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ABSTRACT While our left and right eyes clearly have a high degree of external bilateral similarity, it is
less obvious to what degree they have internal bilateral similarity. This is especially true for the central
retinal blood vessels (CRBVs), which are responsible for supplying blood to retinas and also can be used
as a strong biometric. In this paper, we investigate whether the CRBVs of the left and right retinas possess
strong enough bilateral similarity so that we reliably tell whether a pair of the left and right retinas belong to
a single subject. We evaluate and analyse the performance of both human- and deep neural network-based
bilateral verification by experimenting on two publicly available data sets.

INDEX TERMS Retina, symmetry, central retinal blood vessels, deep neural network, biometric system.

I. INTRODUCTION
Symmetry can be defined as uniformity, equivalence, or exact
similarity of two parts divided along an axis, whereas asym-
metry indicates lack of equivalence or similarity. Paired
organs, such as eyes, ears, hands, and legs, give a bilateral
symmetrical look to the exterior of our human body by divid-
ing it into two parts through an imaginary left-right axis. The
bilateral symmetry of paired organs gives a sense of beauty.
In medical science, it helps doctors to detect and monitor the
progress of unilateral diseases as well as to use one side of a
paired organ as a proxy of the other side for post-treatment
analysis. In biometric, it opens a possibility of developing
side independent biometric systems in which a biometric
extracted from one side of a paired organ, such as iris, retina,
and palmprint, can be used to access a system developed
for the opposite side. The study of bilateral symmetry may
also help us to understand how strong a biometric system
would be if both sides of a paired organ are used jointly.
If the left and right organ based biometrics of a subject are
completely different, then an authentication system using
both sides would, loosely speaking, be two times stronger
than an authentication system using one side.
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None of our paired body organs have identical left and
right forms. That means our human body shows approximate-
bilateral, pseudo-bilateral, or nearly-bilateral symmetry
instead of perfect-bilateral symmetry. Furthermore, for many
paired organs that seem approximately symmetric from the
outside, it is not evident whether they are symmetric inter-
nally. Most of the time, the internal sides of paired organs
look asymmetric instead of symmetric. It is, in particular, true
for the internal parts of our eyes, e.g., the retina. Especially
when 2D color fundus photographs are used for the left and
right retinas, the unique tree or venation-like structure of
the central retinal blood vessels (CRBVs) spreading over the
retina gives a bilateral asymmetrical look to color fundus
photographs at first glance. As shown in Fig. 1, the outside of
our eyes has a noticeable approximate-bilateral symmetrical
look and the colored retinas show a tiny bilateral symmetrical
look. In contrast, the structures of CRBVs of the left and right
retinas seem almost unique.

Although the CRBVs of a subject’s left and right retinas
look asymmetric at first glance, they may be similar in a way
that can be detected by humans if they look more carefully
as well as by machine learning algorithms. In this paper,
using human volunteers and deep neural networks (NNs),
we investigate bilateral similarity in the CRBVs of the left
and right retinas. Instead of measuring specific features of
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FIGURE 1. Comparison between two pairs of eyes, retina, and segmented
CRBVs by a neural network of two subjects. It is easy to see bilateral
symmetry in our eyes from the outside. However, seeing bilateral
symmetry in retinas is difficult, especially in CRBVs.

the CRBVs such as length or caliber of CRBVs, as is typical
in the research of medical science, in this paper, we turn the
problem of finding bilateral similarity in CRBVs into a binary
classification problem with the segmented CRBVs as input.
The basic assumption is that when there is substantial bilat-
eral similarity in a pair of CRBVs, there is a high probability
that the pair belong to a single subject. We investigate if it
is possible for both untrained and trained human volunteers
as well as for deep NNs to tell whether a pair of CRBVs of
the left and right retinas belong to a single subject or to two
different subjects. From the perspective of biometric, this is a
side independent verification task. In the usual CRBVs based
biometric system, CRBVs extracted from the retina of the
same side are compared in the verification, whereas in this
paper, we use CRBVs segmented from both sides of retinas.

In principle, without observing any examples of positive
and negative pairs, it is not possible to know in which sense
CRBVs from the same subject are similar. For example, if the
caliber of the CRBVs depends on the subject, how much can
it vary between the two retinas of one subject and how much
can it vary from subject to subject? By observing labeled
training data, both humans and deep NNs may be able to
learn what type of similarities indicates that two retinas are
from the same subject. Untrained volunteers may also have a
chance to do better than random, either by making educated
guesses about in which sense CRBVs from the same subject
are similar or by assuming that the pairs with the largest
bilateral similarity are positive if they know that there are both
positive and negative pairs in the test set.

Our work in this paper is an extension of our previous work
reported in [1]. Contrary to [1], here we report the perfor-
mances of the trained volunteers along with the untrained vol-
unteers. We also analyse which parts of CRBVs are used by
humans as well as by the deep NNs to measure the similarity
in the CRBVs of the left and right retinas. We investigate

different setups of a Y-shaped neural network (we name
it YNN). We also analyze how deep NN-based approaches
differ from the perception of human volunteers.

This paper is organized as follows. In Section II, we briefly
describe the retina’s anatomical structures seen in a fun-
dus photograph, previous works on bilateral similarity in
CRBVs as well as CRBVs based biometric. In Section III,
we explain our approaches for manual and automatic veri-
fication. In Section IV, we describe our experimental setup.
In Section V, we analyse our results. Finally, we draw our
conclusions in Section VI.

II. BACKGROUND
A. BRIEF DESCRIPTION OF RETINA
The retina is a thin, semi-transparent, multi-layered neural
tissue that covers two-thirds of each eye’s interior. It is
anatomically and physiologically considered as an extension
of our brain. It is mainly responsible for converting incoming
electromagnetic signals from theworld outside of our eye into
neural signals and then handing the neural signals to the optic
nerves. The neural signals, relaying through the optic nerves,
form images into the visual cortex of our brain, and therefore,
we can have a sense of vision.

The approximately 0.5 mm thick retina is sandwiched
between the avascular vitreous and the highly vascular
choroid. It is one of the most metabolically active tissues
in the human body. It consumes a high level of oxygen and
nutrients to ensure our visual functionality. Two kinds of
well-organized blood vessels, named CRBVs and choroidal
blood vessels, are responsible for supplying oxygen and nutri-
ents to the retina, as well as transporting away waste from
the retina. Branching out from the ophthalmic blood vessels,
CRBVs pierce the optic nerve and enter the internal side of
the retina through the optic disc (as shown in Fig. 2).

FIGURE 2. A simple schematic diagram of the human eye is drawn to
understand the blood supply to-and-from the retina.

