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ABSTRACT Distributed Data Mining (DDM) has been proposed as a means to deal with the analysis
of distributed data, where DDM discovers patterns and implements prediction based on multiple dis-
tributed data sources. However, DDM faces several problems in terms of autonomy, privacy, performance
and implementation. DDM requires homogeneity regarding environment, control, administration and the
classification algorithm(s), and such that requirements are too strict and inflexible in many applications.
In this paper, we propose the employment of a Multi-Agent System (MAS) to be combined with DDM
(MAS-DDM). MAS is a mechanism for creating goal-oriented autonomous agents within shared environ-
ments with communication and coordination facilities. We shall show that MAS-DDM is both desirable and
beneficial. In MAS-DDM, agents could communicate their beliefs (calculated classification) by covering
private and non-sharable data, and other agents decide whether the use of such beliefs in classifying instances
and adjusting their prior assumptions about each class of data. In MAS-DDM, we will develop and use
a modified Naive Bayesian algorithm because (1) Naive Bayesian has been shown to be the most used
algorithm to deal with uncertain data, and (2) to show that even if all agents in MAS-DDM use the same
algorithm, MAS-DDM preforms better than DDM approaches with non-communicating processes. Point (2)
provide an evidence that the exchange of information between agents helps in increasing the accuracy of the
classification task significantly.

INDEX TERMS Classification, FIPA standards, multi-agent system, Naive Bayesian.

I. INTRODUCTION of large data volumes over networks requires considerable

In the last few years, we have witnessed a tremendous
increase in distributed data, cloud computing, wide usability
of micro-processor devices (e.g., mobiles and sensors), and
data that is generated or obtained at multiple data acquisition
devices. Such trend makes it very difficult to have all the data
transferred into centralized data warehouse that is needed by
the traditional classification methods which utilize the stored
training dataset to establish a model. Furthermore, some
secured data, such as financial records and medical data,
cannot be transferred or shared, as data during transformation
might be subject to exposure. Moreover, data centralization
is also affected by bandwidth limitation, where the transfer
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time and financial resources. Subsequently, to be effective,
the data classification task has to naturally be distributed
which led to the emergence of Distributed Data Mining
(DDM) environment [1].

DDM discovers patterns and implements prediction based
on multiple distributed data sources. DDM has dealt with
the issue of requiring that data be located in a single unit in
order to execute its process, where DDM could mine data
sources wherever their physical locations are. The decen-
tralized architecture of DDM can reach every networked
business; hence, DDM has become a key component of
knowledge-based systems. The business intelligence market
is one of the fastest growing and most profitable areas in the
software industry, which consequently leads to the popular-
ization of DDM. Subsequently, various DDM techniques has
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been developed in the literature, such as, distributed cluster-
ing [2], distributed frequent pattern mining [3] and distributed
classification [4].

Overall, DDM techniques can be classified into two groups
on the basis of the level of information sharing. First;
low-level DDM where each site is trained on the basis of its
own data. Afterward, all the sites are given the same task to
solve or deal with, which can be an instance to be classified,
clustered, or analyzed. All the results of these sites/processes
are combined to produce an output by the control of the
global administration. Second; high-level DDM where each
site/process shares its learned model with the global model
to produce a single-learning model for mining the input
data.

What characterizes DDM (whether at low- or high-level)
is that most of the studies which used DDM (low- or high-
level) work in the same environment or organization and
are under the control of the same administration, includ-
ing their agreement on the same classification algorithm,
and there is no communication between the classifying
sites/processes. Communication is only allowed between a
classifying site/process and the global administration. Conse-
quently, several problems can occur. These problems include:

1. In high-level DDM, distributed sites/processes have
tremendous increase in their data that may require them
to retrain their model in a short time. They may also be
required to send their updated model to the global one
as soon as possible. If the model is submitted late as
a result of network interruptions and/or other possible
faults, then the whole system could be affected.

2. In low-level DDM, all sites/processes are given the
same case to be classified, and the results are
then combined to produce an output. Therefore, all
sites/processes are involved in the decision making.
However, it is possible that certain sites specialized,
and their dataset may allow them to classify a case,
which may be uncommon from the archived cases of
other sites. In such a situation, the final decision to
produce an output may prove to be difficult to make
or not accurate.

From the previous discussions, we single out, in particular,
two essential problems related to autonomy and privacy as
the main concern in this paper. DDM requires homogeneity
regarding environment, control, administration and the clas-
sification algorithm(s). Such requirements are too strict and
inflexible, where traditional DDM methods (low- and high-
levels) cannot be applied for various applications that require
distributed classification processes like medical clinic and
cancer hospital due to one or more of the problems mentioned
above. This is, because each medical clinic or cancer hos-
pital has its own samples and prior beliefs about cases and
the corresponding diagnosis, which may differ based on the
region and the culture and belongs to a different environment
or organization. Furthermore, they cannot share their local
model due to possible exposure and patient privacy issues,
but they still need collaboration in classifying symptoms that
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appear uncommon to one of them that in wise and intelligent
way.

In this paper, we propose the employment of a
Multi-Agent System (MAS) to be combined with DDM
(MAS-DDM) to solve the problems we mentioned above
for data intensive applications [S]. MAS can be defined
as a collection of agents with their own problem-solving
capabilities that can interact to reach an overall goal [6].
Agents are specialized problem-solving entities that have
well-defined boundaries and the ability to communicate with
other agents. They are designed to fulfill a specific purpose
and exhibit flexible and pro-active behaviors [7].

MAS is appropriate for distributed problem solving
because it allows the creation of autonomous, goal-oriented
entities/agents that operate in shared environments with coor-
dination and communication capabilities. This mechanism is
beneficial for DDM as it allows us to combine and integrate
different distributed clustering, prediction, and classification
methods. In MAS environments, there are no assumptions
regarding global control, global administration, and synchro-
nization like in DDM. Thus, agents in MAS are assumed to
operate with incomplete information or capabilities in solving
problems. Communication is the key for agents to share the
information they collect, to coordinate their actions, and to
increase interoperation. Interactions between the agents can
be requests for information, particular services, or an action
to be performed by other agents as well as issues that con-
cern cooperation, coordination, and/or negotiation to arrange
interdependent activities [8].

