. It is assumed that every observation
gives rise to an individual cluster. At each stage of implemen-
tation of this technique, a new bigger cluster is formed by
joining the two most similar clusters. This technique follows
the bottom-up approach. The matching clusters are iteratively
blended with other clusters until K clusters are formed. The
algorithm is as below.

i. In the beginning proximity of each observation/ data
point is noted and computes the proximity matrix.

ii. Combine two similar data points into a single big clus-
ter which is also called a node.

iii. This iterative process is continued, till all the observa-
tions are part of a single big cluster. In this way, all the
clusters are combined and form one cluster. The refrain
cluster package is a C++ library for hierarchical,
agglomerative clustering. It caters to the fast execution
of the algorithms when the input is an inconsistency
index.

2. Divisive Hierarchical Clustering Technique: This is a
top-bottom approach. All observations outset in one cluster
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and divisions are discharged recursively as one reaches the
bottom. It is opposite to the Agglomerative Hierarchical clus-
tering. It is not much used in the real world. At the early stage,
all the data points are treated as a single cluster. Those data
points which are not identical are segregated iteratively in dif-
ferent clusters. Each data point that is separated is considered
as a singular cluster. In the end, n clusters are available.
The Hierarchical Clustering Technique can be anticipated

by a tree-like diagram that subscribes to the sequences of
grouping or splits. This diagram is called a Dendrogram.
To decide dissimilarity between two clusters of observa-
tions, Hierarchical clustering uses different linkage meth-
ods/agglomeration methods. The important ones are listed
in [30] with related distance update formulae and information
on cluster dissimilarity. Median is expressed as,√

d(I ,K )2

2
+
d(J ,K )2

2
−
d(I , J )2

4
(5)

A new cluster is assumed to have been formulated by
joining clusters I and J , whereas K is any other cluster. The
size of clusters I , J , and K are is denoted by nI, nJ, and nK
respectively.

3) PAM CLUSTERING ALGORITHM
PAM meant for Partition Around Medoids. The algorithm
is used to determine a string of objects called medoids that
are posted at the center in clusters. Medoids are indicative
objects of a cluster with a data set. The average disparity of
Medoids to all the objects in the cluster is nominal. Medoids
are analogous in perception tomeans or centroids, but they are
always restrained as members of the data set. This algorithm
tries to reduce the overall dissimilarity of objects nearest to
the selected object [31]. The algorithmworks in the following
two phases.

1. BUILD Phase: The BUILD phase entails the following
steps

i. Initialize set S of the selected object and sum to it an
object for which the total average distances to the rest
of the objects is minimum.

ii. If O is taken as the set of objects then the set of
unselected objects is U = O − S. Let an object i ∈ U
as a candidate for insertion into the set of preferred
objects.

iii. For an object j ∈ U− {i} estimate Dj, the dissimilarity
in j and the nearest object in S.

iv. If Dj > d(i, j) then only object j will tender to the
judgment to choose object i as it benefits the quality
of the clustering. Thus, Cji = max{Dj – d (j, i), 0}.

v. Calculate the total gain accessed by summing i to S as
Gi =

∑
Cji.

vi. Select object i that maximizes Gi. Thus, S = S∪ {i}
and U = U− {i}.

These steps are continued until K objects have been con-
firmed.

2. SWAP Phase: The SWAP phase endeavor to upgrade the
set of chosen objects to filter the ingredient of the clustering.

This is made by taking all pairs (i, h) ∈ S×U and estimating
the effect Tih on the addition of heterogeneities between
objects and the nearest preferred object caused by interchange
i and h, that is, by placing i from S toU and placing h fromU
to S. The determination of Tih involves the calculation of the
contribution Kjih of each object j ∈ U− {h} to interchange i
and h. We have considered d (j, i) ≥ Dj.
The software package ‘‘R’’ is used for clustering analy-

sis and the clValid () function is utilized for validating the
results [32]. It comprises clustering algorithms like Hierar-
chical, K -Means, and PAM. These are used in this paper to
determine the goodness of clustering algorithms applied to
the PMU dataset under investigation. While doing internal
validation using this function, the quality of clustering is
assessed by taking the dataset and its clustering partition
as input. For the internal validation of clusters, measures
like connectedness, closeness, and segregation of the cluster
dissolutions are selected. The compactness is estimated by
cluster homogeneity based on intra-cluster variance. The sep-
aration indicates the degree of dissociation between clusters.

