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ABSTRACT Information security has become an intrinsic part of data communication. Cryptanalysis
using deep learning–based methods to identify weaknesses in ciphers has not been thoroughly studied.
Recently, long short-term memory (LSTM) networks have shown promising performance in sequential data
processing by modeling the dependencies and data dynamics. Given an encrypted ciphertext sequence and
corresponding plaintext, by taking advantage of sequential processing, LSTM can adaptively discover the
decryption function regardless of the complexity level, which substantially outperforms traditional methods.
However, a lengthy ciphertext sequence causes LSTM to lose important information along the sequence,
leading to a decrease in network performance. To tackle these problems, we propose adding an attention
mechanism to enhance the LSTM sequential processing power. This paper presents a novel, dynamic way to
attack classical ciphers by using an attention-based LSTM encoder-decoder for different ciphertext sequence
lengths. The proposed approach takes in a sequence of ciphertext and outputs a sequence of plaintext. The
effectiveness and flexibility of the proposed model were evaluated on different classical ciphers. We got
close to 100% accuracy in breaking all types of classical ciphers in character-level and word-level attacks.
We empirically provide further insights into our results on two datasets with short and long ciphertext lengths.
In addition, we provide a performance comparison of the proposed method against state-of-the-art methods.
The proposed approach has the potential to attack modern ciphers. To the best of our knowledge, this is the
first time an attention-based LSTM encoder-decoder has been applied to attack classical ciphers.

INDEX TERMS Cryptanalysis, classical ciphers, attention-based LSTM encoder-decoder, recurrent neural
network.

I. INTRODUCTION
Security is a major concern in all fields in which information
is protected by various encryption methods. Cryptosystems
use various techniques to convert the original message into
an encrypted message of non-understandable text. There-
fore, a systematic method for modifying or transforming the
message is needed. Researchers have proposed many differ-
ent cryptosystems to improve the information security level
by transforming plaintext into secure ciphertext. There are
numerous ciphers with various functionalities, specifications,
and strengths [1]–[3]. Cryptanalysis includes exploring the
weaknesses of cryptosystems to ensure the security level
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of the encryption algorithm. Researchers have conducted
various attacks to analyze the vulnerabilities of different
cryptosystems [4]–[8]. Despite their simple structure, clas-
sical ciphers are well-suited to illustrating the effectiveness
of different attack approaches [4], [7]. Several approaches
investigated the application of computational intelligence
(CI) to cryptographic problems. Those techniques include
the Genetic Algorithm (GA) [9], [10], Simulated Anneal-
ing (SA) [11], and Tabu search [12], [13] which mainly
rely on searching for decryption key in evolutionary man-
ner. Evaluating hundreds or thousands of solutions might
require a long time. Machine learning approaches have
been applied to cryptographic problems including artificial
neural networks (ANNs) [5], [14], [15]. However, typical
machine learning–based approaches to cryptanalysis have
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generalized limitations. Taking advantage of the high com-
putational power of deep learning–based techniques has
attracted many researchers at a growing rate, and has pro-
duced interesting results in many different fields, including
medical image analysis [16], speech recognition [17], natu-
ral language processing (NLP) [18], and cryptanalysis [6],
[19]. However, there are many open problems in different
fields where deep learning applications should be investi-
gated. Recently, Gomez et al. [20] introduced the cipher
cracking model that utilizes general adversarial networks
(GANs) to attack classical ciphers. The proposed approach
was applied to attack the classical shift and Vigenere ciphers
and obtained 98.7% accuracy for the shift cipher and 75.7%
for the Vigenere cipher. The fundamental constraint of the
ANN-based or convolutional neural network (CNN)-based
models is a lack of sequential computation ability. Recurrent
neural networks (RNNs), long short-term memory (LSTM),
and the gated recurrent unit (GRU) in particular have been
established for sequence modeling [21]. RNNs suffer from
the vanishing gradient problem for deep networks. LSTM
is a class of RNN, and is a powerful sequence-to-sequence
learning architecture that was proven capable of learning
algorithmic tasks [22]. However, the limitation with LSTM is
that a lengthy input sequence causes LSTM to forget impor-
tant information along the sequence. To tackle this problem,
the attention mechanism was introduced, which substantially
improves the LSTM capability by adding special attention to
important information along the sequence [23], [24].