MASs frequently handle complex applications that need
distributed problem solving. Meanwhile, DDM is a complex
system focused on data mining processes and resource dis-
tribution over networks. Scalability lies at the core of DDM
systems. Given that a system’s configurations may sometimes
change, DDM system design looks at many details regarding
software engineering, such as extensibility, reusability, and
robustness. Therefore, the characteristics of MAS are favor-
able for DDM systems. In addition, the decentralization of
MAS property fits the DDM requirements well. A mining
strategy is executed at each data site specifically for the
certain data domain. However, data miners may prefer to test
other existing or new strategies. A data site should conduct
testing on several strategies for further analysis and seam-
lessly integrate with external methods [10].

The contribution in this paper involves collaborative dis-
tributed classification system that implemented in a MAS,
where MAS-DDM system will inherit all the powerful prop-
erties of agents and acquire favorable features. MAS-DDM
consists of a set of autonomous agents in shared environment
with communication and coordination facilities, and allowing
each distributed site to build their individual learned model,
have direct communication between each sites, and to have
its own classification form and decides to request information
from other sites or not even if they are in different environ-
ment or organization. Agents in MAS-DDM requests help
from other agents to collaborate their information to classify
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anew uncommon case from its stored cases and is difficult to
classify locally to one of the agents.

The case study, in this paper, which will be focused on
is cancer hospitals worldwide, that requires handling uncer-
tainty cases in classification, and for that MAS-DDM will
be using Naive Bayesian classification algorithm which will
called MAS-DDM-NB, where the Naive Bayesian is the most
capable of handling uncertainty cases in classification [11].

The proposed MAS-MC-NB is implemented and
compared with normal DDM algorithm without any collab-
oration among agents, and traditional low- and high-level
DDM where all the agents have no communication also with
each other, to show that MAS-DDM-NB is more efficient
while each site have a own control. This paper is organized as
follows. Section 2 reviews works closely related with the use
of MAS and DDM.Section 3 presents our proposed system.
Section 4 presents the experimental results. The conclusion
is provided in Section 5.

Il. RELATED WORK

DDM, which is implemented by multiple methods with
unified goal, establishes the roles of data analysis at multiple
distributed data sources. Accordingly, result sharing facili-
tates the contribution among distributed methods. In low-
level DDM, each method (e.g., decision-maker) is trained on
the basis of its own data. Afterward, all the decision-makers
are given the same task for implementation, which can be an
instance to be classified, clustered, or analyzed. All the results
of these makers are combined to produce an output.

DBDS [12] is a distributed clustering approach, which is
implemented on dense clustering algorithms; this approach
operates locally. The cluster centers, which are produced
locally at each distributed source, are transformed with small
number of data elements to a decision-making center, which
recalculates the cluster centers based on the received centers
and elements. Similar other approaches for distributed clus-
tering without element transformation were proposed in [13].
In classification, a clear example of such approach is bagging
and boosting approaches, which allow multiple classifiers to
operate on different sets of data [14]. Bayesian classifiers
are operated in distributed environment by averaging the
local model of the distributed sources to obtain a global
one [15], [16].

In high-level DDM, each source shares its learned model
with the global model to produce a single learning model
for mining the input data. This DDM type is called
meta-learning or meta-DM. In classification, various tools,
such as JAM [17]and BODHI [18], were proposed for this
purpose. Accordingly, researchers on DDM have revealed the
advantages of applying MAS in organizing, implementing,
and controlling distributed sources.

Various MAS-based DDM approaches have been pro-
posed. EMADS [19] was proposed as MAS-based on the
ensample classification, which provides weights for each dis-
tributed classifier or select ones to perform the classification
task based on knowledge about the learning model at each
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classifier. Similarly, an abstract architecture for MAS-based
distributed classification with various methods of result inte-
gration was proposed [20], [21]. A brief overview of these
approaches is described in [22].

MAS-based DDM allows agents to establish individual
learned model and control the transformation of their learned
information or results into global and central agents, which
produce the final output. This approach is beneficial in
obtaining enhanced results by combining results of multiple
classifiers. Another benefit of this approach is the mainte-
nance of the particularity of each agent so that each agent
can be used individually when data particularity is needed,
such as in medical and document classification examples.
However, two limitations of these approaches include the
inability to share information among local agents to enhance
the capabilities of autonomous agents and the uncovering of
private and non-sharable data.

Mutual collaborative DM approaches were proposed
recently. These approaches can improve the initial learned
model at each agent using sharing information among agents.
Semiautomatic distributed document classification was also
proposed to enhance the classification results and allow
mutual collaboration among indexers [23]. This framework
implements mutual collaboration, and it requires human
interference to determine the suitability of the collabo-
rated information. MAS-based clustering framework that can
improve the initial cluster centers at each agent was also
proposed recently [24]. Results of the proposed collabora-
tive clustering showed an improvement over noncollaborative
agent-based clustering. This framework also maintains the
particularity of each agent and allows information sharing
among local agents to enhance the capabilities of autonomous
agents and cover private and non-sharable data. Table 1 sum-
marizes the advantages of the discussed literature.

lll. MAS-DDM-NB

MAS-DDM-NB is a general approach that developed to facil-
itate collaborative classification between distributed agents
worldwide. MAS-DDM-NB approach consists of multiple
agents, each agent represents one of the distributed sites
that have its own dataset and prior beliefs on cases, which
may differ from site to site. Therefore, each agent builds
their individual learned model, have direct communication
between each site, and to have its own classification form and
decides to request information from other sites or not.

Agent in various regions should collaborate their informa-
tion with another agents that is about to classify a new uncom-
mon case from its stored cases and is difficult to classify
locally to one of the agents. Therefore, given an instance to
be classified, a local agent calculates independently the prob-
ability of the instance without any collaboration if and only if
the probability of the produced classification output is above a
certain threshold “¢”’. In such a case, the classification model
used by the local agent is considered sufficient to classify the
input instance.
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However, if the classification output does not reach the spe-
cific threshold “‘¢”, then the agent requests information from
other agents. Other agents help in calculating the probability
of the case, and they communicate their findings or beliefs
(calculated classification). They decide on the benefit of
using such beliefs in classifying instances and adjusting their
prior assumptions on each class of data in an exchange only if
the probability of the classification output is above “#”°. After
the agents sent their result to the requested agent a creative
method that appropriateness to Bayesian network that tested
to help the requested hospital agent decide whether to accept
the received class label from other agents, and which class
label that more accurate to take that it will discussed later in
this paper. Figure 1 illustrated the proposed system.

The following three phase presents the implementation of
the proposed work in phases. The first phase demonstrates the
dataset preparation. The second phase describes the Bayesian
classification algorithm that each agent applies to build their
model and explains the feedback processing that to help the
initiator decide whether to accept the received class label
from other agents, whereas the MAS protocols that agents
use in their interactions and communications are described in
the third phase. Appendix in the last paper showed example
for our proposed work.