The popular indices like Dunn index [33] and Silhouette
width [34] combine both the measures compactness and sep-
aration into a single score. By using clValid () function the
user can concurrently select different clustering algorithms,
acceptance measures, and numbers of clusters in only one
function call. It also determines the most appropriate cluster-
ing technique and an optimal number of clusters for the given
dataset. The clustering validation for PMU data presented
in this paper is done by using the following three popular
indices.

a: CONNECTIVITY
The connectivity reveals to what grade data points are located
in the exact cluster as their closest companions in the data
space and is measured by the connectedness [35]. Let nni(j) be
the jth closest companions of data point i. Also, consider xi,
nni(j) equal to zero if i and nni(j) are in a similar cluster
and 1/j by any other way. Then, for a peculiar clustering
partition, ζ = {C1, . . . . . .CK} of the N observations within
K dissociate clusters, the connectivity is expressed as,

Conn(ζ ) =
N∑
i=1

L∑
j=1

xi, nni(j) (6)

Here L is the parameter that determines connectivity measure
as contributed by the number of neighbors. The value for
connectivity lies between zero and∞ is expected aminimum.

b: DUNN INDEX
The Dunn index is defined as the ratio of the littlest distance
within observations not in a similar cluster to the greatest
intra-cluster distance [31]. It is calculated as

D(ζ ) =
Ck ,Cl

min
∈ ζ (

min
i ∈ Ck , j ∈ Cl dist(i, j))

max
Cm∈ζ diam(Cm)

,Ck 6= Cl (7)
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The maximum distance between data points in a clusterCm
is denoted by diam (Cm). The value for the Dunn index lies
between zero and∞ is supposed a maximum.

c: SILHOUETTE WIDTH
The Silhouette value of a particular data point represents
the degree of certainty in the clustering. The average of
each observation’s Silhouette value is termed as Silhouette
width [32]. When the data point is neatly clustered its value
is close to 1, whereas when it is disorderly clustered it is close
to-1. For observation i, it is defined as

S(i) =
bi − ai

max(bi, ai)
(8)

where ai is the average distance between i and all other data
points in the same cluster, and bi is the average distance
between i and the data points in the nearest neighboring
cluster, i.e.

ai =
1

n(C(i))

∑
j∈C(i)

dist(i, j) (9)

bi =
min

Ck ∈ ζ\C(i)
1

n(C(i))

∑
j∈Ck

dist(i, j)
n(Ck )

(10)

whereC(i) is the cluster that consists of observation i, dist(i, j)
is the distance (e.g. Minkowski, Manhattan, Cosine, Ham-
ming, Euclidean, etc.) between observations i and j. The
cardinality n(C) is for cluster C . The Silhouette width is in
the interval [−1, 1].

Figure 2 describes a flowchart indicating the application
of clustering techniques and internal validation measures as
applied to the PMU dataset under investigation. This gives
information on the number of clusters formed. Applications
of these clustering techniques to identify the synergy among
the data received from PMUs placed at various locations in
the power system are demonstrated in the following sections.

FIGURE 2. Flowchart indicating the application of clustering techniques
and validation measures to PMU data.

III. SYSTEM UNDER STUDY
Maharashtra State Electricity Transmission Company
Limited (MSETCL) is the largest electric power transmis-
sion utility in the State sector in India. It has 34 EHV
substations of 400 kV and above level and 647 substations
of 220 kV and below voltage level. Its transformation capac-
ity is 128990 MVA and reactive Power Compensation is
5508 MVAR. This transmission system is capable to handle
about 21000 MW of power. MSETCL comprises intra and
inter-regional power transmission lines [21]. Important fea-
tures of the MSETCL are given in Table 1.

TABLE 1. Important features of the MSETCL [21].

PMUs are connected at prime EHV substations in a
URTDSM project begun by the Government of India. Com-
missioning of PMU in 15 EHV substations covers 67% of the
MSETCL grid. The three-layered WAMS architecture of the
MSETCL network is shown in Figure 3. It indicates PMUs
commissioned in a few 220kV and 400kV substations. Some
of them are connected to the major power plants and the
±500 kV HVDC system.

FIGURE 3. Three-layered WAMS architecture in MSETCL [21].

The PMUs measure the data consist of eleven parameters
of a power system. The general parameters bus voltages
(Va, Vb, and Vc) and line currents (Ia, Ib, and Ic), are used in
this paper to check the synergy of data with each other. PMUs
sent this data to the PDC placed at the State load dispatch
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FIGURE 4. 400kV and 765 kV network overview of MSETCL.

center (SLDC) at Kalwa near Mumbai. All these measure-
ments are synchronized with prevalent time. In the next
layer, this data is used for numerous applications of WAMS
like real-time visualization, state estimation, early warning,
congestion management, oscillation monitoring, damping
control, voltage stability, adaptive protection, etc.