Inspired by this, we present a new approach to classical
cipher attacks by using an attention-based LSTM encoder-
decoder model. Unlike previous work, our model can be
applied to any type of cipher, regardless of the complexity
level. Our approach exploits language models for sequence
prediction through the attention mechanism. The approach
proposed in this paper fundamentally improves prior work.
The sequence-to-sequence decryption ability of the proposed
method can preserve the sequential nature of the language
model (LM) and the alignment between the input and out-
put sequence, which is an important step in conducting an
efficient attack on different ciphers. The proposed attention-
based LSTM encoder-decoder model takes in sequences of
ciphertext with varying lengths and outputs sequences of
plaintext. In particular, our proposed approach can be adopted
to crack modern ciphers. Our approach was evaluated by
attacking the classical Caesar (shift), Vigenere, and substi-
tution ciphers. We attained nearly 100% accuracy in break-
ing all types of the aforementioned ciphers. Furthermore,
the impact of hyperparameter tuning (the word embedding
dimension, the number of hidden LSTM units, the mini-
batch size) on the network training performance was inves-
tigated. To sum up, our contributions are as follows: 1) we
demonstrated an efficient and fast ciphertext attack using the
attention-based LSTM encoder-decoder model, 2) the model
computes attention weights relying on both the importance
of each ciphertext word and the position, 3) compared with
several state-of-the-art methods, we conducted qualitative

FIGURE 1. (a) the structure of the RNN unit, and (b) an LSTM unit that
maps input vector xt to output hidden state vector ht .

experiments, and the results evaluated the effectiveness of
our proposed approach, 4) we conducted our experiments on
two different datasets with short and long ciphertext sequence
lengths, and 5) we conducted attacks at both the character
level and the word level.

To the best of our knowledge, this is the first attack on
classical ciphers based on the LSTM sequential LM with an
attentionmechanism. The structure of this paper is as follows.
In Section II, we discuss the prerequisites for RNNs and
LSTMs and for the LSTM encoder-decoder model and clas-
sical ciphers methods. In Section III, we discuss the details of
our proposed system, including attention-based LSTM, word
embedding, and the architecture of the proposed method.
In Section IV, we discuss the experimental results and offer a
quantitative analysis. Section V contains concluding remarks.

II. BACKGROUND
A. RECURRENT NEURAL NETWORKS
The RNN is a type of neural network capable of forming
a state history of previous input that is suitable for learn-
ing algorithmic tasks, and which has become a cornerstone
for many NLP applications. The RNN structure makes it
suited for variable-length input such as sequential data (see
Fig. 1(a)). For sequence data (x1, x2, x3, . . . xT ), hidden state
ht of the RNN is then updated via the following equation:

ht = f (ht−1, xt ), (1)

where f denotes the activation function. However, the limi-
tation of the RNN is that it suffers from vanishing gradients
in deep networks. A small gradient value does not contribute
very much to learning [25].

B. LONG SHORT-TERM MEMORY (LSTM)
The RNN is unable to memorize what has been seen along
the sequences. The LSTM neural network is a special RNN.
The difference lies in an LSTM structure that includes the
input gate, the output gate, the forget gate, and the memory
cell as the hidden layer, which makes it suitable for learning
long-range dependencies through its internal memory cells
(see Fig. 1(b)) [22], [26].