First Phase-Data Preparation: The case study, in this
paper, which will be focused on is cancer hospitals world-
wide, where each hospital agent stores its datasets related
to patient cases and prior beliefs about cases and the corre-
sponding diagnosis, which may differ based on the region
and the culture and belongs to a different environment or
organization. In normal scenario a different cancer dataset
for the same disease must be collected from various sources.
But this approach cannot be sustained in a long research
stage because of the scarcity of datasets in the open online
repository. Therefore, the same dataset is distributed through
a k-mean clustering algorithm to verify the most effective
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cluster number and select the most suitable number of agents
that can communicate and work with one other. K-mean is
one of the most popular clustering algorithms that allows the
specification of the required cluster number [25].

After clustering the dataset, each cluster given to different
agent, and each one of them carries out feature selection on
the given cluster. Feature selection is the process in which the
features that contribute most to a target prediction variable
or output are automatically or manually selected. Irrelevant
features in data can reduce model accuracy and cause these
models to learn on the basis of irrelevant features. Select-
ing features after the agent is given a cluster is important.
Considering that each agent worldwide may require fea-
tures that vary from those required by other agents, datasets
are distributed vertically and not horizontally. The proposed
system is applied on two datasets for experimentation and
benchmarking.

1. The first dataset is obtained from the openML reposi-
tory; these datasets of breast cancer were obtained from
the University Medical Center, Institute of Oncology,
Ljubljana, Yugoslavia [37], representing instances for
multiclass breast cancer detection classification [38].
This dataset consists of 1 million instances, which are
described by 13 attributes to predicting if the patients
have cancer or not, where the class label attributes
including two labels that are no-recurrence-events and
recurrence-events.

2. The second dataset is obtained from the IEEE data
port. These datasets of breast cancer patients were
obtained from the 2017 November update of the SEER
Program of the NCI, which provides information on
population-based cancer statistics [39]. This dataset
consists of 4024 instances described by nine attributes
to determine whether or not patients will survive in the
form of cancer, where the class label attributes include
two live or dead labels.
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FIGURE 1. Proposed collaborative classification framework.

Second Phase—Collaborative Naive Bayesian Algorithm:
The case study, in this paper, which will be focused on is
cancer hospitals worldwide, that requires handling uncer-
tainty cases in classification, and for that MAS-DDM will
be using Naive Bayesian classification algorithm, where the
Naive Bayesian is the most capable of handling uncertainty
cases in classification [11]. The datasets are plotted, and the
results indicate uncertain data, as shown in Figure 2. The
Naive Bayesian (NB) model is found to be the most capable
of handling uncertainty cases in classification and showing
the results of involved agents. Hence, choosing this model is
efficient [25].

Data uncertainty arises naturally in many applications due
to various factors. These factors include the random nature of
the physical data generation and collection process, measure-
ment and decision errors, unreliable data transmission and
stale data such as sensor networks, data values that contin-
uously change, and outdated recorded information. Uncer-

tainty may also be caused by repeated measurements [28].
« Uncertainty is an obstacle in building classification

modeling, as described in the following:
o Uncertainty cases are those in which objective prob-
ability distribution is absent because of limited data
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availability. These cases depend on personal experiences
derived from individuals’ personal judgment or own
experience, hence the term “‘personal probability distri-
bution.”

« Uncertainty emerges when human users or robots need
to make a decision but lack a full perception of the
surrounding environment.

« Some cases involve an uncertain prediction of probabil-
ity based on a given input.

o Uncertainty cases sometimes involve the same data

values but different outputs.
Therefore, uncertainty cases require unconventional

techniques for building classification models. Despite the
abundance of classification algorithms, building classifica-
tion based on uncertain data remains a great challenge. The
Bayesian network is the most capable of handling uncer-
tainty cases in classification. In the presence of complicated
relationships between independent variables, the Bayesian
network represents the common probability distribution for
a set of random variables that share potentially interrelated
causal relationships [29].

The NB classification algorithm is highly appealing
because of its simplicity, elegance, and robustness. It is one
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FIGURE 2. Datasets plotting.

of the oldest formal classification algorithms, and it is often
surprisingly effective [30]. A large number of modifications
have been introduced by statistical, data mining, machine
learning, and pattern recognition communities in an attempt
to make the algorithm increasingly flexible. It is widely
used in various areas, including text classification and spam
filtering.

In a typical classification task in NB, class probability
depends on the frequency or stochastic analysis of each class.
Conditional probabilities are calculated on the basis of the
ratio between the joint presence of the attributes and the
classes to the presence of the class itself. Classification,
in general, and Bayesian classification, in particular, exhibit
poor performance in the classification process when the num-
ber of samples representing a given class is low [31]. One
of the solutions, which can be easily implemented, is to
combine the probabilities and conditional probabilities of
different sources; this solution works exactly the same when
all data are combined in a single source [32]. Nevertheless,
this process eliminates the specialty and privacy of distributed
sources, which are highly important in many applications,
such as disease diagnosis based on the region of the data
acquired [33], [34].

While there are various classifiers exists in the literature
with robust performance, Bayesian classifier, has properties
that make it suitable for the intended distributed classifica-
tion task, accordingly it is selected to be integrated with the
distributed agents.

o First: Each agent should be able to incorporate
knowledge acquired from other agents, Bayesian as a
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statistical classifier, has the ability to integrate other
source of knowledge aside from the training data. SVM,
for example is not capable of incorporate such informa-
tion in the classification process.

« Second: Each agent should be able to deal with missing
values, as these values will be incrementally added to the
model, Bayesian, unlike other classifiers, such as SVM,
has the ability to deal with missing data by averaging
over the possible values that the attribute might have
taken.

o Third: Each agent should be able to share part of the
trained model without sharing the whole training sam-
ples, Bayesian has the ability to share and hide some of
the components of the models, which are the priori prob-
ability, conditional probability and class probability.

« Finally, the scalability is required for the whole sys-
tem to allow adding new classes and features without
re-constructing models. Bayesian is scalable compared
to other classifiers such as SVM and decision tree [35].

