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ABSTRACT Beyond the underlaying unrealistic presumptions in the existing video deblurring datasets
and algorithms which presume that a naturally blurred video is fully blurred. In this work, we define a
more realistic video frames averaging-based data degradation model by referring to a naturally blurred
video as a partially blurred frames sequence, and use it to build REBVIDS, as a novel video deblurring
dataset to close the gap between naturally blurred and synthetically blurred video training data, and to
address most shortcomings of the existing datasets. We also present DeblurNet, a two phases training-based
deep learning model for video deblurring, it consists of two main sub-modules; a Frame Selection Module
and a Frame Deblurring Module. Compared to the recent learning-based approaches, its sub-modules have
simpler network structures, with smaller number of training parameters, are easier to train and with faster
inference. As naturally blurred videos are only partially blurred, the Frame Selection Module is in charge of
selecting the blurred frames in a video sequence and forwarding them to the Frame DeblurringModule input,
the Frame Deblurring Module in its turn will get them restored and recombine them according to the original
order in a newly restored sequence beside their initially sharp neighbor frames. Extensive experimental
results on several benchmarks demonstrate that DeblurNet performs favorably against the state-of-the-art,
both quantitatively and qualitatively. DeblurNet proves its ability to trade between speed, computational
cost and restoration quality. Besides its ability to restore video blurred frames with necessary edges and
details, benefiting from its small size and its video frames selection integrated mechanism, it can speed
up the inference phase by over ten times compared to existing approaches. This project dataset and code
will be released soon and will be accessible through: https://github.com/nahliabdelwahed/Speed-up-video-
deblurring-

INDEX TERMS Video deblurring, image deblurring, video frames classification, inference run-time, deep
learning, two stages training, CNN, GANs.

I. INTRODUCTION
Video frames deblurring has long been an important problem
in computer vision and image processing. Given a motion-
blurred or focal-blurred input video, caused by camera shake,
object motion or out-of-focus, the aim of deblurring is to
recover sharp latent video frames with necessary edges and
details.

Video frames deblurring task is highly challenging. Clas-
sical methods apply various constraints to model attributes
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of blur (e.g., non-uniform/uniform/depth-aware), and utilize
several natural image priors [1]–[7] to regularize the solution
domain. The majority of these methods involve intensive,
sometimes heuristic, parameter-tuning and tremendous com-
putations. Moreover, the simplified assumptions on the blur
model often limit their performance on real-word examples,
where real blur is far more complex than modeled and is
entangled with in-camera image processing pipeline.

Learning-based methods have also been adopted for
deblurring. Early methods [8]–[10] replace few mod-
ules or steps in traditional frameworks with learned
parameters to make use of external data. More recent
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approaches started to exploit end-to-end trainable networks
for image [11] and video [12], [13] deblurring. Among them,
Nah et al. [11] have achieved state-of-the-art results adopting
a multi-scale Convolutional Neural Network. Their method
begins from a very coarse scale of a blurry image, and
progressively recovers a clear image at higher resolutions
until the full resolution is reached. This strategy follows the
multi-scale technique in traditional approaches, where the
coarse-to-fine pipelines are commonly employed to handle
large blur kernels [3].

Despite of the fact that some the early related learning-
based video deblurring approaches have already a good
enough performance in terms of restoration quality, but most
of them still require long run time during the inference phase
and a heavy computation cost. The thing that limits their
overall performance and makes them unadoptable for time
constrained industrial applications. In this paper, we explore
DeblurNet, a more robust and fast deep learning-based video
deblurring system. Our system consists of two main sub-
modules, Frames Selection Module which is a CNN-based
model, and Frame Deblurring Module which is a GAN-based
architecture. Three major and general challenges in learning-
based video deblurring systems are discussed and addressed,
which are restoration quality, run time and computational
cost.

This work comes with the following main contributions:
1) We introduce DeblurNet, as two stages training-based

deep learning model for a fast and robust frame selective
video deblurring. Ourmethod can speed up the inference
run time by over ten times and still can guarantees a high
restoration quality. The found results prove its design
and training strategy.

2) We explain the limitations of underlying presump-
tions in the existing deblurring datasets and methods.
We defined a naturally blurred video as a partially
blurred sequence of frames, andwe introduce REBVIDS
as novel video deblurring dataset to address the most
shortcomings of the existing deblurring datasets and
close the gap between naturally blurred and generated
video data.

3) Beyond the commonly used Exponential Decay learning
rate and L2 loss functions, we adopt the Cyclic learning
rate [65] and Huber loss [54] functions for training
our system sub-modules, jointly involving these two
training functions prove their ability to prevent over-
generalization and promoting the model convergence to
a meaningful state within an optimal time.

II. RELATED WORKS
In this section, we briefly review video frame deblurring
methods and recent CNN and GAN architectures for image
processing.

A. IMAGE/VIDEO DEBLURRING
The non-uniform blur mathematic model is commonly for-
mulated as:

Ib = K (m) ∗ Ic + n (1)

where Ib is a blurred image, K (m) are unknown blur kernels
function determined by the scene motion field m. Ic is a
sharp latent image, ∗ denotes the convolution operator, n is
an external additive noise.

Thanks to the pioneering works of Fergus et al. [14] and
Shan et al. [15], many deblurring methods were introduced
towards both restoration quality and adaptiveness to variant
scenarios and situations. Natural image priors were designed
to eliminate artifacts and enhance quality. They adopt total
variation (TV) [2], sparse image priors [16], heavy-tailed gra-
dient prior [15], hyper-Laplacian prior [17], l0-norm gradient
prior [7], etc. The majority of these early approaches relay on
the coarse-to-fine framework. The frequency-domain meth-
ods [18], [4] are also exceptional and remarkable, but unfor-
tunately, they are only applicable to a limited range of
situations.

Image deblurring task takes advantage of the recent
advances in deep CNN. Sun et al. [9] utilized the network
to forecast blur direction. Schuler et al. [8] stacked multiple
CNNs in a coarse-to-fine way to perform an iterative opti-
mization. Chakrabarti [19] predicted deconvolution kernel in
the frequency domain. These methods follow the classical
conventional framework with several components replaced
and integrated to the CNN version. Su et al. [13] exploited
an encoder-decoder network structure with skip-connections
to learn video deblurring. Nah et al. [11] trained a multi-
scale deep learning model to progressively retrieve sharp
images. These end-to-end approaches make use of multi-
scale information via different architectures.