LSTMs are capable of learning long-term dependencies.
They are designed to remember information for a long period
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using a memory unit called the cell. Three gates control
the information flow in to and out of the neuron’s memory
cell (the input, output, and forget gates) which each possess
an activation function. The LSTM updates its hidden state
sequentially, but the updates highly depend on memory cells.
For example, if the input gate notes a high activation, the input
will be stored in the memory cell [27].

The LSTM network computes the mapping from input
sequence x = (x1, x2 . . . xn) to output sequence h = (h1,
h2 . . . hm) by iteratively calculating network unit activations
(t = 1, 2, . . . ,T ) as follows:

it = σ (wTxix(t) + w
T
hih(t−1) + bi), (2)

ft = σ (wTxf x(t) + w
T
hf h(t−1) + bf ), (3)

ot = σ (wTxox(t) + w
T
hoh(t−1) + bo), (4)

gt = tanh(wTxgx(t) + w
T
hgh(t−1) + bg), (5)

ct = ft ⊗ c(t−1) + it ⊗ gt , (6)

ht = ot ⊗ tanh c(t), (7)

where i, f , o, c, and h are the input gate, forget gate, out-
put gate, intermediate gate, and the cell memory output; w
denotes the layer weight representing input x, and b repre-
sents the threshold of the output gate; σ is the sigmoid acti-
vation function, and tanh is the tangent activation function,
as seen in Fig. 1(b).

C. LSTM ENCODER-DECODER MODEL
The LSTM encoder-decoder is a common framework in the
deep learning model, and is normally used for natural lan-
guage processing tasks to solve the problem of sequence-
to-sequence (seq2seq) modeling [28]. The LSTM encoder-
decoder model is one of the many-to-many models that take
in a sequence of data and output a new sequence of data.
The structure of the encoder-decoder architecture is shown
in Fig. 2. The encoding process is performed in a sliding
window manner.

FIGURE 2. The structure of an LSTM-based encoder-decoder network
model.

The encoder transforms input sequence x = (x1, x2 . . . xn)
into hidden state sequence {h1, h2, h3, . . . , hn}, which are
features extracted from the input sequence. If the input and
output sequences have the same length, the extracted features
can be served to directly predict the target sequence [22];
otherwise, the hidden states are used to generate context

vector C as follows:

C = f (h1, h2, . . . ..ht ), (8)

where f represents the mapping function. The context vector
includes abstract information about the entire sequence. In the
next step, the context vector is used by the decoder to predict
a target output sequence. However, a lengthy input sequence
causes the LSTM to lose important information along the
sequence, leading to a decrease in network performance.
To overcome this limitation, the attention mechanism was
introduced.

The attention-based LSTM has shown remarkable results
with difficult sequence prediction problems like text trans-
lation sorting and long additions, and quickly became the
dominant approach [29].

D. CLASSICAL CIPHERS
We now briefly explain the classical ciphers (shift cipher,
Vigenere, and substitution) [14]. A shift (or Caesar) cipher is
a substitution cipher where each letter in the original message
is replaced with a letter corresponding to a certain number of
letters up or down in the alphabet. In this way, the original
plaintext that was readable is converted into unintelligible
ciphertext. The amount of shifting is known to the intended
receiver, who can decode the message by shifting each letter
in the encrypted message back. Note that the number of
different keys is limited to between 0 and 25. A Vigenere
cipher is well-known as a poly-alphabetic cipher that maps a
letter of the alphabet into a set of different letters. The number
of possible keys is 26m. A simple substitution cipher employs
any permutation of the 26 letters as a key, so there are 26! ≈
288 possible keys.

III. PROPOSED APPROACH
A. ATTENTION- BASED LSTM ENCODER-DECODER
The attention mechanism is part of a neural architecture that
is capable of dynamically highlighting important features
of the input data [30]. Therefore, a decoder would have
to pay close attention to the specific state of the encoder,
which probably has a lot of information. Attention-based sys-
tems were applied to NLP after their successes in computer
vision, speech recognition, and text reconstruction. However,
the original LSTMnetwork does not have an explicit attention
ability. There are different types of attention mechanisms
proposed in the literature [30]–[33]. In our method, we utilize
the Luong method [34] for attention score calculation. The
structure of the attention-based LSTM encoder-decoder is
shown in Fig. 3.