To facilitate collaborative agent classification, a collaborative
MAS-DDM-NB is developed. Each agent stores its samples
and establishes its prior assumption based on these data.
In the classification of new data item, each agent uses NB
classifier with reference to its own prior assumption and uses
shared information from other agents when required. Accord-
ingly, agents involved in the collaboration classification tasks
promote information diversity and particularity based on
their own data and share information among one another to
enhance the results. Overall, the proposed technique involves
agents that work independently and collaborate with other
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agents in the field. The aims of the developed technique are
as follows:

o Sharing information about data among agents to facili-
tate agent collaboration in the classification task;

« Promote information diversity among agents and agent
particularity based on its own data;

o Promote information privacy among agents by sharing
limited data about the constructed model at each agent;

« Enhance agents results by incorporating inputs from
other agents;

o Ensure limited communication overhead among the dis-
tributed agents and prevent data reallocation and central-
ization; and

« Ensure low processing cost by processing data blocks at
each agent independently.

The components of the proposed collaborative classification
technique are discussed in the following subsections.

A. MUTUAL COLLABORATIVE NAIVE BAYESIAN
CALCULATION

The principles of the Bayesian-based classification remain
the same with the collaborative classification when sharing
joint probabilities among collaborative agent. Hence, for clas-
sification task with discrete random variable and nominal
attributes, distributed naive Bayesian classification is imple-
mented using the maximum a posterior (MAP), as given in
Equation 1:

§= agmax p(Co[]_ PXilco ()
ketk1,k2,....kn} i=l

where p(Cy), is the probability of the class k, and p(X;|Cy),
is the conditional probability of attribute value Xi with class k.
Accordingly, MAP selects the class that maximizes the poste-
rior based on conditional and class probabilities. These proba-
bilities are calculated at each agent as model building prior to
any classification or information sharing process. p(Cy), and
p(X;|Cy), are calculated using Equations 2 and 3, respectively.
Another important probability p(X;) is also calculated at each
agent using Equation 4:

p(Cr) ="/, @
p (XilCy) = "ik [, 3)
pXi) = "if, “

where n is the total number of instances at the agent, ny is the
number of instances with the class value k, n; is the number
of instances with the attribute value i, and n;; is the number
of instances with the attribute value i and class value k.
Given an instance to be classified is introduced to the
local agent, the agent calculates the probability of each class
independently without any collaboration if and only if the
probability of the produced classification output is above
some threshold t. In such case, the classification model at
the local agent is considered sufficient to classify the input
instance. If the best class, as calculated by MAP, shows low
probability that is below t, then the agent requests information

VOLUME 9, 2021

from other agents. This request is followed with calculation
in a set of processes.

First, in calculating class probability and request collabo-
ration, the probabilities of all class labels that are known to
the local agent, y, are calculated when a set of attribute values
is provided to that agent, as given in Equation 1.

In case that the probabilities of all these classes do not
reach a specific threshold, which differentiates between the
asserted and randomized values, the agent requests informa-
tion from other agents. The other agents send the following
probabilities to the initiator:

o Class labels Cj above the threshold;

« Joint probability of the set of attributes conditionally
dependent on each class that is Above the threshold
[Ti=, P(Xi|Cy); and

« Joint probabilities of the attribute set ]—[;’=1 P(X;).

To ensure the privacy of agent data, none of the following
values used to calculate the shared information are exposed:

o Actual probability value calculated for P(Cy|X;);

o Number of instances, in which Cj and X; occur jointly;

o Number of instances, in which Cy is presented in the
dataset;

« Total number of instances stored in that agent.

Second, in feedback processing, the initiator agent compares
its most remarkable joint attribute probability that is condi-
tionally dependent on its corresponding probability received
by other agents and the received joint attribute probability
with its corresponding probability. With inputs from multiple
agents, the agent with the most desirable combined proba-
bility, that is, [T7_; P(X;|Cx) x []i=, P(X;), which indicates
the most remarkable knowledge about the attributes and
the given class, is considered. On the basis of the selected
response, the initiator accepts the received class label only if
the received probabilities are above its own probabilities to
prevent agents with high-class but low-attribute probability
from strongly influencing the results. In the proposed tech-
nique with distributed data among multiple agents, each agent
shares the information highly considered correct according
to its knowledge of the specific attributes, specific class, and
other agents; this information is highly considered missing
according to its knowledge of the specific attributes and class.

Third, in model updating, the initiator agent uses the con-
sidered conditional probability to update its probabilities to
prevent sending various requests for identical data and learn
about the infirm attributes. The selected joint conditional
probability is used to update the conditional probability,
as given in Equation 5.

PXilCo =[T._, Pxilco. 5)

Moreover, the attribute and class probabilities for each
involved attribute value and class label are increased by one
divided by the number of instances saved at the local agent.
This process is re-established in the local model, which is
similar to the effect of adding new training instance to that
model.
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Hence, the conditional probability shows no dependence
on the number of instances but on the received probability,
without affecting the probability of the attributes. However,
this update will influence the classification of such attribute
toward the underlying class.

B. COLLABORATIVE VALIDATION WITH DISTRIBUTED
DATA

The proposed collaborative Bayesian classifier is identical to
the typical one. Nevertheless, the probabilities used to update
and calculate classifier labels during sharing are different
from the typical ones.

An example of data distributed horizontally among two
parties is considered; in this example, each party consists of
different set of classes all described using the same set of
attributes. The P(X;) values will be high. Each party con-
structs its model by calculating the probability of each class,
the probability of each attribute value, and the conditional
probability of each attribute value with each class. A set of
input attribute values is provided to the first party, and three
possibilities are available for this input, which are described
as follows:

« Input is a set of values that are frequently occurring
jointly with a specific class label in the first party.
Accordingly, the []/_; P(X;|Cx) and P(Cy) values will
be high. In this case, according to the collaborative
technique described above, the calculated value, that
is, P (Cx | Xi), will be high, and the class label will be
assigned locally without collaboration from the second
party. However, if the same set of attributes is assigned
different class labels in the second party, then this assign-
ment must be considered in the proposed technique to
preserve the particularity of each party by assigning the
class label, which is considerably common to that party.

o Input is a set of values that frequently occur in the
first party but jointly occur with multiple class labels.
Accordingly, the [_; P(X;|Cx) value will be low, but
the P(X;) value will be high. In this case, the calcu-
lated value of P (Cy | X;) will not be high, and the first
party will request collaboration from the second party.
In this case, if the values of []/_, P(X;|C;) and P(X;) in
the second party are higher than those of [/, P(X;|Ck)
in the first party, then the class is assigned on the basis
of the second party because of the frequent appearance
of the feature set X; and good joint probability that links
the attributes to a specific class. Additionally, although
both parties display different values for P(X;), when
the (X;) value and the received value [/, P(X;|Cp) are
high, the next identical set of attributes will be assigned
class label Cj, because it is higher than any conditional
probability of the first party.