B. CNNs FOR MOTION DEBLURRING
Unlike classification tasks, deep neural networks for image
processing require particular design and layout. As one of the
classical approaches, SRCNN [20] employed 3 flat convolu-
tion layers with the same feature map size for image super-
resolution. Amelioration was achieved by U-net [21], also
termed as encoder-decoder network structures [22], which
tremendously boosts regression ability and is widely adopted
in recent work of FlowNet [23], video deblurring [13], video
super-resolution [24], frame synthesis [25], etc. Multi-scale
CNN [11] and cascaded refinement network (CRN) [26]
simplified training by gradually refining output commenc-
ing from a very low scale. They are successful in image
deblurring and synthesis, respectively. Reference [27] make
use of dilated convolution layers with increasing rates, which
approximates increasing kernel sizes.

C. GANS FOR MOTION DEBLURRING
A GAN [28] is an adversarial interaction between two deep
learning models: a generator G and a discriminator D, that
set up a two-player minimax game. The generator learns
to produce artificial fake samples and is trained to mislead
the discriminator, with an aim to capture the real data dis-
tribution. In particular, as a commonly used GAN variant,
conditional GANs [29] have been widely applied to domain
transfer tasks, with image enhancement and restoration as
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special cases. The minimax game with the value function
V (D,G) can be mathematically formulated as the following
[9] (real-fake labels set to 1−0):

max
D

V (D,G) = Ex∼Pdata(x)
[
logD (x)

]
+Ez∼Pz(z)

[
log (1− D (G (z)))

]
(2)

Typically, such an objective function is hard to optimize,
and one should deal with several challenges, e.g., gradient
explosion, gradient vanishing and mode collapse, during the
training stage. To address the vanishing gradients and make
the training more stable, Least Squares GANs discriminator
[30] proposed a loss function that provides smoother and non-
saturating gradient. The authors’ observations state that the
log-type loss in [9] saturates so fast as it neglects the distance
between x to the decision boundaries. In contrast to this,
an L2 loss delivers gradients proportional to that distance,
so that fake samples closer to the boundaries receive less
penalties, whereas the far away ones receive larger penalties.
The introduced loss function also minimizes the Pearson χ2

divergence which leads to better training stability.
The LSGAN objective function can be expressed as:

max
D

V (D) =
1
2
Ex∼Pdata(x)

[
(D (x)− 1)2

]
+

1
2
Ez∼Pz(z)

[
D (G (z))2

]
max
D

V (G) =
1
2
Ez∼Pz(z)[(D(G (z)− 1)2] (3)

A further relevant contribution to GANs achieved by the
Relativistic GAN [31]. It utilized a relativistic discriminator
to estimate the probability that a given real data is more
realistic than randomly generated fake data. In comparison
to other GAN variants, including WGAN-GP [32] that was
used in DeblurGAN-v1 [33], the relativistic discriminator
demonstrates more stable training and computationally effi-
cient inference.

III. PROPOSED METHOD
In this section we describe the proposed DeblurNet and its
sub-modules, which we refer to as Frames Selection Module
and Frame Deblurring Module, we further explain how these
two modules are jointly involved to perform a selective fast
and robust video deblurring task.

A. FRAME DEBLURRING MODULE
FrameDeblurringModule is a GAN-based network structure,
it takes a blurred video frame as input and outputs its restored
counterpart. Fig 1 and Fig 2 respectively illustrate the frame-
works of their training and inference phases. The Generator
layers configuration is detailed in Table 1, its architecture
is inspired by ResNet18 and ResNet152 [52] and it is simi-
lar to the CNN architecture proposed by Johnson et al. [34]
for domain transfer task. It contains two strided convo-
lution blocks with stride 1/2, fifteen residual blocks [35]
(ResBlocks) and two transposed convolution blocks. Each

TABLE 1. Frame deblurring module: The configuration of its Generator
part, it is composed of two convolutional layers (L1 and l2), 15 residual
blocks, two convolutional layers (l33 and 34) without skip connection,
and three additional convolutional layers (l35, l36 and L37). Each residual
block contains two convolutional layers, which are indicated by L(x) and
L(x+1) in the table, where ‘‘x’’ equals 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,
25, 27,29 and 31 respectively for these residual blocks.

TABLE 2. Frame deblurring module: The configuration of its discriminator
part. Note, FC means fully connected.

ResBlock consists of a convolution layer, instance normal-
ization layer [36], and ReLU [37] activation. Dropout [38]
regularization with a probability of 0.5 is added after the first
convolution layer in each ResBlock. Moreover, we present
an input to output skip connection which we refer to as
ResInOut, which guides the model to learn a residual cor-
rection Ir to the blurred image Ib, so Ic = Ib + Ir. This
formulation makes training faster and leads the model to
generalize better. In order to train this model in end-to-end
adversarial manner, we define a discriminator network, which
isWasserstein GAN [39] with gradient penalty [40], its layers
configuration is described in Table 2. The discriminator net-
work structure is identical to PatchGAN [41], [42]. All the
convolutional layers except the last are followed by Instance
Normalization layer and Leaky ReLU [43] with α = 0.2.

B. FRAMES SELECTION MODULE
Frames Selection Module is a CNN-based network structure,
its framework is illustrated in Fig 3 and its detailed layers
configuration is shown in table 3. We design this model to
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FIGURE 1. Frames deblurring module: A GAN-based deep learning model for frames deblurring, its structure consists
of two main parts a discriminator and a generator. The generator architecture is shown Fig. 2.

FIGURE 2. The generator part of the frame deblurring module: its architecture is inspired from ResNet18 CNN. It contains
15 ResBlocks and several skip connections.

FIGURE 3. Frame selection module: A CNN-based deep learning model for clear/blurred frame classification, its
small size, fast and accurate classification ability make it play an important role in our DeblurNet system Fig. 4.
Involving this module can dramatically speed up video restoration.

TABLE 3. Frame selection module: The configuration of its discriminator
part. Note, FC = fully connected, AP = average pooling.

perform binary classification on blurred video frames, it splits
video frames to two classes, blurred and sharp frames, which
gives it the ability to select only the blurred frames to pass
a following through the deblurring stage. It contains four
strided convolution blocks with stride 1/2. Each convolution
block consists of a convolution layer, instance normalization
layer [36], and Leaky ReLU [43] activation. The network
input layer is a 2D convolution followed by a Leaky ReLU

activation function. A global averaging pooling layer and a
fully connected net are respectively the last two network lay-
ers before a sigmoid function layer at the network output. The
architecture of Frames Selection Module is identical to the
one introduced in [44]. All the convolutional layers except
the last and the first are followed by InstanceNorm layer and
LeakyReLU [43] with α = 0.3.