Figure 4 depicts a 400kV and 765 kV network overview
of the MSETCL-SCADA system. The 400kV Babhaleshwar-
Ektuni circuit-1 and 400kV Babhaleshwar-Padghe twin
circuit lines emanating from the 400kVBabhaleshwar substa-
tion experienced tripping cause this disturbance. These lines
are indicated in violet color in Figure 4. The line-flows by the
SCADA system during normal conditions are indicated by
the letter ‘A’ in green color, whereas that during the tripping
condition are shown by the letter ‘B’ in red color, and the
important locations under discussion to describe this distur-
bance are indicated by blue color. Table 2 shows line power
flows during the normal condition and after these two events.
The restoration was made according to standard procedures
set by the Indian Electricity Grid Code (IEGC) Regulation.

TABLE 2. Line flows preview during normal and line tripping conditions.

The PMU data received from eight 400kV substations
(i) Padghe, (ii) Kalwa, (iii) Lonikand, (iv) New Koyana,
(v) Girawali, (vi) Lamboti, (vii) Chandrapur, and (viii) Koradi
is used for analysis. The PMU data compiled from these
eight EHV substations, between the periods 16:22:30 to
16:32:30 on 25th May 2017. This practical field data registers
two explicit line tripping events during this period. Event-1
gives 400 kV Babhaleshwar-Ektuni transmission line trip in
zone-1 of distance relaying at 16:25:36:520 Hrs. Event-2
shows a 400 kV Babhaleshwar- Padghe transmission line
trip at 16:30:38:160 Hrs. Both these events are recorded
by the PMUs placed at eight substations. The cause of the
tripping recorded is phase-b to ground fault. Figure 5 and
Figure 6 depict voltage and current variation as revealed by
the PMU system during these events [36].

The PMU data consist of eleven power system param-
eters received at SLDC Kalwa is classified into ambient
data and event data. The one set of data contains; (Va, Vb,
and Vc), line currents (Ia, Ib, and Ic), active and reactive
power (P, and Q), frequency (f ), rate of change of frequency
(df/dt), and power angle (δ). The number of PMU measure-
ments from a single PMU per day comes out approximately
23760000. This data is of big volume and it comprises hidden
information about the power system dynamics. Therefore,
after receiving the data at SLDC, it is required to explore
such large data to extract the information hidden in it. This
information is required for the improvement of system per-
formance. The purpose of this research article is to identify
the synergy among the data obtained from eight substations
of the MSETCL grid. This is achieved by applications of data
analysis techniques. The data analysis techniques are applied
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FIGURE 5. Practical results: Voltages indicated by the WAMS during 400kV
Babhaleshwar occurrence; (a) phase-a, (b) phase-b, and (c) phase-c .

to the voltages and current data recorded by PMUs during the
event. This is used to understand the behavior of the grid.

The event in the power system is nothing but a contingency.
It is the breakdown or loss of a small part of the power system.
It comprises loss of transmission line, failure on generator or
transformer, etc. This results in an unplanned outage. In gen-
eral, such outages may lead to overloads in other branches
and/or abrupt changes i.e. rise or drop in system voltage.
Contingency analysis is adopted to determine violations. The
data analysis techniques extract the important information for
contingency analysis which gives information of violations.
This information assists the system operator to take reme-
dial action for the removal violations and maintain system
stability.

IV. RESULTS AND DISCUSSION
This section elaborates utilization of data analysis techniques
described in section II with PMU data obtained from the

FIGURE 6. Practical results: Currents indicated by the WAMS during 400kV
Babhaleshwar occurrence; (a) phase-a, (b) phase-b, and (c) phase-c .

MSETCL. Table 3 lists the abbreviations of 400kV substa-
tions. The PMU data from these locations are used for the
analysis of disturbance under consideration. The pre-Event 1,
ambient data of PMUs comprises 5288 samples, whereas
PMU Event-1 data consists of 38 samples. This data is
used for box plots and thereby identification of correlation

TABLE 3. Abbreviations of MSETCL substations.
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FIGURE 7. Box-plots of Voltages for 400kV Padghe substation;
(a) phase-a, (b) phase-b and (c) phase-c .

among various locations in the MSETCL grid. This study can
assist system operators in improving decision-making during
disturbances/contingencies.