o Input is a set of values that do not frequently occur
in the first party, and the joint probability with
all the classes is low. Accordingly, the [/, P(X;|Ck)
and P(Cy) values will be low. In this case, the calcu-
lated P (Cy | X;) value will also be low. Hence, if the
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]_[;’Z] P(X;|Cy) and P(X;) values in the second party are
high, then the class is assigned on the basis of the second
party because of the frequent appearance of the feature
set X; and high joint probability that links the attributes
to a specific class. In addition, given that the received
value ]—[?=1 P(X;|Cy) is high, the next identical set of
attributes will be assigned class label Cj, because it
is higher than any conditional probability of the first
party. In the second and third cases, if the second party
also exhibits low probabilities, then both parties possess
insufficient knowledge of the input set of attributes.
Accordingly, the first party will receive no value from
the second one. This party will assign label locally to
preserve the particularity of each party by assigning the
class label that is remarkably common to that party.
Overall, in the horizontally distributed data, the proposed
technique considers collaborative inputs to enhance the out-
put classification results and preserve particularity of differ-
ent parties when both parties display similar knowledge of
the input set of attributes. Although each party may assign
different class labels, this party preserves the particularity of
each party by assigning the class label that is considerably
common to that party.

In vertically distributed data, all the parties present the
same set of classes, with each party described using differ-
ent values of the same set of features. Otherwise, the P(X;)
values will be low in one party and high in another similarly.
[T, P(X;|Cx) will be low in one party and high in another.
An input set of attribute values is provided to the first party,
and three possibilities for this input are as follows:

o Input is a set of values frequently occurring in the
first party jointly with a specific class label. Accord-
ingly, the [T7_; P(X;|Cx) and P(Cy) values will be high.
In this case, only the local party can assign the cor-
rect class label because the second party is expected
to exhibit low probabilities. Consequently, the class
label will be assigned locally without collaboration from
the second party.

« Input is a set of values frequently occurring in the
first party but jointly occurring with multiple class
labels. Accordingly, the [, P(X;|Ci) value will be
low, whereas that of P(X;) will be high. In this case,
the calculated value, P (Cy | X;), will not be high, and
the first party will request collaboration from the second
party. Thus, [ 7, P(X;|Cp) and P(X;) in the second party
will probably be low because data are distributed verti-
cally. The class is assigned locally because both parties
show low attribute probabilities. The local party is given
advantage with its high P(X;) value.

« Input is a set of values not frequently occurring in
the first party, and the joint probability with all the
classes is low. Accordingly, [/, P(X;|Cx) and P(C)
values will be low. In this case, the calculated P (Cy | X;)
value will be low. Consequently, the [ ]/, P(X;|Cp) and
P(X;) values in the second party will be high. The class is
assigned on the basis of the second party because of the
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FIGURE 3. lllustrates the percentage for each cluster for the two datasets.

frequent appearance of the feature set X; and high joint
probability that links the attributes to a specific class.
Moreover, given that the received value H?:l P(X;|Cp)is
high, the next identical set of attributes will be assigned
class label Cj, because it is higher than any conditional
probability of the first party.
As noted in the vertically distributed data, the proposed
technique considers high collaboration because each party
is knowledgeable of the specific input set, which makes
the proposed technique similar to the typical classifica-
tion approach. Furthermore, unlike the typical classification,
the proposed technique allows limited sharing of information.
Thus, private data remain secured and unexchanged among
the collaborative parties.

Third Phase—Mas Protocol: In this phase MAS-DDM-NB
is implemented by using that same MAS Protocol that we
used in our pervious paper that found in [36].

Accordingly, the resulting data are distributed among the
agents, and each agent is given training and testing sets. Each
agent applies the NB classifier, as illustrated in Figure 5.
Table 2 summarizes the model accuracy for each agent for
the first and second datasets.

IV. EXPERIMENTS AND RESULTS

To validate the applicability of the proposed technique and
estimate the performance of the involved collaborative clas-
sification, we develop a MAS for classification tasks using
JADE. The two datasets were distributed by using the K-mean
algorithm clustering. After testing for the most suitable agent
number that will communicate with each other, the most
effective cluster number is 5 for the first dataset and 3 for
the second dataset. Where when a large number for cluster-
ing was tested for the both dataset the feature lost worth,
and there is no overlap between the agent where most of
important feature is dropped in the feature selection stage.
Figure 3 illustrates the percentage for each cluster for the two
datasets.

After clustering, the feature selection is applied in each
cluster and the most important feature is selected for each
agent. Feature selection displays the importance of each input
relative to a selected target. Figure 4 illustrates the results for
several agents.

Accordingly, the resulting data are distributed among the
agents, and each agent is given training and testing sets. Each
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Agent-1 From the First Dataset | | Agent-1 From the Second Dataset

FIGURE 4. Feature selection results.
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FIGURE 5. Data distribution among the agent.

TABLE 2. Model accuracy for each agent.

Dataset-1
Agent # Model Accuracy
Agent 1 75.1%
Agent 2 78.06%
Agent 3 79.39%
Agent 4 75.17%
Dgent SO 159,
Dataset-2
Agent # Model Accuracy
Agent 1 90.27%
Agent 2 86.91%
Agent 3 94.79%

agent applies the NB classifier, as illustrated in Figure 5.
Table 2 summarizes the model accuracy for each agent for
the first and second datasets.

MAS for classification task is developed using JADE that
evolved full-featured FIPA platform. After each agent builds
their model, the MAS-MCC-NB is executed to validate the
process sequence and communication.
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FIGURE 6. Cumulative profit charts.

MAS-MCC-NB works on cancer datasets, where the most
important factor in this filed is to minimize the risk of
incorrect detection, and that is why we must define a car-
bide threshold for their classifier that indicates whether their
model can calculate the instance without or without any col-
laboration. For that reason, we used a cumulative profit charts
to detect the well-defined peak somewhere in the middle of
the chart that indicate the lowest right probability of the model
as shown in Figure 6 for the two datasets.

After that we noticed that the most of agents can calculate
the instance probability independently without any collabo-
ration if and only if the probability of the produced classi-
fication output is above 0.6 for the first dataset and 0.5 for
the second dataset. If the produced classification output does
not reach this probability, then the agent requests informa-
tion from other agents. Thereafter, the proposed system is
compared with

o Normal DDM algorithm without any collaboration

between agents,

o Traditional DDM low-level,

o Traditional DDM high-level.

A. MAS-MCC-NB VS NON-COMMUNICATING AGENT
RESULTS

In this section the MAS-MCC-NB compared with normal
DDM algorithm for the classification algorithm that each
agent used without any collaboration and communication
between them.