C. DEBLURNET
An overall framework of DeblurNet inference phase is shown
in Fig 4.

A naturally blurred video can be defined as a sequence
consists of blurred and sharp image frames, where the most
of them are blurred, which means that every naturally blurred
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FIGURE 4. DeblurNet: A fast, robust and frame selective video deblurring system, it consists of two essential modules; Frame
deblurring module Fig. 1 and frame selection module Fig. 3. This framework illustrates the DeblurNet system inference phase
pipelines.

video is not fully blurred but partially blurred, as it always
contains an important percentage of clear frames. In order to
deblur such a video, it is rational to first classify its frames
and separate blurred and clear ones each in a side. Therefore,
the Frame Selection Module is designed to perform a binary
classification on blurred video frames, whereas the Frame
Deblurring Module is designed to be in charge of blurred
frames restoration. A trained Frame Selection Module is able
to accurately classify each frame in a video sequence to two
classes, sharp or blurred. The sharp frames will be saved
directly, whereas the blurred ones will be forwarded to a
trained Frame Deblurring Module input to get restored. The
restored frames in their turn will be saved with the original
order in a newly restored sequence beside the initially clear
neighbor frames. Compared to Frame Deblurring Module
size, Frames Selection Module is a smaller model with fewer
training parameters which makes its run-time faster. The abil-
ity of the Frames Selection Module to select only the blurred
frames for restoration leads our system to save a considerable
amount of time and resources. As a result, we get a high qual-
ity deblurred video within a minimal possible run time and
computations cost. On the contrary to the former advantages
of our proposed video deblurring approach, existing methods
[45], [46], [45], [46], [74], [75] do not take in consideration
the fact that naturally blurred videos are partially blurred,
but they blindly pass every and each frame through a video
restoration model including sharp frames, which leads to a
long run time and heavy computational cost, in addition to
this unreliability, passing an already sharp frame through
such restoration model mostly damages its quality and cause
artifacts or even get it noisy and blurred.

D. LOSS FUNCTIONS
We formulate the loss function as a superposition of content
and adversarial loss:

l = lGAN + λlX (4)

where the λ equals 100 in all experiments, lGAN is the adver-
sarial loss and lX is Huber loss. Unlike Isola et al. [41] we do
not condition the discriminator as we do not have to penalize
the mismatch between the input and output.

1) ADVERSARIAL LOSS
Most of the relevant papers to conditional GANs, adopt
vanilla GAN objective as the loss [47], [48] function.
Recently [49] suggests an alternative way of using least

square GAN [50] which is more stable and generates higher
quality results. We use WGAN [51] as the discriminator
structure, which is shown to be adequate to the choice of
generator architecture [39].

The loss is calculated as the following:

lGAN =
N∑
n=1

−DϕD (GϕG (Ib)) (5)

The Frame Deblurring Module still can converge even if it
is trained without adversarial loss, but produces smooth and
blurry images, which makes adopting this loss function a
must to get sharp restored images.

2) CONTENT LOSS
functions commonly used for regression are L1(x) = |x| and
L2 (x) = 0.5x2. Both of these functions have advantages
and disadvantages; L1 is less sensitive to outliers in the
data, but it is not differentiable at zero. Whereas, the L2 is
differentiable everywhere, but it is highly sensitive to outliers.
Huber proposed the following loss as a compromise between
the L1 and L2 losses [53]:

Hα (x) =


1
2
x2, |x| ≤ α

α(|x| −
1
2
α), x > α

(6)

where α ∈ R+ is a positive real number that controls the
transition from L1 to L2. The Huber loss is both differen-
tiable everywhere and robust to outliers. Huber loss function
focuses on restoring general content [54], whereas adversarial
loss [48] focuses on restoring texture details. Frame Deblur-
ring Module trained without Huber loss or with simple MSE
on pixels insteadmostly doesn’t converge tomeaningful state.

IV. EXPERIMENETS AND FOUND RESULTS
In this section, we describe DeblurNet conducted experi-
ments, share their quantitative and qualitative results and
compare them with other deep learning-based deblurring
methods, also we introduce our novel REBVIDS video
deblurring dataset, as well as describe the other existing
datasets that are studied in video deblurring literature.

A. VIDEO DEBLURRING DATASETS
In the early studies of video deblurring, only blurry videos
have been used for their experiments [55], [56]. As the
ground-truth sharp videos were not available, the perceptual
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FIGURE 5. (a) and (b) are respectively frames samples from DVD and GoPro video deblurring datasets, whereas (c) and (d) are from REBVIDS (ours).

quality was the primary way to compare different methods.
Wulff and Black [57] presented a double-layered blur model
that can have different blur statuses in the front and back layer
segments. Kohler et al. [58] recorded and played back the 6D
motion of the camera to capture blurry and reference sharp
images. To emulate such a blurring process in more diverse
dynamic environments, Kim et al. [59] used a high-speed
event camera to take an average of sharp frames to synthesize
blurs in high resolution (720× 1280). Based on the same idea
Nah et al. [60] extended their data and presented GOPRO
dataset consisting of 2103 training and 1111 testing image
pairs, presuming gamma function as CRF. In a second attempt
to build novel video deblurring dataset based onmore realistic
data degradation model, Nah et al. [61] introduced REDs
dataset, which consists of 330 video pairs, each video with
100 frames, he claimed that the used data degradation model
can produce more realistic motion blur. Su et al. [13] used
multi-cameras to present a dataset containing 5708 training
and 1000 testing frame pairs.Wieschollek et al. [62] collected
high-resolved videos from the web, interpolated their frames
by means of linear optical flow and down-sampled them to
generate smoother blurs for training.

Despite the fact that the above video deblurring datasets
share the same aim, which is to build as much as realistic
training data based on precisely optimized data degradation
models. But also, they share a common shortcoming, they did
not pay attention to the fact that a naturally blurred video

is not fully blurred, as it always contains a considerable
amount of sharp frames. Such data degradation models are
only optimized for video spatial dimensions and do not cover
its temporal dimension, the thing that limits their performance
and prevent them from generating realistic training data.
In order to tackle this problem, we built REBVIDS dataset
via a well optimized data degradation model that takes in
consideration all the above facts.