The attention function takes as input the previous hidden
state of the LSTM, Ct−1, and the annotations h1, . . . , hT as
follows:

eti = f (ct − 1, hi), (9)
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FIGURE 3. The structure of an attention-based LSTM encoder-decoder
model.

in which the attention values are fed into a softmax function
for normalization so the weights will be between 0 and 1:

ati =
exp(eti)
T∑
j=1

exp(etj)

. (10)

The updated context vector (ct ) is used to predict the target
output (yt ) in sampling state t . The attention weight (ati) is
assigned to each hidden state (hi). The context vector at the
time (t) can be calculated as

ct =
t∑
i=1

atihi, (11)

where ati is the attention weight of the ith hidden state, hi.

B. CIPHERTEXT ENCODING
Word embedding is a set of language modeling and feature
learning techniques in NLP where words are mapped to vec-
tors of real numbers (Word2vec) [35]. In other words, embed-
ding is a method of converting word tokens into machine-
readable vectors. Word2vec is a two-layer neural net that
converts the text words into a vectors. The input is a text
corpus and the output is a set of vectors. The advantage of
word2vec is that it can train large-scale corpora to produce
low-dimensional word vectors.

Tokenization is taking the words out of sentences and
converting a sentence of words into single words (also called
word segmentation). We preprocess datasets of the ciphertext
so that punctuation is treated as separate tokens, and we
ignore any non-English characters and make a sequence of
characters with spaces removed, and then converted to numer-
ical vectors using word embedding techniques (see Fig. 4).
Given a sentence consisting of n words (x1, x2, x3, . . . , xn−2,
xn−1, xn), every word xi is converted into a real-value vector,
ei, represented as:

ei = [w1,w2,w3, . . . .,wn−2,wn−1,wn] ∈ Rn×d , (12)

where w is a word, and d is the size of the word embedding.

C. DROP OUT
To prevent the network from overfitting, we use the dropout
technique. Dropout is a regularization technique used in

FIGURE 4. The structure of ciphertext tokenizing and converting the
sequence of characters (with spaces and punctuations removed) to
numerical vectors using the word embedding technique.

neural networks to prevent overfitting. The dropout operation
randomly selects some neurons within a network layer with a
specific dropout parameter, and sets the input and output fea-
tures to 0. In this way, dropout can capture more randomness.
In our proposed network the output of the LSTM layer is fed
into a dropout layer [36]. The cross-entropy loss function is a
commonly used method to measure the difference between
the two probabilities. In our proposed scheme, the cross-
entropy loss function is utilized to evaluate the prediction loss
of the model, which reflects the gap between the real plaintext
and the predicted plaintext [37]:

loss = −
T∑
i=1

yi log ȳi, (13)

where i is the index number of the sentence, y is the predicted
plaintext, and ȳ is the corresponding actual plaintext and T
represents length of thewindow. Basically, during the training
process, the training data are split into mini-batches. All of
the sequences in the mini-batches have the same length as
the longest sequence in the mini-batch. To prevent network
overfitting, we sort ciphertext sequences by their lengths
and padded them to the equal in size. Figures 5(a) and 5(b)
show the data sequence sorting of the Brown and the com-
pany report datasets before sorting and after sorting respec-
tively. Figure 5(c) illustrates themaximum andminimum data
sequence lengths in characters for both datasets.