As shown in Fig. 3, in a color fundus photograph, we can
see only one layered, circular, colored foreground of the
multi-layered retina on a dark background. Most of the fore-
ground of a retina is covered by CRBVs which are composed
of arteries (i.e., central retinal arteries) and veins (i.e., central
retinal veins). Other anatomical structures, such as themacula
and the optic disc (OD), are also visible in a color fundus
photograph. Depending on the fundus camera, we may see a
side indicator (i.e., triangle or oval-shaped bump) always at
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FIGURE 3. Visibility of main anatomical structures in a color fundus
photograph of a healthy right retina. T: Temporal, N: Nasal,
S: Superior, I: Inferior side of the retina.

the right side, which helps us to determine whether it is a left
or right side retina.

Coming out from the OD on the nasal side, the CRBVs
form four branches: inferior, superior, nasal, and temporal.
The temporal CRBVs are close to the juncture named temple,
whereas the other three types of CRBVs are close to the
nose, forehead, and cheek, respectively. The first bifurcation
of the CRBVs can occur inside the optic nerve, or at the
head of the optic nerve, or a bit upper of the OD. The
arteries are, in general, bright red, whereas veins are purple-
red. Generally, the arteries have a smaller caliber than the
veins inside the OD area as well as surrounding the OD area.
Near to the boundary of the foreground of the retina, it is
hard to distinguish veins from arteries either by color or by
caliber. The small branches of arteries and veins are known
as arterioles and venules. See [2]–[4] for further details about
the retina and blood supply.

B. IMPORTANCE OF CRBVS
The CRBVs play an essential role in our vision. Any kind
of disturbance in the blood supply to the inner layers of
the retina through the CRBVs can have a negative effect
on the retina and, therefore, on our vision. Severe pathol-
ogy in CRBVs (e.g., diabetic retinopathy such as neovas-
cularization) can even cause irreversible partial or complete
vision loss. The CRBVs have similar anatomic, physiolog-
ical, and embryological characteristics as cerebral vascula-
ture. Many microvascular changes in the brain and other
organs are reflected in the changes of the CRBVs. There
are associations between different signs of the CRBVs and
non-ocular diseases. For example, retinal arteriovenous nick-
ing, focal retinal arteriolar narrowing, an increased arteriolar
wall reflex, and alteration of retinal vessel fractal dimensions
are associated with stroke [5], [6], whereas arteriolar narrow-
ing and venular dilation in CRBVs are likely associated with
increased risk of coronary heart disease in women [7]. Since
the CRBVs can be directly and noninvasively visualized in
vivo, therefore, the CRBVs draw great research interest in
medical science for understanding, collecting information

about, and assessing risks of many diseases at an early stage.
Moreover, because of the unique and almost lifetime per-
manent patterns, they also draw huge research interest of
biometric researchers.

C. PREVIOUS WORKS ON BILATERAL SIMILARITY
IN CRBVS
The bilateral similarity in the retina helps ophthalmologists
to use one retina as a proxy of the other retina, especially for
post-surgery analysis and for detecting the development of
pathology in the retina. For example, it is difficult to measure
the vascular density of the retina suffering from epi-retinal
membranes and retinal detachment. By using the measure-
ments of bilateral similarity of macular vascular density in
normal subjects as a reference value, whereas healthy retina
of the patient as pre-operative retina and the retina received
medical treatment as post-operative retina [8], ophthalmolo-
gists can get an idea about the effect of the medical treatment.

Using different kinds of tomography such as optical
coherence tomography (OCT), Heidelberg retina tomogra-
phy (HRT), Spectral domain OCT (SD-OCT), etc., bilateral
symmetry between different anatomical structures and layers
of the left and right retinas was reported under the term
interocular symmetry [8]–[13]. However, we did not find
any literature where symmetry in CRBVs of the left and
right retina was reported using tomography images. Instead,
using fundus photographs, bilateral symmetry in CRBVs
of the left and right retina was reported in [14]. Measur-
ing diameters of all retinal arterioles and venules located
0.5 − 1.0 disc diameters from the OD margin of pairs of
fundus photographs taken from 1546 subjects, substantial
Pearson correlation, r , was found between the left and right
eyes: for arterioles r = 0.70 and for venules r = 0.77.
Moderate Pearson correlation was found for the arteriole-to-
venule ratio, whichwas r = 0.54. Similar kinds of correlation
were reported in [15]–[17]. Measuring the fractal dimension
of the retinal vascular network as a means of quantifying the
branching pattern, Taylor et al., reportedmoderate correlation
(i.e., r ∈ [0.403, 0.582]) between the left and right retina
in [18]. See [19] for a review on retinal symmetry.

D. CRBVS AS BIOMETRIC
For the last 122 years, the CRBVs have been playing an
important role in retina-based biometric, which is considered
one of the high-performing biometrics. In 1899, Dr. Levin-
sohn first mentioned in one of his German articles that retinal
images can be used for human identification. Along with the
size and shape of the OD and its border, he mainly considered
the arrangement of the CRBVs to distinguish humans from
each other. In 1918, Haber showed that by placing a fine
screen in front of the fundus photographic plate, CRBVs
could be represented as a sketch on a grid paper. Later
Dr. Blascheck wrote a formula in his unpublished work to
distinguish individuals considering the external appearances
of the OD and macula, visibility of the choroidal blood ves-
sels, atrophy of the choroid, certain permanent abnormalities
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(such as coloboma), the location of the first bifurcation of
the arteries, and the number of the veins and the arteries
intersecting two parallel lines in the superior and inferior parts
and the crossing patterns of the arteries and veins through
those lines from left to right. Details of these works can
be found in Türkel’s book [20] written in German. Further-
more, a short note in English can be found in [21]. In 1935,
Dr. Simon and Dr. Goldstein claimed in [22] that even though
the patterns of both arteries and veins can be jointly used for
human classification, only veins are good enough for human
classification since they have a more distinctive appearance
than the arteries, being larger and their lumen photograph-
ing darker. After studying six pairs of monozygotic twins
(i.e., single egg twins who originate from one chorion and
a single placenta, and who are always of the same gender
and belong to the same blood group) in 1955 [23], Dr. Tower
reported that the OD shows a high degree of correlation,
whereas the macula and the perimacular region exhibit a
fair degree of correlation among pairs of twins. However,
dissimilarity prevails in all portions of the CRBVs except
those that are at or close to the OD, macula, and perimacular
regions of twins. Since even for monozygotic twins, no other
anatomic structures of the retina (such as OD and macula)
are as unique as CRBVs, these gradually became the main
research interest of retina-based biometric researchers instead
of the whole fundus photographs.