B. PROPOSED REBVIDS DATASET
By relying on an unrealistic data degradation model, which
presume that a naturally blurred video is fully blurred, which
means that every and each of their frames is blurred, existing
video deblurring datasets synthesized such data via video
frames averaging. Unlike this unrealistic assumption we
define a naturally blurred video as a partially frames sequence
consists of clear and blurred frames, where themost of frames
are blurred but not all. We introduce REBVIDS dataset, a
novel REalistically Blurred VIdeos from Dynamic Scenes
dataset of 720× 1280 resolution for training and benchmark-
ing. REBVIDS is meant to complement the existing video
deblurring datasets, and to increase the content diversity and
provide more realism in the video spatiotemporal degrada-
tion, as we focus on making smooth and natural blurs and
high-quality reference frames. Paying attention to the fact
that a naturally blurred video is partially blurred but not fully
blurred, we generate blurred video data by averaging high
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TABLE 4. Proposed dataset properties and comparisons.

FIGURE 6. Example of frame capturing: Camera sensors acquire the
discrete frames at time step t0, t1, t2 and t3, each of which requires
continuous latent images within an exposure time interval e.

FPS video frames on a regular interval length, we include
sharp frames besides the generated blurred ones throughout
the video temporal dimension, by randomly skipping some
frame intervals. Table 4 summarizes and compare our dataset
properties to other existing datasets.

1) RECORDING
We used XiaoMI MIJIA high speed events camera we man-
ually record 360 RGB video clips, paying attention to the
quality of each video clip, diversity contents, lighting and
scene dynamics. The early deblurring datasets videos were
recorded with a constant high frame rate (240 fps) [23], [28],
unlike that we choose to adjust the frame rate according to
scene lighting and dynamics. For example, in the day time we
record videos within high frame rates range (240 or 100 fps),
whereas within a lower frame rates range (60 or 30 fps)
for static or slow-motion night scenes, as lower frame rate
allows enough light rays to access the camera sensor in such
a lighting condition.

2) BLUR SYNTHESIS AND DATA DEGRADATION MODEL
Typically, a camera record video frames by frequently turning
on and off their shutter [76]. While the shutter is open,
the sensors are exposed to the luminous reflected by the
scene objects, their function is to integrate the luminous inten-
sity and acquire the brightness of objects’ pixels. Therefore,
the pixel brightness depends to exposure time, and the shutter
on-off velocity determines video frame rate.

Let is assume that there exists a latent image L (τ ) at each
instant time τ , as shown in Fig 6. We average the latent sharp
frames from time t1 over the exposure time interval e to obtain
one captured frame. The acquisition of a single frame can be
mathematically formulated as:

Bt1 =
1
e

∫ t1+e

t1
L (τ ) dτ (7)

FIGURE 7. Runtime vs. PSNR results on a partially blurred video with
58 blurred and 42 sharp frames from REBVIDS test data.

Then at the next shutter opening time t2, the camera produces
another frame denoted by Bt2 during a new exposure time
interval. The frame rate of the captured video can be defined
as:

f =
1

t2 − t1
(8)

Basically, high speed object motion or camera shake during
the exposure time would leads to deteriorating the pixel
brightness, these deteriorations are often appearing in form
of visual blur.

Relying on (7), which is supposed to be the most realistic
data degradation model, we average each video frame in
the collected high FPS video dataset to produce its partially
blurred counterpart with a frame rate f . In order to ensure
that the generated video is partially blurred, and that no more
than 70% of its frames are blurred, we did not perform the
averaging on the entire video sequence, but we average frame
intervals of random length (between 7 to 12 frames) and
arbitrarily skip some and exclude them out of the averaging
process. We use OpenCV image processing library to imitate
a camera imaging pipeline and perform frames averaging
process in the signal space.

We down-sample reference videos temporal dimension to
fit the synthesized partially blurred ones, then couple them
to build a dataset with 360 video pairs in total, each video
sequence contains 100 frames. We split the built dataset into
three partitions, for training, validating and testing our model.

3) DIVERSITY
We visited various countries, cities and towns, institutes and
facilities, theme parks, festivals, palaces and castles, tourist
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attractions, historical places, zoos, stores, water parks, etc.
to record diverse environments and objects. The contents
include static and dynamic scenes, people from various
nationalities, crowds, handmade objects, buildings, struc-
tures, artworks, furniture, vehicles, colorful textured clothes,
and many other objects of different categories with various
lighting conditions, day time, night time, morning time, after-
noon time and evening time.

4) PARTITIONS
After collecting and processing the 360 video sequences,
we split them into training, validation, testing sets. We ran-
domly generated sets of 300 pair of sequences for training,
30 for validation, and 30 for testing until we achieved a good
balance in quality. Fig. 5 illustrates some samples from the
30 sequences for validation and testing of the REBVIDS
dataset and other communally used deblurring datasets.

C. IMAGE QUALITY METRICS
A considerable attention has been giving to automatic assess-
ment of image quality, and several methods have been pro-
posed. When a carefully generated dataset is available with
ground truth frames, we typically focus on the full reference
measures. If we have a reference image G with C color
channels and H × W pixels, the quality of a correspond-
ing (degraded or restored) image I can be referred to as
the pixel-level fidelity to its ground truth. One of the most
communally used image quality metrics is Mean Square
Error (MSE) defined as in (9). Another popular measure
which is directly relies on MSE is Peak Signal-to-Noise
Ratio (PSNR) defined as in (10). Even though, since min-
imizing MSE is equivalent to forecasting a mean of the
solution space, MSE-based restoration models reconstruct
blurry images, and they are also vulnerable to even a simple
translation.

MSE =
1

CHW

C,H,W∑
c,h,w

(Gchw − Ichw)2 (9)

PSNR = 10log10
2552

MSE
(10)

Another kind of referenced metrics measures images similar-
ity in terms of their structure rather than the raw value. While
MSE and PSNR evaluate the amount of error, the Structural
Similarity [77] is a perceptual quality-based model that con-
siders image degradation as changes in the perceived struc-
tural information.

The above metrics are not specially designed to evalu-
ate the quality of the restored images or videos from blur.
However, they tend to generalize well for a number of types
of image distortions as well, so often used to measure the
accuracy of many approaches that try to enhance the visual
quality.

As deblurring aims to recover the lost detailed textures and
the high frequency components from the latent blurred frame,
a perfect image quality assessment measure would be the one

that reflect fidelity to the ground-truth. However, the ground-
truth reference is not available for real blurred data, and the
space of possible solutions is very wide. Therefore, plausible
and perceptually qualitative restoration results are a must as
long as the information from the degraded data is preserved.
There are several deblurring research studies which aim to
improve perceptual quality with adversarial and perceptual
losses [33], [34], [60], [78], [79].