D. SYSTEM EQUIPMENTS & PARAMETER SETTINGS
Training of the machine learning model is the most compu-
tationally intensive task which system equipment would sub-
stantially increase or decrease the processing time. A model
hyperparameter is a special configuration of the designed
model which cannot be estimated directly from data and
controls the learning process that affects the network conver-
gence time. The model hyperparameters are key to machine
learning algorithms to be tuned for a specific problem.
The system equipment and the parameter settings are given
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FIGURE 5. Data sequence sorting before the training process: (a) the data
sequence before sorting, (b) the sequence after sorting, and (c) the
maximum and minimum lengths for each dataset.

TABLE 1. System equipment.

TABLE 2. Parameter settings.

TABLE 3. Datasets.

in Tables 1 and 2, respectively. As mentioned earlier, to eval-
uate the efficiency and dynamics of the proposed method,
we tested our approach by using different parameter settings
on a company report dataset and a dataset called Brown, with
short and long ciphertext sequence lengths, respectively. The
dataset descriptions and the divisions for training and testing
are explained in Table 3.

The steps for training the proposed attention-based LSTM
encoder-decoder model are in the algorithm above.

Algorithm 1 Attack on a Classical Cipher With the
Attention-Based LST
Input: Dataset (ciphertext sequence) D = (xt , yt), t =

1, 2, 3, . . . k Learning rate, hidden neurons,
batch size, training epoch

Output: Predicted plaintext sequence D = yt , t =
1, 2, 3, . . . k

1. Steps
2. Ciphertext sequence preprocessing.
3. For i = 1 to k do
4. Input: ciphertext of machine-readable vector
5. Encoder:
6. For m = 1 to t
7. Enter the word vector into the LSTM
8. Calculate attention weights
9. Attention normalization
10. Encode hidden state

11. Context vector ct =
t∑
i=1

atihi

12. Decoder:
13. For j = 1 to t
14. Input context vector
15. Decode hidden state
16. Concatenate
17. Predict plaintext (yt )

18. Calculate network loss: loss =
T∑
i=1

yi log ȳi

19. Output: Plaintext (yt)

IV. EXPERIMENTAL RESULTS
In this section, we describe multiple experiments that show
the efficiency of the attention-based LSTM encoder-decoder
in attacks on classical ciphers. To speed up the training
procedure, our proposed network schemes are implemented
using a deep learning library written in Matlab, which can
be executed on a Graphics Processing Unit (GPU). The GPU
generally increases execution speed by five to 10 times, com-
pared with a Central Processing Unit (CPU).

The structure of the proposed attention-based LSTM
encoder-decoder model is shown in Fig. 6. In the encoder
and the decoder, the model contains four LSTM layers each.
First, we vectorize the ciphertext sequences using the word
embedding technique and get a vector representation of the
ciphertext input. Then, we feed embedded words through the
four LSTM layers. Afterwards, the attention score for each
ciphertext sequence is calculated, and the output is fed into
a softmax function to be normalized. Therefore, the attention
scores will be normalized to between 0 and 1, and the context
vector will be updated using the normalized attention scores.
In a different time, step t in the decoding stage, the attention
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TABLE 4. Training dataset plaintext and the corresponding ciphertext encrypted with different classical ciphers.

TABLE 5. Experimental results from breaking a caesar cipher.

weights are different. Finally, the updated context vector is
fed into the decoder. The decoder layer converts this vector
into the plaintext sequence through the four LSTM layers.
The experimental results show that the attention-based LSTM
encoder-decoder model can adaptively learn the decryption
function, regardless of the sequence length and key length
from the provided data, and thus, has the potential to decrypt
complex ciphers.

FIGURE 6. The architecture of the attention-based LSTM encoder-decoder
model for attacking classical ciphers. In the first step, the ciphertext
sequence is converted into numerical vectors using the word embedding
technique and is then fed into the encoder LSTM as numerical words. The
LSTM encoder converts the input sequence features to the hidden states.
The attention mechanism is further used to help better capture the key
features for each ciphertext sequence and then feeds them to the
softmax function for normalization. Then, the context vector is updated
using attention scores. Afterwards, the updated context vector is passed
to the decoder. Finally, the decoder converts the ciphertext to plaintext
sequentially. Note that for different time steps t in the decoding stage,
the attention weights are different.