1) DATASET- 1 RESULTS

The results for the first dataset contacted that the
MAS-MCC-NB is overpowered and more accurate than the
non-communicating system as illustrated in Tables 3 and
shown in Figures 7 — 11 for each agent.
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TABLE 3. MAS-MCC-NB vs without collaboration results.

Test # MAS-MCC-NB Without Collaboration
1 75.67% 68.22%
2 72.50% 68.13%
3 74.25% 65.83%
4 75.33% 70.90%
5 71.80% 67.00%
I v R
Test # MAS-MCC-NB Without Collaboration
1 74.67% 72.00%
2 75.50% 74.00%
3 73.50% 73.00%
4 76.78% 75.67%
5 72.10% 71.30%

Test # MAS-MCC-NB Without Collaboration
1 72.67% 69.56%
2 70. 88% 70.25%
3 74.88% 67.00%
4 75.22% 71.33%
5 72.50% 69.00%
Test # MAS-MCC-NB Without Collaboration
1 71.33% 71.00%
2 69.88% 69.33%
3 73.75% 71.65%
4 76.12% 73.91%
5 71.80% 67.80%
Test # MAS-MCC-NB Without Collaboration
1 70.33% 64.00%
2 73.83% 71.00%
3 75.01% 74.29%
4 77.33% 76.22%
5 73.60% 73.40%
Agent-1
80.00%
g 75.00%
§ 70.00%
£ 65.00%
60.00%
1 2 3 4 5
Test #
m MAS-MCC-NB  m Without Collaboration
FIGURE 7. Agent 1 results (Dataset-1).
Agent-2
80.00%
S
=3
e
<
65.00%
1 2 3 4 5

m MAS-MCC-NB

Test #

m Without Collaboration

FIGURE 8. Agent 2 results (Dataset-1).

At the end of the experimental results for the first dataset
show that MAS-MCC-NB is excellent in enabling the deci-
sion whether to accept the received class label from other
agents. This finding shows the ability of the utilized MAS-
MCC-NB in enhancing the results of the contacted agents,
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FIGURE 9. Agent 3 results (Dataset-1).
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FIGURE 10. Agent 4 results (Dataset-1).
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FIGURE 11. Agent 5 results (Dataset-1).

Overall Accuracy
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Test #

o MAS-MCC-NB = Without Collaboration

FIGURE 12. Overall accuracy (Dataset-1).

TABLE 4. Overall accuracy (Dataset-1).

Test # MAS-MCC-NB Without Collaboration
1 72.60% 68.96%
2 72.47% 70.54%
3 74.28% 70.35%
4 76.16% 73.61%
5 72.36% 69.70%

with the rate of 1.93 % to 3.64 %. The results for the first
dataset are illustrated in Tables 4 and shown in Figures 12.

2) DATASET- 2 RESULTS
The results for the first dataset contacted that the
MAS-MCC-NB is overpowered and more accurate than the
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TABLE 5. MAS-MCC-NB vs without collaboration results.

Test # MAS-MCC-NB Without Collaboration
1 74.00% 62.00%
2 74.26% 64.00%
3 84.16% 65.48%
Test # MAS-MCC- NB Without Collaboration
1 82.00% 60.00%
2 75.25% 65.13%
3 86.14% 65.50%
Test # MAS-MCC- NB Without Collaboration
1 76.00% 72.66%
2 77.25% 76.00%
3 82.18% 73.48%
Agent-1
5. 100.00%
®
E So-w% - -
< ooo%
1 2 3
Test #
B MAS-MCC-NB = Without Collaboration

FIGURE 13. Agent 1 results (Dataset-2).
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FIGURE 14. Agent 2 results (Dataset-2).
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5. 85.00%
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5 75.00%
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Test #

m MAS-MCC-NB  m Without Collaboration

FIGURE 15. Agent 3 results (Dataset-2).

non- communicating system as illustrated in Tables 5 and
shown in Figures 13 — 15 for each agent.

At the end of the experimental results for the second
dataset show that MAS-MCC-NB is excellent in enabling
the decision whether to accept the received class label from
other agents. This finding proves the ability of the utilized
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TABLE 6. Overall accuracy (Dataset-2).

Test # MAS-MCC-NB Without Collaboration
1 77.33% 64.89%
2 75.59% 68.38%
3 84.16% 68.15%

Overall Accuracy

- 100.00%
S
e
g So-a)% .
(%3
b

0.00%

1 2 3
Test #

mMAS-MCC-NB  m Without Collaboration

FIGURE 16. Overall accuracy (Dataset-2).

TABLE 7. Model accuracy for each agent and global model.

Agent # Model Accuracy Global Model
Agent 1 75.1%
Agent 2 78.06%
Agent 3 79.39% 74.14%
Agent 4 75.17%

* 81.89%
Agent # Model Accuracy Global Model
Agent 1 90.27%
Agent 2 86.91% 90.30%
Agent 3 94.79%

MAS-MCC-NB in enhancing the results of the contacted
agents, with the rate of 7.21 % to 16.01 %. The results
for the first dataset are illustrated in Tables 6 and shown
in Figures 16.

B. MAS-MCC-NB VS HIGH-LEVEL, AND LOW-LEVEL DDM
METHOD RESULTS

In this section, the MAS-MCC-NB compared with DDM
Low-level, and DDM high-level. Each agent of the high-
level DDM shares its learned model with the global model
to produce a single learning model for mining the input data,
and low-level DDM is integration of voting results of multiple
independent decision making. Tables 7 the model accuracy
for each agent, and the global model for first and second
datasets.

1) DATASET- 1 RESULTS
The results for the first dataset contacted that the MAS-MCC-
NB is overpowered and more accurate than the high-level
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FIGURE 17. Agent 1 results (Dataset-1).
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FIGURE 18. Agent 2 results (Dataset-1).
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FIGURE 19. Agent 3 results (Dataset-1).
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FIGURE 20. Agent 4 results (Dataset-1).

DDM, and low-level DDM as illustrated in Tables 18 and
shown in Figures 17 — 21 for each agent.

This finding proves the ability of the utilized MAS-MCC-
NB in enhancing the results of the contacted agents. It obtains
a rate of 2.60% - 6.95% in forming the high-level DDM for
NB and a rate of 3.27% — 6.11% in forming the low-level
DDM for NB. The results for the first dataset are illustrated
in Tables 9 and shown in Figures 22.