Mostly image and video restoration approaches evaluate
their performance on either the image luminance compo-
nent or RGB channels. Luminance component (Y channel
from the YCbCr color representation) is considered to be
with more importance, since the human perception in fact
recognizes the texture by the luminance while the variations
in chroma components are less sensitive to the human eye.
In this work, we measure the image quality using the RGB
channels to put more weight on the color as well as the
luminance.

D. MODEL TRAINING STRATEGY
We implemented all of our models using TensorFlow [63]
deep learning library. The training was performed on a single
Maxwell GTX Titan-X GPU using REBVIDS dataset. The
models are fully convolutional and can be trained on image
patches of arbitrary size. We follow the method of [39] and
perform eight gradient descent steps on DϕD , then one step
on GϕG , choosing Adam [64] as the optimization algorithm.
The standard forward and back propagation functions could
be formulated as:

Yj = f
(
Nj
)
,where Nj =

∑
j

WijXi (11)

∂E
∂Xi
=

∑
j

Vijf ′
(
Nj
) ∂E
∂Yj

(12)

where E is the objective function, W and V respectively
denote the feedforward and feedback weight matrices. X
denotes the inputs and Y the outputs. Wij and Vij are the feed-
forward and feedback connections between the j-th output Yj
and the i-th inputXi, respectively. f (·) and f ′(·) are the transfer
function and its derivative. Whereas ∂E

∂Xi
is the i-th input

derivative with respect to the objective function. Algorithm 1,
is a pseudocode which simplify the entire training procedure
of Frame Deblurring Module.

We adopt Cyclical Learning Rate function [65] during
the training phase, as it varies between the minimum and
maximum boundaries and each boundary value declines
by an exponential factor of gammaiterations. The minimum
and maximum boundaries respectively are initially set to
0.001 and 0.006 with a cycle length of 2600 iterations.
At inference phase, we pursue the idea of [41] and apply
both dropout and instance normalization. All the models
were trained with a batch size = 4, which showed empir-
ically better results on validation. The training stage took
3 days for training DeblurNet system with both of its
sub-modules.
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Algorithm 1 Frame Deblurring Module (GAN) Training
1. // Assign all network inputs and

output
2. Input: Batch-size,Patterns,

iterat-max,learn-rate
3. output : Generator, Discriminator
4. Generator == Construct Network

Layers()
5. Discriminator == Construct Network

Layers()
6. for every Network in (Generator,

Discriminator)
7. // Initialize all weights with small

random numbers, typically between
−1 and 1

8. Networkweighs == InitializeWeights
(Network,Batchsize)

9. Repeat
10. for every pattern in the

training set
11. Present the pattern to the

network
12. // Propagated the input forward

through the Net:(11)
13. for each layer in the network
14. for every node in the layer
15. Calculate the weight sum

of inputs to node
16. Add the threshold to the

sum
17. Calculate the activation

for the node
18. end
19. End
20. // Propagate the errors backward

through the Net:(12)
21. for every node in the output layer
22. calculate the error signal
23. end
24. for all hidden layer
25. for every node in the layer
26. Calculate the node’s signal

error
27. Update each node’s weight

in the network
28. end
29. End
30. // Calculate Huber Loss (6)
31. Calculate the Huber Loss value
32. // Calculate Adversarial Loss (5)
33. Calculate the Adversarial Loss

value
34. // Calculate Global Loss (4)
35. Calculate the JointLoss value
36. end
37. while (iterat-num < iterat-max && loss
> specified
38. Return Generator, Discriminator

E. RESULTS ANALYSIS AND DISCUSSION
We evaluate our video deblurring system overall performance
on different benchmarked video deblurring datasets. We sep-
arately investigate each of its sub-modules robustness and
compare their performance with a number of deep learning-
based state-of-the-arts.

TABLE 5. Performance and comparison on the REBVIDS test dataset.

FIGURE 8. Qualitative results on GoPro testing dataset.

1) FRAME DEBLURRING MODULE
results are compared to [66] by Kupyn et al., [67] by
Yuan et al., SRN [68] and DeblurGAN [33], we use both
standard evaluationmetrics (PSNR, SSIM), and also the aver-
age run-time on a single GPU to assess the model inference
efficiency. The quantitative results are summarized in Table 6,
Table 7 and Table 7. In terms of PSNR/SSIM, The Frame
Deblurring Module ranked top-one. In particular, Frame
Deblurring Module only costs an average of 0.43s per image
frame of size 730× 1280.

2) FRAME SELECTION MODULE
performance is compared to several blur/clear image clas-
sification approaches, [69] by Su et al., Bayes [70], SVM
[71], Single-layered NN [72] and DNN [73]. The classifica-
tion accuracy rate is employed metric to evaluate the model
performance, which is defined as:

Accuraccy =
Ncorrect

Ntotal
× 100% (13)

where the Ncorrect denotes the number of correctly classified
samples, Ntotal indicates the total number of samples to be
classified. We measure this module performance using the
classification Average-Accuracy (13) and the Top-Accuracy
metrics. The comparison results are illustrated in Table 5.
The Frame SelectionModule obviously outperforms the other
approaches on both metrics. Moreover, as this module is
based on a small network structure with fewer training param-
eters compared to the Frame DeblurringModule, it costs only
0.078s per an image frame of size 730 × 1280, which even
allows a near real-time video frames classification, for 24-fps
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TABLE 6. Performance and inference efficiency comparison on the GoPro test dataset.

TABLE 7. Performance and comparison on the reds test dataset.

TABLE 8. Performance and comparison on the REBVIDS test dataset.

TABLE 9. DeblurNet run-time performance on naturally blurred videos and comparison.

FIGURE 9. Qualitative results on REDs testing dataset.

videos. The high classification accuracy, speed, the small
model size and the low computational cost are main criteria
to choose this model as one of the two principal parts of our
video deblurring system.

3) DeblurNet
is a deep learning model based on a two-phase training
strategy, it is built after training their main sub-modules and
separately evaluating their performance. We set up our video
deblurring system and we measured its run time performance
on naturally blurred video and on three benchmarked video
deblurring datasets with various video lengths and motion

FIGURE 10. Frame Deblurring Module qualitative results on REBVIDs
(ours) testing dataset.

blur scenarios. Figure 8, Fig 9 and Fig 10 showcase our model
qualitative performance on three different datasets. Whereas
Fig 11, Fig 12 and Fig 13 illustrate a qualitative comparison
of our deblurring system with four recent related deblurring
methods.