A. CLASSICAL CIPHER ATTACK
To demonstrate the performance of the proposed method on
different sequence lengths, we applied it to two different
datasets with short and long sequence lengths (the company
report dataset and the Brown dataset, respectively) for both
character-level and word-level attacks. The curves for predic-
tion accuracy and loss versus the number of iterations for both
datasets during the character-level attack are shown in Fig. 7.
We observed that our model’s performance is similar for both
short and long ciphertext lengths, with faster convergence for
shorter sequences. The advantages of our proposed model,
in comparison to a state-of-the-art model, can be considered
the following: 1) our model is not provided with any prior
knowledge of character frequencies, 2) no information about
the cipher key is provided, 3) it can overcome a significantly
large ciphertext length, and 4) our methodology can easily
be adapted to attack different complex ciphers. Our model is
capable of solving ciphers with 834 character elements and
184 words.

B. CAESAR CIPHER BREAKING
The Caesar cipher is the earliest known message encryp-
tion method. Using the Caesar cipher method, examples of
the plaintext message and the corresponding ciphertext are
shown in Table 4. The message encrypted with the Caesar
cipher method can be easily deciphered when the intended
recipient knows the shift number used. As we previously
pointed out, in the Caesar cipher method has only 26 keys
and can be overcome easily with brute force by trying all
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TABLE 6. Experimental results from breaking a vigenere cipher (key: DGIST).

TABLE 7. Experimental results from breaking a substitution cipher.

possible keys. However, an automated method is desirable
in order to recover the plaintext without human intervention.
The experimental result from breaking the Caesar ciphertext,
the expected plaintext, and the achieved plain text using the
proposed method are illustrated in Table 5.

C. VIGENERE CIPHER BREAKING
The Vigenere cipher was introduced to hinder the use of
frequency analysis to specify the cipher mapping. Instead,
the Vigenere cipher method uses a separate shift cipher for
each element, and the key is tiled to match the length of the
plaintext. A Vigenere cipher adds a password of length L to
each plaintext block of length L. Increasing the key length
significantly increases the number of possible combinations,
and thus, prevents frequency analysis. The idea is exactly to
contrast the problem of preserving the letter frequencies. The
experimental results from the prediction of the plaintext from
ciphertext encrypted using the Vigenere cipher method are
in Table 6.

D. SUBSTITUTION CIPHER BREAKING
The substitution cipher presents an extremely large key-space
where keys are permutations of the alphabet. Substitution
ciphers can be solved by exhaustively searching through
an extremely large keyspace for the key that produces the
decrypted text. In our scheme, we used the cipher mapping
key ‘‘DVSJGMHZWXORTVUYANCIPLFQEK’’ (a → D,
b → V, c → S, d → J. . . ..). The experimental results of
substitution cipher breaking are shown in Table 7.

In the next step, we conducted a word-level attack on a
classical cipher by preserving the space character between
consecutive words. The network accuracy for word-level
attacks on different classical ciphers is shown in Fig. 8. The
maximum lengths for each ciphertext sequence in Brown
dataset was 834 characters and 184 words. Since the cipher-
text lengths are long, it would be difficult for classical LSTM
networks to learn. However, using the attention mechanism
and network fine-tuning, it is possible for LSTM networks
to fit the training set. The quantitative results from attacks
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FIGURE 7. The network training performance from attacking different
types of classical ciphers at the character level. The first and second rows
illustrate network training accuracy and the corresponding loss,
respectively, for (a) a Caesar cipher, (b) a Vigenere cipher, and (c) a
substitution cipher.

FIGURE 8. Network training performance for word-level cipher cracking
of (a) a Caesar cipher, (b) a Vigenere cipher, and (c) a substitution cipher.

on classical cipher using the proposed method at both the
character level and the word level are given in Table 8.