In the patent US 4,109,237 [24], the patterns of CRBVs of
subjects were captured by illuminating the retina with visible
monochromatic green light since this light is absorbed by the
dark red blood vessels, while substantially reflected by the
retinal tissue, which results in high contrast between tissue
and vessels. Later it was found that the brightness of the
visible illuminating light needed to get a recognizable pattern
caused discomfort to the subjects being identified. It also
caused the eye’s pupil to constrict, making it more difficult
to get CRBVs pattern. Therefore, in the later patents, such
as US Patent 4393366 [25], US Patent 4620318 [26], and
US Patent 5532771 [27], near-infrared (NIR) light was used.
The wavelength of NIR light is invisible to the human eye.
Therefore, subjects do not feel any discomfort. Moreover,
it has a cost-saving advantage as well. It should be noted that
scanningwith NIR light provides reflections from the CRBVs
as well as the choroidal blood vessels. In fact, the choroidal
blood vessels reflect most of the useful information needed to
identify subjects. Therefore, in the NIR-based retina identifi-
cation system, the contribution of CRBVs is very small. Since
the choroid is not a part of the retina but is located underneath
the retina, it is a bit misleading to consider the choroidal
blood vessels as a retina-based biometric. However, retina
identification is a familiar term. Therefore, the choroidal
blood vessels based identification is also termed retina
identification [28].

Many research works [29]–[37] extracted features such as
ridge endings, ridge bifurcations, crossovers, vessels’ diam-
eter size, vessels’ position and orientation, the skeleton of
the whole structure of CRBVs, and so on from the CRBVs,

for authentication. In the literature, few works can be found
where whole retinal images were used for authentication,
such as [38], [39]. However, none of these works considered
the scenario where one retina is used for enrollment (regis-
tration) and the other is used for authentication. One reason
could be the asymmetric look of CRBVs of left and right
retinas. At a quick glance, the CRBV patterns of the left and
right retinas of an individual do not appear to be more similar
than those of different individuals.

III. OUR APPROACH FOR FINDING BILATERAL
SIMILARITY IN CRBVS
Contrary to previous works in medical science, such
as [15]–[18], [40], in this work, we turn the problem of
finding similarity in CRBVs of the left and right retina into
a person verification/authentication problem. We perform the
person verification task on the masks of CRBVs, i.e., images
showing CRBVs in white on the black background.
The masks are produced by a convolutional neural net-
work (CNN) taking color (RGB) fundus photographs as input
(see Fig. 4 (a)). We choose to use the masks of CRBVs
instead of the colored CRBVs segmented from RGB fundus
photographs to reduce the impact of intersession variability
on our experiments. For example, the light conditions on a
particular day may make two images from the same session
more similar so that a pair of colored CRBVs from the same
subject is correctly recognized because of the light conditions
rather than because of the similarity between the two retinas.
Ideally, we should use only pairs of fundus photographs from
different sessions. However, among the databases we have

FIGURE 4. (a) Generating masks of CRBVs from color fundus photographs
by a deep CNN. (b) Automatic verification of a pair of masks of CRBVs
by YNN.
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access to, this is only possible in one database which is too
small for a detailed experimental analysis. We, therefore,
use that database to confirm that for the masks of CRBVs,
the intersession variability has no impact on the results,
whereas we use a larger database for the main experiments.
In the remainder of this article, we will refer to masks of
CRBVs simply as CRBVs.

In order to take human volunteers’ opinions, we use a
computer interface to show four pairs of CRBVs of the left
and right retina in a single frame at once. In total, we show
100 pairs in a random order, among which 50 pairs are
positive (i.e., pairs are from the same subject) and 50 pairs
are negative (i.e., pairs are from different subjects). Vol-
unteers are asked to make a binary decision about pair
of CRBVs. Bowyer et al., [41] performed similar experiments
with human subjects for pairs of iriseswith the aim to find tex-
ture similarity in the left and right irises (see Subsection IV-D
for details).

In order to do the verification automatically, we develop a
Y-shaped deep NN (we name it YNN) by connecting three
NNs, as shown in Fig. 4 (b). In this architecture, each CBRVs
image in the pair to be verified is sent to an NN (we refer to
this NN as a leg of the YNN). The outputs of the legs are the
compact versions of the inputs and are referred to as embed-
dings. The embeddings are merged and further processed by
another NN that outputs an estimation of the probability that
the two CRBV images belong to the same person. Similar
architectures were previously proposed for networks used for
fingerprint verification [42] and signature verification [43].
The network proposed for signature verification was referred
to as siamese neural network. In [42], [43], the images that
are compared are the same type of image, i.e., a fingerprint is
comparedwith another fingerprint, or a signature is compared
with another signature. In such cases, it is reasonable to
share the parameters of the two legs of the NN, hence the
name siamese. However, we are comparing different types of
images, namely an image from the left retina and an image
from the right retina. In this case, it is not obvious that sharing
parameters is optimal. If, for example, the merging strategy
is to subtract one embedding from the other and then take
the absolute value, then it is desirable that a specific element
in both the left and the right embedding comes from the
same region of the corresponding retina, e.g., OD. Otherwise,
the OD from one retina is comparedwith another region in the
other retina. Of course, a neural network may, in principle,
find ways to solve this problem. For example, if it can detect
which side the image is from, it could learn side-specific
filters so that some channels contain information about the
left retina (while being unused for the right retina) and some
channels contain information about the right retina (while
being unused for the left retina). Information from the two
retinas can then be compared by the NN that comes after
the merging. Nevertheless, it may be easier for the YNN
to compare two retinas if we either flip one of the images
(e.g., the right) and share the parameters of the YNN legs
or use different parameters for the two legs. We explore all

these approaches as well as several different merging tech-
niques, namely concatenation, absolute subtraction, averag-
ing, or concatenation of averaging and absolute subtraction.
We also explore a well-known pre-trained model, named
VGG16 [44], as the leg of the YNN.

We also investigate whether a YNN can also be used as
a side independent verification system, by which we mean
a system that can compare two retinas no matter whether
they are from the same side or two different sides. In order
to achieve this, we need to use a slightly different approach
during training a YNN.We need to include not only left-right
pairs after flipping a specific side image but also right-right
and left-left pairs while training the YNN.

IV. EXPERIMENTAL SETUP
A. HARDWARE & SOFTWARE TOOLS
We did all experiments using two machines with Tensor-
Flow’s Keras API 2.0.0, OpenCV 4.2.0, and Python 3.6.9.
The first machine is a standard PC with 32 GB memory,
Intel(R) Core(TM) i9-9900K CPU having eight cores per
socket, and two NVIDIA GeForce GTX 1080 GPUs having
8 GBmemory per GPU. The secondmachine is a standard PC
with 32 GB memory, AMD Ryzen Threadripper 2950X CPU
having 16 cores per socket, and oneGeForce RTX2080 Super
GPU having 8 GB memory.