We compared DeblurNet performance with the state-of-
the art video deblurring methods, [74] by Shen et al.,
Pan et al. [46], Zhou et al. [75] and [45] by Zhang et al. The
comparison results are shown in Table 9 and Fig 7, our system
proves its outperformance on all levels, frame restoration
quality, speed and computational cost. The amount of time
required by our system to restore a blurred video can be
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FIGURE 11. Frame Deblurring Module qualitative results on GoPro testing dataset and comparison with state-of-the-art
deblurring methods.

FIGURE 12. Frame Deblurring Module qualitative results on GoPro testing dataset and comparison with
state-of-the-art deblurring methods.

FIGURE 13. Frame Deblurring module qualitative results on REBVIDS (ours) testing dataset and comparison with
state-of-the-art deblurring methods.
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calculated as:

Trun = td ∗ Nb + tc ∗ Na (14)

where Trun is the system run-time required to restore a video
of Na frames. Nb is the number of frames classified as blurred
by the Frame Selection Module, whereas td and tc are respec-
tively the average run time to restore one single frame by
the Frame Deblurring Module and the average run time to
classify one single frame by the Frame Selection Module.
DeblurNet is able to restore a 21s video consists of 630 frames
with a size of 730 × 1280 only within 149.39 s. To the best
of our knowledge, DeblurNet is the only deblurring method
so far that can simultaneously achieve high performance and
that high inference efficiency.

V. CONCLUSION
Within this work, beyond the underlying assumptions in the
existing deblurring datasets and methods, we have defined a
naturally blurred video as a partially blurred frames sequence
and introduced REBVIDS as a novel video deblurring dataset
to address themost of the shortcomings of the existing deblur-
ring dataset, and to close the gap between naturally blurred
and generated blurred video training data. In this paper, we
have introduced DeblurNet and explained why it is a proper
network structure for a robust, fast and frame-selective video
deblurring task, we have also explored an efficient two-phase
training strategy for its two main sub-modules. This network
sub-models’ structures have fewer parameters than previous
related ones and are easier to train and faster during the
inference phase.

We had discussed and addressed three major and general
challenges in learning-based video deblurring systems, which
are restoration quality, run time and computational cost. Our
approach has achieved state-of-the-arts results, both qualita-
tively and quantitatively, as it is can accurately restore video
blurred frames to their sharp looking with necessary edges
and details, and performs favorably against other deblurring
methods in terms of two standard image quality assessment
metrics. Benefiting from the small model size and its video
frames selection integrated mechanism, our approach has
reduced the computation cost and speed up video deblurring
task by over ten times compared to existing approaches.
Unlike other slow deblurring existing methods our work is
adoptable for many time constrained industrial applications,
e.g., video surveillance and robotics. We argue that our
approach is innovative and very inspiring, as it is paving
the way to further technical and scientific contributions in
computer vision field, we believe that this method can be
applied to other computer vision tasks, and we will explore
them in future work.

ACKNOWLEDGMENT
The authors would like to thank the entire research team for
the constructive discussions, and the (SICS) for the computa-
tional resources.

REFERENCES

[1] Y. Bahat, N. Efrat, and M. Irani, ‘‘Non-uniform blind deblurring by reblur-
ring,’’ in Proc. ICCV, Oct. 2017, pp. 3286–3294.

[2] T. F. Chan and C.-K. Wong, ‘‘Total variation blind deconvolution,’’ IEEE
Trans. Image Process., vol. 7, no. 3, pp. 370–375, Mar. 1998.

[3] S. Cho and S. Lee, ‘‘Fast motion deblurring,’’ ACM Trans. Graph., vol. 28,
no. 5, p. 145, 2009.

[4] A. Goldstein and R. Fattal, ‘‘Blur-kernel estimation from spectral irregu-
larities,’’ in Proc. ECCV. Springer, 2012, pp. 622–635.

[5] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, ‘‘Deblurring text images via L0-
regularized intensity and gradient prior,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 2901–2908.

[6] L. Xu and J. Jia, ‘‘Two-phase kernel estimation for robust motion
deblurring,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV). Springer, 2010,
pp. 157–170.

[7] L. Xu, S. Zheng, and J. Jia, ‘‘Unnatural L0 sparse representation for natural
image deblurring,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 1107–1114.

[8] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Scholkopf, ‘‘Learning
to deblur,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 7,
pp. 1439–1451, Jul. 2016.

[9] J. Sun, W. Cao, Z. Xu, and J. Ponce, ‘‘Learning a convolutional neural
network for non-uniform motion blur removal,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 769–777.

[10] L. Xiao, J. Wang,W. Heidrich, andM. Hirsch, ‘‘Learning high-order filters
for efficient blind deconvolution of document photographs,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV). Springer, 2016, pp. 734–749.

[11] S. Nah, T. H. Kim, and K. M. Lee, ‘‘Deep multi-scale convolutional neural
network for dynamic scene deblurring,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 3883–3891.

[12] T. H. Kim, K. M. Lee, B. Scholkopf, and M. Hirsch, ‘‘Online video
deblurring via dynamic temporal blending network,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 4038–4047.

[13] S. Su, M. Delbracio, J. Wang, G. Sapiro,W. Heidrich, and O.Wang, ‘‘Deep
video deblurring for hand-held cameras,’’ inProc. IEEEConf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 1279–1288.

[14] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,
‘‘Removing camera shake from a single photograph,’’ ACM Trans. Graph.,
vol. 25, no. 3, pp. 787–794, Jul. 2006.

[15] Q. Shan, J. Jia, and A. Agarwala, ‘‘High-quality motion deblurring from a
single image,’’ ACM Trans. Graph., vol. 27, no. 3, p. 73, 2008.

[16] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, ‘‘Understanding and
evaluating blind deconvolution algorithms,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 1964–1971.

[17] D. Krishnan and R. Fergus, ‘‘Fast image deconvolution using hyper-
Laplacian priors,’’ in Proc. NIPS, 2009, pp. 1033–1041.

[18] M. Delbracio and G. Sapiro, ‘‘Burst deblurring: Removing camera shake
through Fourier burst accumulation,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 2385–2393.

[19] A. Chakrabarti, ‘‘A neural approach to blind motion deblurring,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV). Springer, 2016, pp. 221–235.