2) DATASET- 2 RESULTS
The results for the second dataset contacted that the
MAS-MCC-NB is overpowered and more accurate than
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TABLE 8. MAS-MCC-NB vs high-level DDM and low-level DDM results.

Test # MAS-MCC-NB _DDM DDM Low-Level
High-Level
1 75.67% 70.33% 67.78%
2 72.50% 70.88% 69.25%
3 74.25% 67.33% 68.17%
4 75.33% 73.00% 70.67%
5 71.80% 69.50% 66.50%
v T R
Test # MAS-MCC-NB 'DDM DDM Low-Level
High-Level
1 74.67% 70.33% 67.78%
2 75.50% 70.88% 69.25%
3 73.50% 67.33% 68.17%
4 76.78% 73.00% 70.67%
5 72.10% 69.50% 66.50%
- Agem3
— Y p— 'DDM DDM Low-Level
High-Level
1 72.67% 70.33% 67.78%
2 70. 88% 70.67% 69.25%
3 74.88% 67.33% 68.17%
4 75.22% 73.00% 70.67%
5 72.50% 69.50% 66.50%
- Agetd
_— Ry S— 'DDM DDM Low-Level
High-Level
1 71.33% 70.33% 67.78%
2 69.88% 69.83% 69.25%
3 73.75% 67.33% 68.17%
4 76.12% 73.00% 70.67%
5 71.80% 69.50% 66.50%
- Agems
Test # MAS-MCC-NB .DDM DDM Low-Level
High-Level
1 70.33% 70.33% 67.78%
2 73.83% 69.83% 69.25%
3 75.01% 67.33% 68.17%
4 77.33% 73.00% 70.67%
5 73.60% 69.50% 66.50%
TABLE 9. Overall accuracy (Dataset-1).
Test # MAS-MCC-NB DDM High-Level DDM Low-Level
1 72.93% 70.33% 67.78%
2 72.52% 69.83% 69.25%
3 74.28% 67.33% 68.17%
4 76.16% 73.00% 70.67%
5 72.36% 69.50% 66.50%
Agent-5 Overall Accuracy
80.00%
80.00% Z 75.00%
= S 1 1°f F°
5 70.00% S 65.00%
bbbk o
50.00% 1 2 3 4 5
1 2 3 4 5 Test #
Test #

m MAS-MCC-NB = DDM High-Level = DDM Low-Level

FIGURE 21. Agent 5 results (Dataset-1).

the high-level DDM, and low-level DDM as illustrated
in Tables 10 and shown in Figures 23 — 25 for each
agent.

VOLUME 9, 2021

m MAS-MCC-NB m DDM High-Level = DDM Low-Level

FIGURE 22. Overall accuracy (Dataset-1).

This finding proves the ability of the utilized MAS-MCC-
NB in enhancing the results of the contacted agents. It obtains
arate of 11.45% - 21.34% in forming the high-level DDM for
NB and a rate of 10.39% — 12.82% in forming the low-level
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TABLE 10. MAS-MCC-NB vs high-level DDM and low-level DDM results (Dataset-2).

Test # MAS-MCC-NB DDM High-Level DDM-Low-Level
1 74.00% 57.00% 65.52%
2 74.26% 67.11% 68.17%
3 84.16% 67.75% 67.26%
Test # MAS-MCC-NB DDM High-Level DDM-Low-Level
1 82.00% 57.00% 65.52%
2 75.25% 67.11% 68.17%
3 86.14% 67.75% 67.26%

Test # MAS-MCC-NB DDM High-Level DDM-Low-Level
1 76.00% 57.00% 65.52%
2 77.25% 67.11% 68.17%
3 82.18% 67.75% 67.26%
TABLE 11. Overall accuracy (Dataset-2).
Test # MAS-MCC-NB DDM High-Level DDM-Low-Level
1 78.34% 57.00% 65.52%
2 78.56% 67.11% 68.17%
3 79.54% 67.75% 67.26%
Agent-1 Agent-3
100.00% 100.00%
Z Z
g g
3 5000% 3 5000%
< - - < . . -
0.00% 0.00%
1 2 3 1 2 3
Test# Test #

B MAS-MCC-NB  m DDM High-Level = DDM-Low-Level

FIGURE 23. Agent 1 results (Dataset-2).
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FIGURE 24. Agent 2 results (Dataset-2).

DDM for NB. The results for the first dataset are illustrated
in Tables 11 and shown in Figures 26.

The experimental results of the MAS-MCC-NB show that
each agent makes efficient and accurate decision on the
new cases they receive than high-level DDM, and low-level
DDM. This result proved the ability of the utilized MAS-
MCC-NB in enhancing the results of the involved agents
about 6.95% for the first dataset and 21.34% for the second
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B MAS-MCC-NB  m DDM High-Level = DDM-Low-Level

FIGURE 25. Agent 3 results (Dataset-2).
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FIGURE 26. Overall accuracy (Dataset-2).

dataset. In addition to accuracy, the MAS-MCC-NB promotes
information diversity and agent particularity, preserves data
coverage.

V. CONCLUSION

Mutual collaboration agent classification using naive
Bayesian classification technique is developed and imple-
mented within a MAS. In the proposed technique, each agent
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stores its samples and establishes its prior assumption on the
basis of these data. In classifying new data item, each agent
uses naive Bayesian classifier with reference to its own prior
assumption and shared information from other agents when
required. Accordingly, agents involved in the collaboration
classification tasks promote information diversity and par-
ticularity based on their own data when sharing information
among one another to enhance the output. The MAS-MCC-
NB is identical to the typical one. However, in the sharing
of this classifier, the probabilities used to update and cal-
culate classifier labels are different from those of typical
one.

The experimental result for the two datasets shows that
the proposed MAS-MCC-NB is always more accurate and
with enhanced results compared with the non — collaboration
system. Similarly, the experimental results show that the
MAS-MCC-NB successfully enabled the initiator agent to
decide whether to accept the received class label from the
other agents. MAS-MCC-NB achieved much better results
than the non-collaboration system. Also, the experimental
results indicate that the model is highly accurate and efficient
for the cases of the agent when the model is built on the
basis of the characteristics of the dataset. Compiling a global
model from different local models make the model highly
generalized. However, this approach is inefficient for a few
local models specialized for certain cases.

For Future work we will testing our system MAS-DDM for
different classifier and for different application.