B. DATA SETS
In order to segment CRBVs from the color fundus pho-
tographs, we trained a U-Net with the architecture shown
in Fig. 7 (a). The U-Net is well-known for its good per-
formance in medical image segmentation tasks. Even using
very few images in the training phase, the U-Net can seg-
ment images in great detail. For example, in [45], only
30 images were used to train a U-Net, which outperformed
a sliding window CNN for the ISBI neuronal structures in
the EM stacks challenge 2012. In order to train and test
our U-Net, we used four publicly available data sets: the
DRIVE (Digital Retinal Images for Vessel Extraction) [46]
data set, the CHASE_DB1 [47], a subset of the CHASE
(Child Heart and Health Study in England) data set, the HRF
(High-Resolution Fundus) [48] data set, and the STARE
(STructured Analysis of the Retina) [49] data set(see Table 1
for details).

TABLE 1. Data sets used for training and testing U-Net for segmenting
CRBVs from the color fundus photographs. Note that all these data sets
have manually segmented CRBVs as ground truths.

To do the verification, we used RGB retinal images of two
publicly available data sets: the Kaggle data set [50] and the
Longitudinal diabetic retinopathy screening data set [51].
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TABLE 2. Data sets used for verification. [# Subj: Number of subjects, # Pairs: Number of pairs, PPs: Positive pairs, NPs: Negative pairs, LR-SS: pairs of
left-right CRBVs from the same session, LR-DS: pairs of left-right CRBVs from different sessions, LL-DS: pairs of left-left CRBVs from different sessions,
RR-DS: pairs of right-right CRBVs from different sessions].

1) KAGGLE DATA SET
This data set is prepared for the competition of diabetic
retinopathy detection. It is provided by EyePACS and pub-
licly available via the Kaggle online community of data sci-
entists and machine learners. It has 44, 351 pairs of images.
In each pair, there is a left and right retinal image belonging
to a single subject ID number. Therefore, there are in total
88, 702 RGB retinal images belonging to 44, 351 subject IDs.
Images were captured under a variety of conditions. There is
no information about whether images from the same subject
were captured during the same session, but this is likely
the case. Therefore, this database cannot be used to study
the effect of session variability. There are images having
27 types of resolutions. We chose images with resolutions
3264 × 4928 and 3168 × 4752 because the foreground of
these two resolutions has a complete circular shape. We pre-
pared three sets, i.e., Kaggle_A, Kaggle_B, and Kaggle_C,
from our chosen images for three purposes (see Table 2 for
details).

We prepared two test sets (i.e., Kaggle_SetA.1 and Kag-
gle_SetA.2) using the images of Kaggle_SetA and one test
set (i.e., Kaggle_SetC) using the images of Kaggle_SetC.
In principle, it is possible to build 150 positive pairs
(i.e., the left and right retinal images of a pair belonging
to a single subject ID) and 150 × 149 = 22, 350 negative
pairs (i.e., the left and right retinal images of a pair belonged
to two different subject IDs) using the 150 pairs of Kag-
gle_SetA. However, for human volunteers, it is difficult and
time-consuming to give a decision about 150 + 22, 350 =
22, 500 pairs. Therefore, we decided to reduce the number
of pairs while keeping the variability among pairs as much as
possible. For fulfilling that, we divided 150 subjects into three
groups: the first 50 subjects were for the positive pairs (PPs),
the second 50 were for the left side of negative pairs (NPs),
and the third 50 were for the right side of NPs. In this
way, we kept only 50 PPs and 50 × 50 = 2, 500 NPs in
Kaggle_SetA.1, and 50 PPs and 50 NPs in Kaggle_SetA.2.

The PPs were the same in both test sets, whereas the NPs of
Kaggle_SetA.2 were a subset of the NPs of Kaggle_SetA.1.
In Kaggle_SetC, there were 1, 752 PPs and 1, 752 NPs. Even
though it was possible to make 1, 752×1, 751 = 3, 067, 752
NPs from 1, 752 pairs, we chose only 1, 752 NPs in order to
keep a balance between the PPs and NPs. Contrary to Kag-
gle_SetA.1 and Kaggle_SetA.2, there was a subject overlap
between the PPs and NPs, as well as between the left and right
sets of NPs in Kaggle_SetC.

2) LONGITUDINAL DIABETIC RETINOPATHY SCREENING
DATA SET
This data set was prepared for fundus image registration
methods. It has 1120 in total color fundus photographs
of 70 patients in the diabetic retinopathy screening program
of the RotterdamEyeHospital (Rotterdam, TheNetherlands).
For each patient, there are four types of color fundus photos:
macula-centered, optic nerve-centered, superior, and tempo-
ral fundus images for both left and right retinas. The images
were captured in two sessions and there is a 1-week period
gap between the two sessions. We prepared one set named
RODREP_SetA by taking only macula-centered images
(i.e., two images for each retina of each subject) from this
data. Since there is only one session with a macula-centered
retinal image for the right side retina for the subject
having Patient ID 62, we excluded images of this sub-
ject. Therefore, we had 276 images (138 images from
the left side and 138 images from the right side) from
69 subjects. We were able to prepare 138 PPs of left-right
CRBVs from the same session (i.e., RODREP_SetA.1),
138 PPs of left-right CRBVS from different sessions (i.e.,
RODREP_SetA.2), 69 PPs of left-left CRBVs from different
sessions (i.e., RODREP_SetA.3) and 69 pairs of right-right
CRBVs from different sessions (i.e., RODREP_SetA.4).
We chose macula-centered images mainly because YNN’s
training set, i.e., Kaggle_SetB, has macula-centered
images.
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C. IMAGE PRE-PROCESSING
Since the dark pixels of the background do not provide
any information about the retina, at first, the extra dark
background was cropped so that the foreground touched the
boundary without losing any important pixels of the fore-
ground. For cropping the background of images of the Kaggle
and RODREP data sets, we used a simple background crop-
ping algorithm. As shown in Fig. 5, after blurring an image
by a 5× 5 Gaussian kernel, we detected edges using Canny’s
edge detection algorithm [52]. After that, we found the con-
tour points belonging to each edge. Then we found the con-
tour which had the maximum area. After that, we estimated
the radius of the circle that minimally encloses that contour.
Using that radius, we cropped the background. We used the
functions of the OpenCV library for this part. After cropping
the background, since the different data sets have different
resolutions, we re-sized all images to 256 × 256 by bicubic
interpolation. Then we re-scaled pixel values to [0, 1] for
each channel of each image separately. Except that, no pre-
processing was applied to any images.

FIGURE 5. Steps for cropping background.

D. SETUP FOR MANUAL VERIFICATION
For manual verification, we asked 20 untrained volunteers
who did not know where to find symmetrical properties
in retinas to participate in a test. In this test, 25 frames
were shown to each volunteer, where each frame contained
four pairs of CRBVs side-by-side (as shown in Fig. 6). The
right side CRBVs were flipped to make the comparison task
easier for human volunteers. All volunteers (i.e., ID 1-20)
saw the same 50 PPs but in random orders. Volunteers with
ID 1-10 saw 50 different NPs which were randomly chosen
from the 2, 500 NPs of Kaggle_SetA.1 so that they were
not exhausted by seeing too many NPs. Volunteers with
ID 11-20 saw the same 50 NPs but in random orders.