To correctly train the LSTM, many hyperparameters need
to be tuned. These hyperparameters will affect the perfor-
mance of the network during the time to convergence. To eval-
uate the impact of different hyperparameters on network

training, we conducted multiple experiments. The investi-
gated parameters include the number of hidden units for
LSTMs for both the encoder and the decoder, the word
embedding dimension, and the mini-batch size.

The results in Table 8 demonstrate the accuracy of training
and testing the proposed method with both datasets. The
obtained results indicate the success of the proposed method
due to LSTM’s capability to learn decryption functions for
different types of ciphers. From the learning curves, we can
see how the proposedmethod can adaptively learn the decryp-
tion function, regardless of the cipher complexity or key
length.

TABLE 8. Network performance from attacking different classical ciphers
for training and test data.

E. THE IMPACT OF THE NUMBER OF LSTM HIDDEN UNITS
The number of hidden units in an LSTM refers to the dimen-
sionality of the hidden states [27]. Figure 9(a) shows the
impact of the number of hidden LSTM units on the net-
work’s training progress. Changing the number of hidden
units affects the training of LSTMs. Experimental results
demonstrated that increasing the number of LSTM hidden
units in both the encoder and the decoder will increase train-
ing convergence time. This is because, for long sequences,
LSTMs are sensitive to the hyperparameters. The experi-
mental results for the impact of different numbers of LSTM
hidden units are shown in Table 9.

TABLE 9. Impact of LSTM hidden units on network training performance.

F. THE IMPACT OF WORD EMBEDDING DIMENSION
Word embedding is a useful tool, which is utilized as a key
to many fundamental problems in NLP research. As a crit-
ical hyperparameter, the choice of dimensionality for word
vectors has a profound influence on network training per-
formance. Word embedding is usually a linear or quadratic
function of dimensionality, which directly affects training
time and computational costs. The smaller dimensionality
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FIGURE 9. The impact of different hyperparameters on training
performance: (a) the number of LSTM hidden units, (b) the word
embedding dimension, and (c) the Mini-batch size.

of word embedding is normally not enough to capture all
possible word relations, while very large embedding dimen-
sionality suffers from overfitting, tends to increase model
complexity, and slows down training, which are constraints
that can potentially limit model applicability and deployment.
The influence of different word embedding dimensions on
network training performance is shown in Fig. 9(b). The
quantitative results are shown in Table 10.

TABLE 10. Impact of word embedding dimension on network traning
performance.

G. THE IMPACT OF MINI-BATCH SIZE ON TRAINING
The mini-batch stochastic gradient descent (SGD) algorithm
is widely used in training machine learning models, and
deep learning models in particular [38]. One of the important
hyperparameters that need to be tuned is the batch size, which
is the amount of data used in every epoch to train the network.
A too-large batch size leads the network takes too long to
achieve convergence. However, if the mini-batch size is too
small, it will make the network fluctuate without achieving
acceptable performance. In the second set of experiments,
we examined the effect from using different mini-batch sizes
on network training performance (see Fig. 9(c)). The perfor-
mance results in Table 11 show that larger mini-batch sizes
produce fewer errors because they come closer to a full-batch
gradient, and thus, have a lower bias. On the other hand,
a mini-batch size as small as 10 produces a high error rate.

TABLE 11. Impact of mini-batch size on network training performance.

The experimental results for the effects of the number of
LSTM hidden units, of the word embedding dimension, and
of the mini-batch size on network training performance are
given in Tables 9, 10, and 11, respectively.

In Fig. 10, we show a performance comparison between the
proposed method and state-of-the-art methods when attack-
ing different classical ciphers. Figure 10 demonstrates how
the proposed method outperformed the state-of-the-art meth-
ods when breaking different types of classical ciphers.

FIGURE 10. Performance comparison of the proposed method against
state-of-the-art methods on classical cipher attack.