A. APPLICATION OF BOX PLOTS
The utilization of box plots to understand the behavior of the
synchrophasor data during ambient conditions and Event-1 is
demonstrated. Figures 7-10 illustrate the behavior of volt-
ages, and currents for 400kV Padghe, Kalwa, and Lonikand
substations by their respective box plots. Figure 7 indicates
the behavior of voltages at 400kV Padghe substation during
the ambient and Event-1 period. Figures 8 and 9 depict the
behavior of voltages at 400kV Kalwa and Lonikand substa-
tions respectively during ambient and Event-1.

Table 4 gives the comparison of voltage outliers as indi-
cated by box plots and actual PMUmeasurements for Padghe,
Kalwa, and Lonikand substations respectively. Figure 10

FIGURE 8. Box-plots of Voltages for 400kV Kalwa substation; (a) phase-a,
(b) phase-b, and (c) phase-c .

TABLE 4. Comparative chart of box plot indications and voltages
measured by PMUs.

indicates the behavior of currents Ib and Ic at 400kV Padghe
substations during the ambient and Event-1 period. The out-
lier for Ib and Ic indicates a current of approximately 2.2 kA,
pointing it as the fault current. Three-phase voltages found
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FIGURE 9. Box-plots of Voltages for 400kV Lonikand substation;
(a) phase-a, (b) phase-b, and (c) phase-c .

normal (i.e. line to a ground voltage within 230-235kV) as
indicated by the first quartile of the respective box plots
during ambient conditions is shown in Figures 7-9 for Padghe,
Kalwa, and Lonikand substations. The box plots during the
event of line tripping condition show the first quartile appears
bigger one compared to the third quartile. The voltages are
varying to 220kV and the outlier of voltage touched to 188kV
is shown in Figure 7(b). This indicates a drop in voltages
during the event period. In India, voltages are said in nor-
mal condition for 400 kV systems, if they are in the range
of 380-420kV (L-L). The voltage variation observed momen-
tarily during the above disturbance by box plots indicates
a violation of the normal condition. Similar changes in the
rest of the parameters are also obtained with the box plot
analysis. These box plots give valuable information on dis-
turbance/event detection and changing dynamic conditions of
the grid from normal to abnormal. Table 5 and 6 summarize

FIGURE 10. Box-plots of Currents for 400kV Padghe substation;
(a) phase-b, and (b) phase-c .

box plot data analytics for Kalwa, Lonikand, and Padghe
substations for the parameters Vb and Ib during Event-1 and
post Event-1 (ambient condition).

B. UTILIZATION OF CORRELATION TECHNIQUE
This sub-section demonstrates how the line tripping event has
an impact on changes in the dynamic operating conditions
of the grid. One of the statistical analysis techniques known
as Pearson’s Correlation Coefficient (PCC) is utilized effec-
tively in understanding the response of PMU data received
during and after the events from various 400kV substations.
It broadly depicts correlation matrices for important sys-
tem parameters during ambient and Event-1 condition by
applying this technique to PMU data for selected voltage
parameters. Each coordinate (circle) of the correlation matrix
represents the correlation coefficient of two PMU measure-
ments from different locations with an exception of diagonal
elements.

Any variable related to a particular location is
self-correlated as shown in Figures 11-13. The circle color
indicates the closeness of correlation to 1 or −1. The coor-
dinate sign gives information about whether PMU measure-
ments for the given location pair are positively correlated or
negatively correlated. Thus any circle representing brown/red
shade is termed as de-correlated. It is observed that buses with
high proximity to disturbance location or having connectivity
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TABLE 5. Summary of block plots analysis for Phase-b voltage.

TABLE 6. Summary of block plots analysis for Phase-b current.

to one another indicate a strong correlation within a given
dataset.

The PCC and degree of correlation indication explained in
Section II assist in establishing the correlation of data. The
data when applied to the correlation matrix of Figure11 gives
an idea about the correlation between voltages Vb and Vc
as indicated by PMUs from various locations during the
ambient and Event-1 period. Figure 11 (a)-(b) shows a graph-
ical display of correlation matrix for Vb and Vc during ambi-
ent indicating the high correlation of PMU data, similarly

FIGURE 11. Correlogram for Voltages of 400kV substations during
ambient condition; (a) phase-b, and (b) phase-c .