The task of the untrained human volunteers was to click
on a pair when they thought that the pair belongs to a single
person. Volunteers were allowed to select/deselect any pair
as many times as they wanted and could spend as much time
on the verification task as theywanted. However, after closing
any frame, they were not allowed to see it again. After closing
the last frame, each volunteer was asked to write about the
factors they considered tomake a decision. Twenty volunteers
participated in 20 separate sessions. None of themwere aware

FIGURE 6. An example frame for collecting volunteers’ opinions. When a
volunteer clicked on any pair, its boundary turned into red color and it
meant that the volunteer considered that the pair belonged to a single
subject. Numbers 1, 2, 3, 4 were the pair numbers, 1/25 was the frame
number, and the cross sign was for closing the frame.

of the true answers. All volunteers were requested not to share
their assumptions with other volunteers. When writing their
points, they were informed of retina-related terms to make
their writing easier. After summarizing the features reported
by the untrained volunteers, we gave them to four volunteers
whowork in retina based research field.We prepared a similar
interface for them to train themselves. The only difference
between this interface and the one used in the test phase
was that after clicking on a NP, they saw a blue colored
boundary, whereas after clicking on a PP, they saw a red
colored boundary so that they could knowwhich pairs are PPs
and which pairs are NPs and analyze their decisions. They
had to make the decision about a pair before they obtained
the answer. They were given three weeks to train themselves.
In total, 100 pairs (50 PPs and 50 NPs) were seen by the
volunteers in random order during training. These pairs were
taken from the Kaggle_SetB. Only when all of them felt they
were ready to participate in the final test, they were shown
the pairs of the Kaggle_SetA.2.

Contrary to our setup, the setup used in [41] for finding
texture similarity in pairs of left and right irises had one pair
of irises per frame; humans had to choose an option from
a list of five degrees of certainty after seeing a pair only
for three seconds instead of taking a binary decision; there
were 150 PPs and 150 NPs; humans got a chance to train
themselves a bit by seeing three PPs and two NPs with labels
at the beginning of the test.

E. SETUP FOR DEEP NEURAL NETWORKS
We trained six kinds of deep neural networks (NNs): U-Net,
YNN, Model1: NN having almost the same architecture as
YNN except three layers less than YNN after concatenation
of the two legs, Model2: NN having the same architecture
for the legs as the YNN but then followed by a Cosine
distance layer, Model3: NN using the three first layers from a
pre-trained VGG16 as legs. Fig. 7 shows the model architec-
tures of our deep NNs. We trained YNN, Model1, Model2,
and Model3, in four different ways:
• without sharing/tying parameters of the legs and without
flipping the right-side CRBVs.

• without sharing/tying parameters of the legs, but flipping
the right-side CRBVs.
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FIGURE 7. Architecture of deep neural networks: (a) U-Net, (b) YNN, (c) Model1, (d) Model2, and (e) Model3. Vertical text shows the output shape of the
corresponding layer.

• by sharing/tying parameters of the legs and without
flipping the right-side CRBVs.

• by sharing/tying parameters of the legs but flipping the
right-side CRBVs.

To train our U-Net, we set mean-squared-error (mse) as
the loss function; RMSProp with a learning rate of 0.001
as the optimizer and mini_batch_size = 8. To train all
other deep NNs, we set mean squared error as the loss
function; RMSProp with a learning rate of 0.0001 as the
optimizer and epoch_no = 50. We reduced the learning
rate if there was no change in the validation_accuracy for

more than three consecutive epochs. We stopped training
if validation_accuracy did not change in 15 consecutive
epochs.We set batch_size = 64when training amodel except
Model3 (i.e., the VGG16 based model). Due to memory lim-
itations, we set batch_size = 32 when training Model3. For
all other settings, we used the default values of TensorFlow’s
Keras API 2.6.1-tf.

The VGG16 model has 13 convolutional layers, five pool-
ing layers, and three dense layers. We formed Model3 by
removing the three dense layers from the pre-trained
VGG16 model provided by Keras. This model was trained
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mainly for classifying images of 1000 classes. Even though
the images of CRBVs are 2D, the VGG16 model requires
3D images. Therefore, we turned 2D CRBVs into 3D by
repeating the 2D image three times.

For training U-Net, we used unpaired images. For train-
ing YNN, Model1, Model2, and Model3, we used left-right
paired images. We also trained a variation of YNN using
left-right pairs, left-left pairs, and right-right pairs. Since in
the Kaggle_SetB, there is only one image per side for a
subject, we used data augmentation to create extra left-left
and right-right pairs. Specifically, we did this by rotating
the image (minimum 5 degrees and maximum 90 degrees),
shifting it at most 10% both along the horizontal and vertical
direction (using spline interpolation of order three and filling
all values beyond the edge with 0.0) and turning non-black
pixels into the black in random order. All these three trans-
formations (i.e., rotation, shifting, darkening) were decided
automatically and randomly, i.e., for some images, any one,
two, or all three transformations were applied, whereas for
some images, no transformation was applied. Some training
pairs are shown in Fig. 8 as examples.

FIGURE 8. Six example pairs used for training YNN. Images of the right
CRBVs in (a), (c), (d), and (f) were flipped. Image of the left CRBVs in the
right side in (b) was at first shifted 19 pixels along the y-axis, 1 pixel
along the x-axis, and then 11.60% of its non-black pixels were turned into
black, whereas in (d) was at first rotated 20◦ and then shifted 20 pixels
along the y-axis and 8 pixels along the x-axis. Image of the right CRBVs in
the right side in (c) was at first rotated 30◦, then shifted 6 pixels along the
y-axis and 21 pixels along the x-axis, and then its 22.88% non-black
pixels were turned into black, whereas in (f) was rotated only 76◦.

For YNN, we tried four different operations to merge
the embeddings of the left and right CRBVs: concatena-
tion, average, absolute subtraction, and concatenation of
absolute subtraction and average. In order to avoid the
effect of randomness caused by different factors, including
weight initialization and dropout, on the estimation of per-
formance, we trained all models five times and estimated
the performance. That means, in total, we trained YNN 80
(i.e., 4× 4× 5) times, whereas we trained Model1, Model2,
and Model3 five times. We trained U-Net and the variation of
YNN using left-left, right-right, left-right pairs one time.

V. RESULTS & ANALYSIS
In this section, we present and analyse the results of sev-
eral experiments. In Subsection V-A, we discuss the per-
formance of the U-Net for segmenting the CRBVs from
color fundus photographs. All the following human and
automatic verification experiments used this segmentation.