[20] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolutional
network for image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV). Springer, 2014, pp. 184–199.

[21] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image Com-
put. Comput. Assist. Intervent. (MICCAI). Springer, 2015, pp. 234–241.

[22] X. Mao, C. Shen, and Y.-B. Yang, ‘‘Image restoration using very deep con-
volutional encoder-decoder networks with symmetric skip connections,’’
in Proc. NIPS, 2016, pp. 2802–2810.

[23] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. V. D. Smagt, D. Cremers, and T. Brox, ‘‘FlowNet: Learning optical
flow with convolutional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 2758–2766.

[24] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia, ‘‘Detail-revealing deep
video super-resolution,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4472–4480.

[25] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, ‘‘Video frame
synthesis using deep voxel flow,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 4463–4471.

[26] Q. Chen and V. Koltun, ‘‘Photographic image synthesis with cascaded
refinement networks,’’ in Proc. Int. Conf. Comput. Vis. (ICCV). Springer,
2017, pp. 1511–1520.

[27] Q. Chen, J. Xu, and V. Koltun, ‘‘Fast image processing with fully-
convolutional networks,’’ in Proc. Int. Conf. Comput. Vis. (ICCV).
Springer, 2017, pp. 2497–2506.

61380 VOLUME 9, 2021



A. Nahli et al.: Dataset and Network Structure: Towards Frames Selection for Fast Video Deblurring

[28] J. Ian Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative
adversarial networks,’’ Jun. 2014, arXiv:1406.2661. [Online]. Available:
https://arxiv.org/abs/1406.2661

[29] M. Mirza and S. Osindero, ‘‘Conditional generative adversarial
nets,’’ 2014, arXiv:1411.1784. [Online]. Available: https://arxiv.org/
abs/1411.1784

[30] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. Paul Smolley,
‘‘Least squares generative adversarial networks,’’ 2016, arXiv:1611.04076.
[Online]. Available: http://arxiv.org/abs/1611.04076

[31] A. Jolicoeur-Martineau, ‘‘The relativistic discriminator: A key element
missing from standard GAN,’’ 2018, arXiv:1807.00734. [Online]. Avail-
able: http://arxiv.org/abs/1807.00734

[32] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
‘‘Improved training of Wasserstein GANs,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5767–5777.

[33] O. Kupyn, V. Budzan, M.Mykhailych, D. Mishkin, and J. Matas, ‘‘Deblur-
GAN: Blind motion deblurring using conditional adversarial networks,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 8183–8192, doi: 10.1109/CVPR.2018.00854.

[34] J. Johnson, A. Alahi, and L. Fei-Fei, ‘‘Perceptual losses for real-time style
transfer and super-resolution,’’ in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 694–711.

[35] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning
for image recognition,’’ 2015, arXiv:1512.03385. [Online]. Available:
http://arxiv.org/abs/1512.03385

[36] D. Ulyanov, A. Vedaldi, andV. S. Lempitsky, ‘‘Instance normalization: The
missing ingredient for fast stylization,’’ 2016, arXiv:1607.08022. [Online].
Available: https://arxiv.org/abs/1607.08022

[37] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted
Boltzmann machines,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2010,
pp. 807–814.

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, ‘‘Dropout: A simple way to prevent neural networks from overfitting,’’
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014.

[39] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein GAN,’’ Jan. 2017,
arXiv:1701.07875. [Online]. Available: https://arxiv.org/abs/1701.07875

[40] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
‘‘Improved training ofWasserstein GANs,’’ Mar. 2017, arXiv:1704.00028.
[Online]. Available: https://arxiv.org/abs/1704.00028

[41] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image trans-
lation with conditional adversarial networks,’’ 2016, arXiv:1611.07004.
[Online]. Available: https://arxiv.org/abs/1611.07004

[42] C. Li andM.Wand, ‘‘Precomputed real-time texture synthesis withMarko-
vian generative adversarial networks,’’ Apr. 2016, arXiv:1604.04382.
[Online]. Available: https://arxiv.org/abs/1604.04382

[43] B. Xu, N. Wang, T. Chen, and M. Li, ‘‘Empirical evaluation of rectified
activations in convolutional network,’’ 2015, arXiv:1505.00853. [Online].
Available: http://arxiv.org/abs/1505.00853

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Neural Inf. Process.
Syst., 2012, pp. 1–9, doi: 10.1145/3065386.

[45] K. Zhang,W. Luo, Y. Zhong, L.Ma,W. Liu, andH. Li, ‘‘Adversarial spatio-
temporal learning for video deblurring,’’ IEEE Trans. Image Process.,
vol. 28, no. 1, pp. 291–301, Jan. 2019, doi: 10.1109/TIP.2018.2867733.

[46] J. Pan, H. Bai, and J. Tang, ‘‘Cascaded deep video deblurring using
temporal sharpness prior,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2020, pp. 3043–3051.

[47] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic single
image super-resolution using a generative adversarial network,’’ 2016,
arXiv:1609.04802. [Online]. Available: http://arxiv.org/abs/1609.04802

[48] S. Nah, T. Hyun, K. Kyoung, andM. Lee, ‘‘Deep multi-scale convolutional
neural network for dynamic scene deblurring,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), 2017, pp. 3883–3891.

[49] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed.
New York, NY, USA: Springer-Verlag, 2010.

[50] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. Paul Smolley,
‘‘Least squares generative adversarial networks,’’ 2016, arXiv:1611.04076.
[Online]. Available: http://arxiv.org/abs/1611.04076

[51] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
‘‘Improved training ofWasserstein GANs,’’ Mar. 2017, arXiv:1704.00028.
[Online]. Available: https://arxiv.org/abs/1704.00028

[52] S. Nah, T. Hyun, K. Kyoung, andM. Lee, ‘‘Deep multi-scale convolutional
neural network for dynamic scene deblurring,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), 2016, pp. 2791–2799.

[53] P. J. Huber, ‘‘Robust estimation of a location parameter,’’ Ann. Math.
Statist., vol. 35, no. 1, pp. 73–101, Mar. 1964.

[54] G. P. Meyer, ‘‘An alternative probabilistic interpretation of
the Huber loss,’’ 2019, arXiv:1911.02088. [Online]. Available:
https://arxiv.org/abs/1911.02088

[55] S. Cho, J. Wang, and S. Lee, ‘‘Video deblurring for hand-held cameras
using patch-based synthesis,’’ ACM Trans. Graph., vol. 31, no. 4, p. 64,
Aug. 2012.