Figure 12 shows a graphical display of correlation matrix
for Vb and Vc during Event-1 based on PMU data from
substations listed in Table 3. The variable with the substation
abbreviation indicates related system parameters based on
PMU measurement of that substation using which correla-
tion matrix is formed. For example, PDGH_Vb denotes the
phase-b voltage of 400kV Padghe substation. The parameters
about phase-b and phase-c have shown maximum changes
during this disturbance. Therefore, these parameters are con-
sidered for analysis. This graphical display of a correlation
matrix is termed a Correlogram. The color code scale given
with the matrix illustrates the degree of correlation of PMU
data for different 400kV substations from very high corre-
lation to low correlation for the variable under considera-
tion. Figures 11-13 indicate that correlation coefficients are
proportional to the color intensity and size of the circle.

Figure 13 shows the correlation coefficient for voltages Vb
and Vc during Event-1. The right side of the Correlogram
shows the correlation coefficient and the respective col-
ors. The PMU is installed on 400kV Padghe-Babhaleshwar
circuit-1. This line connects to the 400kV Babhaleshwar
substation where line tripping and related disturbance are
noticed. Table 7 shows the correlation for voltages based
on PMU data for Event-1.In this case, when the 400kV
Padghe-Babhaleshwar line tripped, 400kV Padghe-Kalwa
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FIGURE 12. Correlogram- graphical display for Voltages of 400kV
substations during Event-1; (a) phase-b, and (b) phase-c .

line flows might be got affected seriously if other sources
were absent. The inference can be seen from the Correlogram
indicating the correlation coefficients. From Table 7 it is
clear that the highest correlation of 0.98 is observed between
Lonikand and New Koyana pair. The correlation coefficient
for the Padghe-Kalwa pair for voltages Vb and Vc is 0.87 and
0.83 respectively indicating a high Correlation. The Correlo-
gram of other power system parameters can also be obtained
in a similar way to understand their behavior during various
power system events.

Event-2 is related to 400kV Babhaleshwar-Ektuni line
tripping. The effect of this tripping can be seen on 400kV
Babhaleshwar-Walunj circuit-1, 400kV Taptitanda-Walunj
double circuit, and also on 400kV Ektuni-Taptitanda double
circuit.

Thus, the impact due to disturbance on different lines
and substation locations can be understood from the Cor-
relograms. Correlograms accessed using PMU measure-
ments under different contingencies serves as an important
decision-making tool for system operator while managing the
grid.

C. APPLICATION OF CLUSTERING TECHNIQUES TO PMU
DATA AND CLUSTER VALIDATION
This sub-section of the paper elaborates the application of
some of the important clustering techniques like K -Means,

FIGURE 13. Correlogram-numeric display showing correlation
coefficients during Event-1; (a) phase-b, and (b) phase-c .

TABLE 7. Correlation indication for voltages based on PMU data for
event 1.

Hierarchical, and PAM clustering to PMU data accessed
during the disturbance. This dataset comprises three-phase
voltages, currents, and frequency from eight substations. The
data of 15000 samples each for these seven parameters from
eight substations comes out to 840000 samples in total.

The K -means, PAM, and Hierarchical clustering tech-
niques are applied to this dataset. This assists in understand-
ing the characteristics of data from different field locations
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within a grid during a disturbance. The Connectivity, Dunn,
and Silhouette indices against the cluster numbers from 2 to
6 are shown in Fig. 14, Fig. 15, and Fig. 16 respectively.

FIGURE 14. Connectivity index versus the number of clusters for different
clustering methods.

FIGURE 15. Dunn index versus the number of clusters for different
clustering methods.

FIGURE 16. Silhouette index versus the number of clusters for different
clustering methods.

The smallest Connectivity index asserts a reliable optimal
partition with the optimal number of clusters. A minimum
value of the Connectivity index gives the optimal number of
clusters. Fig. 14 depicts variation in Connectivity index for
three different clustering techniques. It is observed that the
Connectivity index for Hierarchical clustering is better than
the other two methods over the entire clustering range. Dunn
index is defined as the ratio of the minimum distance between
observations (not in the same cluster) to the maximum intra-
cluster distance. Its value is between zero and infinity and
should be maximal. A larger value of the Dunn index affirms
good clustering. The number of clusters that maximize this
index is considered the optimal number of clusters. Thus,

from Fig. 15 and Table 8 it is observed that the Dunn Index
is more for Hierarchical clustering.

TABLE 8. Summary of block plots analysis for phase-b current.