In Subsection V-B and V-C, respectively, we present the
results of manual and automatic different-side verification.
In Subsection V-D, we present the results of experiments
comparing different-side verification with same-side verifi-
cation as well as different-session trials. In Subsection V-E,
we analyse the agreement of human and automatic verifica-
tion. Finally, we present an analysis of what patterns humans
and deep NNs are looking at in Subsection V-F.

A. SEGMENTING CRBVS
The performance of our U-Net trained for segmenting
CRBVs from color fundus photographs is shown in Table 3.
Comparing to the approaches reported in [53]–[58], the per-
formance of our U-Net may look worse. However, in those
works, specific systems for each database were developed
by using training, validation/development, and test data from
the same database and by optimizing the hyperparameters
specifically for each database. In our experiments, the train-
ing set, development set, and test set were taken from different
data sets as described in Table 1. (We have not investigated
whether this was the reason for the different performance
since the performance of CRBV segmentation was not the
main focus of our work.) In our experiments, the hyperparam-
eters (e.g., number of epochs and learning rate) were selected
based on visual inspection of the resulting CRBV images for
the development set.

TABLE 3. U-Net’s performance measures for segmenting CRBVs from RGB
fundus photographs of CHASE_DB1, HRF, and STARE database. The
evaluation is done per pixel. [Acc: Accuracy, Sens: Sensitivity, Spec:
Specificity, AUC: Area under the receiver operating characteristic
(ROC) curve via a Riemann sum].

It should be noted that the data sets used in the verifica-
tion experiments in the later sections, i.e., the Kaggle and
the RODREP, do not have manually segmented CRBVs as
ground truths, so we cannot train or evaluate CRBV segmen-
tation models on these sets. However, visual inspection of the
resulting images on these sets suggests that the performance
of automatic CRBV segmentation is similar to the perfor-
mance on the HRF and the STARE data sets.

As shown in Fig. 9, our U-Net fails to segment CRBVwhen
image quality is very poor. Many factors such as experience
level of the operator, operator’s finger movement or shaking,
different settings of fundus cameras, subject’s eye movement
or blinking, different amounts of light reflection by different
parts of the retina because of its natural curved structure,
inadequate illumination, the variation of pupil dilation, poor
focus, lossy compression-decompression techniques, noisy
transmission channels and so on can result in low-quality
retinal images.
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TABLE 4. Results of manual verification. [V. ID: Volunteer ID, Acc.: Accuracy, Sens.: Sensitivity, Spec.: Specificity].

FIGURE 9. Examples of retina images of different qualities from the same
subject. Our trained U-Net fails segmenting CRBVs from images of
low-quality (e.g.,1st, 2nd, and 3rd column).

Dealing with low-quality images is an important issue
since when the image quality is low, the image may not
be correctly segmented. For example, CRBVs may not be
detected in some region of the image, or vessels may be
incorrectly detected. Undetected CRBVsmaymislead trained
volunteers to make a wrong decision about PPs. For example,
untrained volunteers may consider white pixels or lines that
are incorrectly segmented as vessels in both sides of a pair
due to session effects (e.g., light) as a similarity and incor-
rectly classify an NP as a PP. Improving the performance of
U-Net by adding more low-quality images and their corre-
sponding manually segmented CRBVs in the training set or
improving image quality before CRBV segmentation in the
pre-processing stage, or developing a neural network, which
can handle low-quality images better than the U-Net, is kept
as future work.

B. MANUAL VERIFICATION
The results of human verification are shown in Table 4.
As can be seen, even the lowest performance among the
human volunteers was better than what would be obtained
by random guesses. Therefore, we can conclude that there
are some similar properties in the CRBVs of our two
eyes.

The untrained volunteers reported several different factors
as being important for their decision. Some of them were the
thickness of the clearly visible CRBVs; the overall structure
of CRBVs looking from afar; angles of vessels leaving the
root (i.e., OD area), branching pattern; grouping tendency of
vessels; vessel pattern close to the empty space (i.e., mac-
ula); curvature of the thickest/thicker vessel(s) considering
straightness and tortuosity (or waviness) of the vessel(s); the

density of vessels; alignment of the root (i.e., OD) with the
empty space (i.e., macula); how vessels are spreading, and
so on. Some factors (such as the density of vessels) were
reported by multiple volunteers.

On average, the trained volunteers performed slightly bet-
ter than the untrained volunteers, although the two best per-
forming volunteers were untrained. One reason for the rel-
atively small difference between the trained and untrained
volunteers could be that there were four pairs of left and
right retina in a frame and the volunteers knew beforehand
that there would be both PPs and NPs in the test (but not
necessarily in every frame), which helped them to gradually
make rules about the similarity, some of which were cor-
rect. Another reason is that the information reported by the
untrained volunteers influenced the trained volunteers a bit.
Most probably, some features reported by the untrained vol-
unteers (e.g., the area near to the macula) misled them. Since
the untrained volunteers neither marked the area exactly
where they saw the similarity nor reported their findings in
detail, it was difficult for trained volunteers to get precise
information. Another reason could be that the trained volun-
teers were not as focused as some untrained volunteers during
the final test. Since they could not figure out any concrete rule
to find similarity/dissimilarity in pairs of the CRBVs during
their training, they may be somewhat bored and uninterested
when taking the final test.

Fig. 10 shows for each retina pair the number of volunteers
that thought the two retinas belong to the same subject. From
these graphs, it is clear that there were some easily recog-
nizable positive pairs in Kaggle_SetA.1 and Kaggle_SetA.2,
which were recognized by all (or many) volunteers, and some
difficult pairs which made almost all volunteers confused.
For example, all volunteers correctly recognized eight NPs
since no volunteer selected them as PPs (see Fig. 11 for some
example pairs).

By visually inspecting some of the images that many
volunteers failed to classify correctly, we noticed several
reasons why an image pair can be challenging to classify.
Different alignment can make two images of CRBVs taken
from the same retina look different. Also, the quality of the
color fundus photographs and the existence of pathology
play important roles in the symmetrical/asymmetrical look
of the pairs of CRBVs. The U-Net may end up segmenting
very few or discontinuous CRBVs from low-quality fundus
photographs. Some pathology (such as retinal hemorrhages)
can cause some parts of the blood vessels to be invisible,
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FIGURE 10. The number of pairs considered to be from the same subject
for: (a) positive pairs (PPs) by 24 volunteers and (b) negative pairs (NPs)
by 14 volunteers. Note that the same 50 PPs were seen by all
24 volunteers. However, only 14 (i.e., 10 untrained and 4 trained)
volunteers saw the same 50 NPs. The other 10 untrained volunteers saw
different NPs.