APPENDIX
The example, presented below, involves three agents that
have to decide whether or not to play golf which depends
of whether attribute, where each one of them have different
attribute shows the specific producers for the MAS-DDM-NB
framework:

Each agent has the following dataset:

The MAP can be calculated by first constructing a fre-
quency table for each attribute against the target. The fre-
quency tables to likelihood tables are then transformed and
NB equation is used to calculate the posterior probability for

Frequency Table Play Golf
& Yes No
Outlook Sunny 2 0
. Overcast 1 0
InitiatorAgent Rainy 0 2
Temp Hot 1 2
Mild 1 0
Cool 1 0
Humidity High 2 2
Normal 1 0
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Outlook | Temp Humidity | Play Golf
Rainy Hot High No
& Rainy Hot High No
Overcast | Hot High Yes
Initiator Agent Sunny Mild High Yes
Sunny Cool Normal Yes
Outlook | Temp Humidity Play Golf
Q Sunny Hot High No
# Rainy Hot High No
i"‘ > Overcast | Hot High No
Agent-1 Overcast | Hot High No
Overcast | Mild High Yes
Sunny Cool Normal Yes
Outlook | Temp Humidity | Play Golf
Q Sunny Hot High No
i\._ L Overcast | Hot High Yes
Agent-2 Rainy Mild High Yes
Rainy Cool Normal Yes

each class. The class with the highest posterior probability is
the outcome of the prediction.

Each agent constructs its model by calculating the proba-
bility of each class, the probability of each attribute value, and
the conditional probability of each attribute value with each
class.

In the first scenario, the set of input attribute values
provided to the requested agent will be as follows:

Outlook Temp
Rainy Hot High

Humidity

In calculating class probability and request collaboration,
the probabilities of all class labels known to the local agent
are calculated when a set of attribute values is provided to that
agent, as given in Equation 1.

vy = p(Rainy/Yes) x p(Hot/Yes) x p(High/Yes) x p (Yes)

Likelihood Table Play Golf
Yes No
Outlook Sunny 2/3 0/2 2/5
Overcast 1/3 0/2 1/5
Rainy 0/3 2/2 2/5
3/5 2/5
Temp Hot 1/3 2/2 3/5
Mild 1/3 0/2 1/5
Cool 1/3 0/2 1/5
3/5 2/5
Humidity High 2/3 2/2 4/5
Normal 1/3 0/2 1/5
3/5 2/5
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Frequency Table Play Golf Likelihood Table Play Golf
Yes No Yes No
Outlook Sunny 0 1 Outlook Sunny 1/3 0/1 1/4
Overcast 1 0 Overcast 1/3 0/1 1/4
& Rainy 0 2 Rainy 0/3 21 2/4
Temp Hot 1 1 2/4 2/4
Agent-1 Mild 1 0 Temp Hot 13 11 24
Cool ! 0 Mild 13 01 1/4
Humidity | High 2 ! Cool 1/3 01 1/4
Normal 1 0 3/4 14
Humidity | High 23 11 3/4
Normal 1/3 0/1 1/4
3/4 2/4
Frequency Table Play Golf Likelihood Table Play Golf
Yes No Yes No
& Outlook Sunny 1 1 Outlook Sunny 12 1/4 2/6
> Overcast 1 2 Overcast | 172 2/4 3/6
Agent-2 Rainy 0 1 Rainy 02 1/4 1/6
Temp Hot 0 4 2/6 4/6
Mild 1 0 Temp Hot 0/2 4/4 4/6
Cool ! 0 Mild 12 0/4 1/6
Humidity | High 1 4 Cool 12 0/4 1/6
Normal 1 0 2/6 44
Humidity High 12 4/4 5/6
Normal 12 0/4 1/6
2/6 4/6

y = p(Rainy/No) x p(Hot/No) x p(High/No) x p(No)
=0/3x1/3%x2/3%x3/5=0
=2/2x2/2x2/2x2/5=04

The local agent decided that the class of the input attribute
values will be “no”.

The requested agent then compares their class probability
with the allowed thresholds, which in this example is “0.3”,
where 0.4 > 0.3 causes the requested agent to take their
predicted value and not request help from another agent.

In the second scenario, the set of input attribute values
provided to the requested agent will be as follows:

Outlook Temp

Overcast Hot High

y = p(Overcast/Yes) x p(Hot/Yes) x p(High/Yes) x p (Yes)

=1/3x1/3x2/3x3/5=0.0437=0/2x%x2/2x2/2
x2/5=0

= p(Overcast/No) x p(Hot /No) x p(High/No) x p (No)

=0/2x2/2x2/2x2/5=0

Humidity

<>

The local agent decided that the class of the input attribute
values will be “yes”.

The requested agent compares their class probability
with the threshold, which in this example is “0.3”, where
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0.0437 < 0.3 causing the requested agent to request for
help from another agent. The other agents send the following
probabilities to the requested agent:

o Class labels Cj, above the threshold;

« Joint probability of the set of attributes conditionally
dependent on each class that is Above the threshold
[T, P(Xi|Ck); and

« Joint probabilities of the attribute set ]_[?:1 P(X;).

= p(Overcast/Yes) x p(Hot/Yes) x p(High/Yes) x p (Yes)

<>

y = p(Overcast/No) x p(Hot/No) x p(High/No) x p (No)
=0/1x1/1x1/1x1/4=0

Therefore, the agent decided that the class of the input
attribute values will be “yes”, but it will not replay since
0.0574 < 0.3.

p(Overcast/Yes) x p(Hot /Yes) x p(High/Yes) x p (Yes)

y
=1/2x0/2x1/2x2/6=0

y = p(Overcast/No) x p(Hot /No) x p(High/No) x p (No)
=2/4x4/4x4/4 x4/6=0.34

The local agent decided that the class of the input attribute
values will be “no”’, and the requested agent will be sent the

VOLUME 9, 2021



M. H. Qasem et al.: MAS Combined With DDM for Mutual Collaboration Classification

IEEE Access

following information:

Class label = no
[T, PXiICo) = 2/6%4/6 % 4/6 = 0.15
=

[T, Pex) =3/6%4/6%5/6 =0.28

In feedback processing, the initiator agent compares its most
remarkable joint attribute probability, which is conditionally
dependent on its corresponding probability received by other
agents, with the received joint attribute probability with its
corresponding probability. Thus, the result will be as follows:

n n

Initiator1 = [ | P(X;|Cox [ ] P(X)
i=1 i=1

= 0.016 % 0.096 = 0.0015

n n
Agent2 = HP(Xi|Ck)x l_[P(Xi)
i=1 i=1
= 0.15%0.28 = 0.042

where agent 2 is most desirable combined probability, which
indicates that agent has the most remarkable knowledge on
the attributes and the given class is considered and where
requested agent will take the class ‘no”.
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