Silhouette width specifies an approach for interpretation
and validation of firmness within clusters of data. Themethod
provides a concise graphical visualization of the classification
of each object. The Silhouette width runs from −1 to +1.
The high value indicates that the object is finely matched to
its cluster and it is poorly matched to nearby clusters. The
clustering configuration is appropriate only if most objects
have a high value. In case, if various points have a negative
or small value, then the clustering architecture may have
either large or cramped clusters. Figure 16 depicts the internal
validation result using the Silhouette value for three cluster-
ing methods. It illustrates the variation in Silhouette value
for three different methods under varying conditions of the
number of clusters from 2 to 6. It is seen that the Silhouette
value for 2 clusters is around 0.9 (near to unity) in respect of
Hierarchical and K -means clustering. For PAM clustering it
is observed around 0.5.

Therefore, from Table 8, it is seen that for most of the
clusters by the Hierarchical clustering method the connec-
tivity index is minimum, Dunn index is maximum and the
Silhouette value approaching 1.

Hierarchical clustering hardly brings the correct solution.
It embroils lots of aberrant decisions. It does not perform
with missing data, but it works poorly with mixed data types.
Also, it does not perform well on big data sets. Thus, its
main output i.e. Dendrogram, is frequently misinterpreted.
However, K -means clustering is unsupervised learning and
it is for unlabeled data i.e., data without defined groups.
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The algorithm performs iteratively to designate every data
point to one of the K groups based on the provided fea-
tures. But, in this study, the Hierarchical clustering gave the
same results as K -means clustering. It is possible to find the
optimal number of clusters by observing the Dendrogram
of a Hierarchical clustering. This task is easier compare
to K -means where efforts are made to predict an optimal
number in advance. Therefore, the Hierarchical clustering
method was selected as more suitable for this PMU data set.

Computing the optimal number of clusters in a given data
set is a vital issue in partitioning clustering. E.g. in K -means
clustering, the user needs to specify the number of clusters K
generated. But still, there is no definitive answer to this query.
In some way, the optimal number of clusters is subjective.
It depends on the approach used for measuring similarities
and the terms used for partitioning. An easy and suitable solu-
tion contains the inspection of Dendrogram. It is originated
by Hierarchical clustering to check if it proposes an exact
number of clusters. Unfortunately, this is also a subjective
approach. The package NbClust contains 26 indices used to
find recommended number of clusters. It is observed that
most indices in cluster 2 are shown in Fig.17. The optimal
score for these three clustering algorithms based on the inter-
nal validation is given in Table 9.

FIGURE 17. Frequency of indices in the number of clusters.

TABLE 9. Optimal score from internal validation.

Thus such information on the formation of clusters using
real-time PMU measurements under dynamically changing
conditions of electrical power systems gives a better under-
standing of the behavior of the grid. This assists system
operators in appropriately managing grid operations to keep
the system stable at State, Regional, National levels.

V. CONCLUSION
PMUs are installed in India as part of a Central Government
Unified Real-Time Dynamic State Measurement (URTDSM)
project. The project has been incorporated to implement
applications of synchrophasor technology in the Indian power
system operation. This paper identifies the synergy among
the PMU data obtained from various substations under the
western part of the Indian power system i.e. MSETCL grid
by applications of data analysis techniques. Data received
from PMUs installed at 400 kV substations in the MSETCL
grid is used to analyze 400kV line tripping events. It is
found that the box plots clearly distinguish between ambi-
ent state and disturbance condition. The Pearson’s Correla-
tion Coefficient defined the correlation of voltages among
different substations. It is observed that the correlations
are firmed among Lonikand-Koyna, Lamboti-Lonikand, and
Padghe-Kalwa substations. The Correlogram from the PMU
data indicates the correlation between the substations during
events.

This paper also demonstrates the application of three
clustering algorithms viz. K -Means, Hierarchical, and Par-
titioning Around Medoids (PAM). The internal validation
measures such as the Connectivity index, Dunn index, and
Silhouette width are used to determine the best clustering
algorithms. Thus, the information from box plots, Correlo-
gram, and the formation of clusters under different operating
conditions gives a better idea about the grid. The outcome
of this analysis can serve as an important decision-making
tool to system operators while managing the grid at State,
Regional, National levels. The timely and accurate capture
of data plays an important role in the efficient management
of the power grid. Therefore, future research should focus
on advanced techniques, such as artificial intelligence (AI),
and machine learning (ML). This will not only exploit the
practical PMUs data but also make the decision process less
dependent on human interference.
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