FIGURE 11. 1st row: three difficult PPs in both Kaggle_SetA.1 and in
Kaggle_SetA.2. 2nd row: three easily recognized PPs in both
Kaggle_SetA.1 and in Kaggle_SetA.2. 3rd Row: three comparatively easily
recognized NPs out of eight NPs in Kaggle_SetA.2, which were not
mistakenly selected as PPs by any of 14 volunteers. 4th Row: three
difficult NPs in Kaggle_SetA.2, which were mistakenly selected as PPs.
Note that, in Kaggle_SetA.1, different volunteers have different NPs and
most of those NPs were also different from the NPs in Kaggle_SetA.2.

which can make a pair of CRBVs from the same person look
different.

C. AUTOMATIC VERIFICATION
Table 5 shows the result for YNN for various combina-
tions of parameter tying (tied/untied), embedding comparison
(concatenation/subtraction/average) and input pre-processing
(no flipping / flipping right side). From the results of the
Kaggle_SetA.2, it is also clear that YNN performs substan-
tially better than the human volunteers. The variations in the
results due to initialization and dropout are relatively large,
typically around 2%. The results for the Kaggle_SetA.2 and
the Kaggle_SetC are almost the same which is expected
since these sets have the same properties. However, the Kag-
gle_SetC is much larger than the Kaggle_SetA.2. Therefore,
the Kaggle_SetC provides more reliable results than the Kag-
gle_SetA.2. The most noticeable result is that the Average

operation performs badly when the YNN legs are tied. This
is not surprising because this operation removes information
about the distance between the two embeddings (i.e., the out-
puts of the last layer of each leg). Especially in the untied
case, the YNN should, in principle, overcome this by putting
information about the left side image in some elements of the
embedding and information about the right side in some other
elements of the embedding. The subsequent network can then
compare the retina information extracted by the two legs.
However, it seems the network could not successfully learn
to do this. On the other hand, it seems the YNN successfully
learned how to process the data for subtraction merging, even
when the parameters of the legs are shared and none of the
sides are flipped, which, as discussed in Section III, should
be somewhat challenging for it. We have not managed to
understand exactly what the YNN did in this case. Other
observations are that

• In the case of untied legs, there is no difference between
flipped images and unflipped images.

• Absolute subtraction and concatenation of absolute sub-
traction and average perform nearly the same, i.e., the
average does not add any complementary information to
the (absolute value of) subtraction.

• Concatenation is marginally the best method for com-
bining the embeddings.

D. SIDE INDEPENDENT VERIFICATION
From the experiments in Section V-C, two important ques-
tions remain to be answered. First, how much worse is retina
verification based on the left and right retina pairs compared
to the verification based on the pairs of two right retinas or
two left retinas? Second, how much does the performance
reduce if the two images in a pair are from different sessions
(e.g., the images are captured on different days)? These ques-
tions cannot be answered using the Kaggle data sets used in
the previous experiments because these data sets have only
one left and one right retinal image for each subject, captured
at the same session. To answer these questions, we instead
used the RODREP_SetA data set. This data set has two
sessions per subject, and in each session, there is a left and
a right retinal image. Accordingly, we can compare

• Same-session, left-right verification,
• Different-session, left-right verification.
• Different-session, left-left verification
• Different-session, right-right verification

We used the YNN, which was trained using the left-left,
right-right, and left-right pairs after flipping the right side
CRBVs. The results are given in Table 6. From the results,
it is clear that same-side verification is substantially better
than different-side verification and that verification based on
images from different sessions is not worse than verifica-
tion based on images from the same session. The fact that
same-side verification is better than different-side verifica-
tion suggests that the CRBVs of the left and the right retinas
do not contain the same information, which means that using
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TABLE 5. Effect of randomization introduced during training YNNs for different reasons such as random weight initialization, dropout, etc. [EER: Equal
error rate, NF: NoFlip, i.e., images of right side CRBVs were not flipped. RF: RightFlip, i.e., images of right side CRBVs were flipped. Ctt, Avg, Sub, and
Ctt(Sub,Avg) are the approaches applied for merging the left and right side legs of YNN. Ctt: Concatenation, Avg: Average, Sub: Absolute subtraction,
Ctt(Sub,Avg): Concatenation of absolute subtraction and average].

both of them jointly should improve the results of biometric
systems further. This will be investigated in future work.
Another fact is that in the case of different-side verification,
the performance of YNN, trained by three kinds of pairs (i.e.,
left-left, left-right, and right-right), is worse than the YNN,
trained by only left-right pairs (see results of Kaggle_SetC
in Table 5 and Table 6). Overall, these results show that it is
possible to develop CRBVs based side-independent subject
authentication systems.

E. HUMAN VS YNN
To compare the agreement between human and automatic
classification, we applied majority voting to the deci-
sions of the human volunteers (i.e., 24 volunteers for PPs,
14 for NPs) for the Kaggle_SetA.2 (see Table 7 for the scores
of the 12 pairs shown in Fig. 11 as examples). We then com-
pared how well the resulting classification and the different
YNNs agreed. The result is shown in Table 8. Interestingly,

TABLE 6. Results of automatic verification when Left-Right, Left-Left, and
Right-Right pairs of CRBVs were used to train a tied YNN after flipping the
right side retina. [LR-SS: pairs of the left-right CRBVs from the same
session, LR-DS: pairs of left-right CRBVs from different sessions, LL-DS:
pairs of left-left CRBVs from different sessions, RR-DS: pairs of right-right
CRBVs from different sessions].

there is a high agreement between human and automatic clas-
sification (and a very high agreement between the different
YNN architectures for automatic classification). Whenever
there was a disagreement about PPs between the human
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TABLE 7. Scores of the six PPs and six NPs shown in Fig. 11, decided by
human volunteers and YNN. The human scores were decided by
averaging the decision of 24 volunteers for PPs and 14 volunteers for
NPs. In these 12 pairs, there were three easily recognized PPs, three
easily recognized NPs as well as three difficult PPs, and three difficult
NPs. Note that scores near 1.0 are better for PPs, while scores near
0.0 are better for NPs. [Notation Vlt: Volunteers, Ctt(S, A): Concatenation
of absolute subtraction and average].

TABLE 8. The number of times volunteers and YNN_Untied_NoFlip
agreed with each other for 50 PPs and 50 NPs of the Kaggle_SetA.2.
[Notation Vlt: Volunteers].

FIGURE 12. Outlined similarities in 12 positive pairs (PPs) out of 50 PPs
in Kaggle_SetA.1 and Kaggle_SetA.2. The total number of volunteers
selected those pairs [i.e., in (a), (b), (c),. . . . (l)] are 24, 24, 23, 22, 22, 21, 21,
20, 20, 20, 20, 20, respectively. Note that the vessels that have the same
color were classified as PPs by volunteers.

majority vote and the YNNs, the YNNs were correct most of
the time, while for NPs, human volunteers were correct most

FIGURE 13. Similarities in three PPs marked by three trained volunteers.
Vessels marked with the same color in the left and right retina were
considered similar by the volunteer. It seems perception about similarity
between CRBVs of the left and right retinas is quite subjective. However,
all of us can notice some similarities if we look carefully.