H. DISCUSSION
Table 8 shows a quantitative measurement of the experi-
mental results on different cipher types from character-level
and word-level cipher breaking. The results show that the
proposed attention-based LSTM encoder-decoder model was
able to break all types of classical ciphers with near-flawless
accuracy. The proposed method performed extremely well on
all types of classical ciphers, achieving excellent results for
both character-level and word-level cipher breaking with a
sequence length of 834 characters and 184 words. In compar-
ison to state-of-the-art methods, the attention-based LSTM
encoder-decoder model architecture was found to be sta-
ble for all ciphers. Besides, we investigated the impact of
different hyperparameter tunings on network performance.
The above experimental results also elucidate the fact that
by using optimal hyperparameters the network can converge
in fewer iterations. The results also illustrated that network
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FIGURE 11. Network performance on Min/MAX sequence length analysis
by different key lengths and the impact of the attention mechanism on
network performance. (a) network performance of different key lengths
of Vigenere cipher, (b) the impact of attention mechanism on network
performance.

performance is stable, regardless of the cipher’s complexity
level. Therefore, the proposed method has the potential to
crack modern ciphers. To analyze the network performance
for recovering maximum and minimum sequence length,
we conducted several experiments. As mentioned earlier,
in Caesar and Substitution ciphers, each character in plaintext
is encrypted independently to another character. Therefore
the network can recognize the encryption pattern from a
minimum sequence of a single character. But in the case of
the Vigenere cipher, the pattern in the ciphertext depends on
the Key. Therefore the minimum sequence length that the
network can recognize the pattern is equal to the key length.
To investigate key length impact on the network performance
to recognize the pattern in ciphertext, We encrypted the
dataset with different key length of (5, 12, 24) characters and
analyzed network performance. Figure 11(a) demonstrates
the network performance on different key lengths for the
Viginere cipher method. As it can be seen network could
recognize the pattern in data for different key lengths. The
maximum sequence length used in this experiment using the
Brown dataset is 834 characters.

We mentioned previously the RNNs have a serious prob-
lem when working with long sequences. Since all the input
sentence in the encoder side is encoded in one vector as
context vector, it is a challenging task to encode all infor-
mation in a long sequence. Consequently, network perfor-
mance decreases with long sentences [24]. Attention allows
the model to focus on the particular parts of the input
sequence which has important information. We analyzed the
network performance with and without the attention mecha-
nism (Luong attention mechanism). As shown in Fig. 11(b),
the results suggest the attentionmodule improves the network
performance and decreases the net loss of the LSTM model.

V. CONCLUSION
The task of attacking a classical cipher was carried out
using an attention-based LSTM encoder-decoder network
model that provided significant performance in the field
of machine learning. In this paper, we proposed a novel,
attention-based encoder-decoder networkmodel for attacking
ciphertexts with dynamic sequence lengths. Lengthy cipher-
text data sequences cause LSTM to lose important features,

which gradually decreases network performance. Therefore,
we added an attention mechanism to tackle LSTM’s problem.
The state-of-the-art methods mostly consider the ciphertext
as fixed-length data, while the proposed approach needs to
be dynamic against different ciphertext lengths. We carried
out experiments on two different datasets with long and
short ciphertext lengths for character-level and word-level
ciphertext breaking. The experimental results evaluated on
both datasets with different ciphertext lengths demonstrated
nearly 100% accuracy for all types of classical ciphers. The
experimental results demonstrate that the proposed method
can adaptively learn the decryption function providing the
ciphertext and the corresponding plaintext. The proposed
approach has the potential to be applied to all types of ciphers,
regardless of the complexity level. This is mainly because of
the common natural language output structure from which
we could exploit sequential structures to learn the decryption
function. In addition, the impact of hyperparameter tuning
(mini-batch size, number of LSTM hidden units, and word
embedding dimension) was investigated.
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