FIGURE 14. Occlusion sensitivity of a PP of Kaggle_SetA.2 having ID
10919. The caption of each subplot indicates the YNN output of the pair
(i.e., the probability that the pair belong to a single subject). The YNN
output dropped drastically when the OD side part was blocked by dark
squares. For example, in (b) OD side of the right CRBVs was blocked by
two 64 × 64 black squares and YNN output dropped from 0.992817 to
2.0861626e − 07. Note that the right retina was flipped and scores were
generated by a YNN whose legs were tied.

of the time, as shown in Table 9. For example, the human
majority vote and the YNN whose embeddings were merged
by concatenation, disagreed about 18 out of the 50 NPs. For
these 18 pairs, the human vote was correct for 12 pairs, and
the YNN was correct for 6 pairs.

F. WHAT HUMAN VOLUNTEERS AND NEURAL NETWORK
LOOK AT FOR COMPARING CRBVS
In Subsection V-B, we have already mentioned several
aspects of the CRBVs that the volunteers reported as crucial
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FIGURE 15. Visualization of attributions for three PPs of CRBVs of the left and right retinas when right retinas were flipped and the YNN had tied legs.
Fig. a.1., b.1., & c.1., for concatenation; Fig. a.2., b.2. & c.2., for average; Fig. a.3., b.3., & c.3. for absolute subtraction and Fig. a.4., b.4., & c.4., for
concatenation of absolute subtraction and average.

TABLE 9. The number of times volunteers and YNN_Untied_NoFlip were
correct when disagreeing with each other about 50 PPs and 50 NPs of the
Kaggle_SetA.2. A cell value x/y means that the system in the row and
column header disagreed y times and that the system in the row header
was correct x times.

for human verification. In this section, we analyse this inmore
detail and further what features in the CRBVs are important
for automatic verification with YNNs.

To better understand what humans are looking at, we asked
three of the four trained volunteers to draw the similarities
they could find in the PPs that were correctly verified by
the majority of the volunteers. The similarities found by one
volunteer in twelve of these PPs are shown in Fig. 12. From
the highlighted branches and places, we can see that humans
can detect similarities in the CRBVs of the left and right
retina if they look carefully. The similarities found by three
volunteers in three of the PPs are shown in Fig. 13. It can
be seen that the perceived similarities in the CRBVs of the
left and right retina can be quite subjective, i.e., different
volunteers found similarities in different places. However,
the similarities in some branches of CRBVs were seen by
everyone.

To analyse what features in the CRBVs are important for
the decision of the YNN and to answer questions such as
‘‘which parts of CRBVs contribute significantly to the output
of the YNN’’, ‘‘Does our YNNs find similarity in the same
places of CRBVs as human volunteers do’’, and ‘‘Do the
different YNN architectures look at different things?’’ we
applied attributionmethods. The task of an attributionmethod
is to estimate how much each input feature contributes to the
decisions of the network [59]. First, we checked the occlu-
sion sensitivity following a simple perturbation-based attri-
bution method applied in [60]. We systematically occluded,
i.e., masked different portions of the input image with 64×64
black squares and monitored the output of the YNN. The
result is shown in Fig. 14. It can be seen that the YNN
output probability dropped significantly when the OD side
of the retina was occluded by black squares. This means that
the output of the YNN is mostly affected by this side. The
macula side, on the other hand, does not contribute signifi-
cantly to the YNN output. One reason for this could be that
the CRBVs on the OD side are thick and easily noticeable,
whereas the CRBVs on the macula side are tiny and clearly
not visible, which makes our U_Net less accurate at detecting
them. Another possible reason is that the OD region of the
retinas exhibits larger bilateral symmetry than the macula
region.

To analyse what the YNNs look at more systemati-
cally than the simple occlusion sensitivity-based approach,
we used the integrated gradients method [61] that gener-
ates a heatmap representing how important a region of the
input image is for the decision. According to this method,
for each pair of CRBVs, we generated a path of 64 image
pairs, where each image pair was interpolated between a pair
of black baseline images and the original pair of CRBVs.

VOLUME 9, 2021 63025



S. Biswas et al.: Investigation of Bilateral Similarity in CRBVs

TABLE 10. Performance of varieties of YNN. [NF: NoFlip, i.e., images of right side CRBVs were not flipped. RF: RightFlip, i.e., images of right side CRBVs
were flipped. Model1: NN having almost the same architecture as YNN except three layers less than YNN after concatenation of two legs, Model2: NN
having the same architecture as YNN and a Cosine distance layer, Model3: NN using top thrown pre-trained VGG16 as legs].

We calculated the gradient of the YNN output with respect
to each pixel of the pairs of CRBVs, summed the gradients
over each interpolated image, and took the absolute value.
As shown in Fig. 15, different merging approaches empha-
sized on slightly different places to find similarities. From
Fig. 13 and Fig. 15, we can see that thick blood vessels
contribute more to the decisions of both human volunteers
and YNNs than the thin blood vessels.

G. VARIETIES OF YNN
To understand the importance of the YNN architecture
design, we explored several varieties of YNN. As shown
in Table 10, these varieties did not perform better than
YNN (i.e., the model used in the previous experiments).
Model1 performed slightly worse than YNN. However, it has
54.82% and 68.23% less trainable parameters for untied and
tied cases, respectively, comparing to YNN. Even though
cosine distance based models performed worse than the other
models, they still performed better than random guesses.
Transfer learning by a model pre-trained on RGB color
images is not very beneficial.

VI. CONCLUSION
In this paper, we have shown that there is a high degree of
bilateral similarity in central retinal blood vessels (CRBVs)
and, therefore, it is possible to do side-independent retina
verification. We conducted experiments where both human
volunteers and computers by means of neural networks (NN)
had to decide whether CRBV images from a left and a right
retina are from the same subject or not. For human volun-
teers, the accuracy in this task was typically in the range
of 65%-70%, which is well above the result of ran-
dom guesses. For most NN architectures, the accuracy
was 85%-88%. We further trained a side-independent retina
verification system, i.e., a system that can do the verification
either by comparing left and right retinas or by comparing two
retinas from the same side. In experiments with that system,
same-side verification had 23% better accuracy (relatively)
than different-side verification. Finally, we visualized and
analysed which features in the CRBVs are useful for verifi-
cation. Future work shall include improved automatic CRBV
segmentation and explore systems where both left and right
retina are used jointly for verification.
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