[56] T. H. Kim and K. M. Lee, ‘‘Generalized video deblurring for dynamic
scenes,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 5426–5434.

[57] J. Wulff and M. J. Black, ‘‘Modeling blurred video with layers,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), Sep. 2014, pp. 236–252.

[58] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling,
‘‘Recording and playback of camera shake: Benchmarking blind decon-
volution with a real-world database,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), Oct. 2012, pp. 27–40.

[59] T. H. Kim, S. Nah, and K. M. Lee, ‘‘Dynamic video deblurring using
a locally adaptive blur model,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 10, pp. 2374–2387, Oct. 2018.

[60] S. Nah, T. H. Kim, and K. M. Lee, ‘‘Deep multi-scale convolutional neural
network for dynamic scene deblurring,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 3883–3891.

[61] S. Nah, S. Baik, S. Hong, G. Moon, S. Son, R. Timofte, and
K. M. Lee, ‘‘NTIRE 2019 challenge on video deblurring and super-
resolution: Dataset and study,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2019, pp. 1996–2005,
doi:10.1109/CVPRW.2019.00251.

[62] P. Wieschollek, M. Hirsch, B. Scholkopf, and H. P. A. Lensch, ‘‘Learning
blind motion deblurring,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 231–240.

[63] TensorFlow. Accessed: Nov. 9, 2015. [Online]. Available:
https://tensorflow.org/

[64] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2014, arXiv:1412.6980. [Online]. Available:
https://arxiv.org/abs/1412.6980

[65] L. N. Smith, ‘‘Cyclical learning rates for training neural networks,’’
in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2017,
pp. 464–472, doi: 10.1109/WACV.2017.58.

[66] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, ‘‘DeblurGAN-V2: Deblur-
ring (orders-of-magnitude) faster and better,’’ inProc. IEEE/CVF Int. Conf.
Comput. Vis., Oct. 2019, pp. 8878–8887.

[67] Q. Yuan, J. Li, L. Zhang, Z. Wu, and G. Liu, ‘‘Blind motion deblur-
ring with cycle generative adversarial networks,’’ Vis. Comput., vol. 36,
pp. 1591–1601, Oct. 2019.

[68] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, ‘‘Scale-recurrent network
for deep image deblurring,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 8174–8182.

[69] B. Su, S. Lu, and C. L. Tan, ‘‘Blurred image region detection and classifi-
cation,’’ in Proc. 19th ACM Int. Conf. Multimedia (MM), Scottsdale, AZ,
USA, 2011, pp. 1397–1400.

[70] R. Liu, Z. Li, and J. Jia, ‘‘Image partial blur detection and classifica-
tion,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008,
pp. 1–8.

[71] R.Wang, R. Li, Y. Lei, and Q. Zhu, ‘‘Tuning to optimize SVM approach for
assisting ovarian cancer diagnosis with photoacoustic imaging,’’ Bio-Med.
Mater. Eng., vol. 26, no. s1, pp. S975–S981, 2015.

[72] C. Butakoff and V. N. Karnaukhov, ‘‘Blurred image restoration using the
type of blur and blur parameter identification on the neural network,’’ Proc.
SPIE, vol. 4667, pp. 460–471, May 2002.

[73] R. Yan and L. Shao, ‘‘Blind image blur estimation via deep learning,’’ IEEE
Trans. Image Process., vol. 25, no. 4, pp. 1910–1921, Apr. 2016.

[74] W. Shen, W. Bao, G. Zhai, L. Chen, X. Min, and Z. Gao, ‘‘Blurry video
frame interpolation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2020, pp. 5114–5123.

[75] S. Zhou, J. Zhang, J. Pan, H. Xie, W. Zuo, and J. Ren, ‘‘Spatio-temporal
filter adaptive network for video deblurring,’’ inProc. IEEE/CVF Int. Conf.
Comput. Vis., Oct. 2019, 2482–2491, doi: 10.1109/ICCV.2019.00257.

[76] J. Telleen, A. Sullivan, O. Wang, P. Gunawardane, I. Collins, and J. Davis,
‘‘Synthetic shutter speed imaging,’’ Comput. Graph. Forum, vol. 26,
pp. 591–598, 2007, doi: 10.1111/j.1467-8659.2007.01082.x.

[77] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

VOLUME 9, 2021 61381

http://dx.doi.org/10.1109/CVPR.2018.00854
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TIP.2018.2867733
http://dx.doi.org/10.1109/CVPRW.2019.00251
http://dx.doi.org/10.1109/WACV.2017.58
http://dx.doi.org/10.1109/ICCV.2019.00257
http://dx.doi.org/10.1111/j.1467-8659.2007.01082.x


A. Nahli et al.: Dataset and Network Structure: Towards Frames Selection for Fast Video Deblurring

[78] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic
single image super-resolution using a generative adversarial network,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4681–4690.

[79] C.-Y. Yang, C. Ma, and M.-H. Yang, ‘‘Single-image super-resolution:
A benchmark,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2014,
pp. 372–386.

ABDELWAHED NAHLI was born in Casablanca,
Morocco, in 1992. He received the B.S. degree
in computer engineering from the University of
Hassan II, Casablanca, in 2015. He is currently
pursuing the M.S. degree in information and
communication engineering with Shanghai Uni-
versity, Shanghai. He is also a Research Fel-
low with the Shanghai Institute for Advanced
Communication and Data Science (SICS). His
research interests include computer vision,

artificial intelligence, and data science.

SHAN CAO (Member, IEEE) received the B.S.
and Ph.D. degrees in microelectronics from
Tsinghua University, China, in 2009 and 2015,
respectively. She was a Postdoctoral Researcher
with the School of Information and Electronics,
Beijing Institute of Technology, from 2015 to
2017. She is currently an Assistant Professor with
Shanghai University. Her current research interests
include wireless communication systems, chan-
nel encoding and decoding, and machine learning

acceleration and its ASIC design.

ZHIWEI JIA received the B.E. degree from
the Department of Communication Engineering,
Shanghai University, Shanghai, China, in 2019.
He is currently pursuing the master’s degree in
information and communication engineering with
Shanghai University. His research interests include
scene text recognition, and low quality text image
recovery.

RUNZE MA received the bachelor’s degree in
communications engineering from Shanghai Uni-
versity, China, in 2018, where he is currently
pursuing the master’s degree in electronic engi-
neering. His research interests include speech
enhancement, speech separation, and so on.

SHUGONG XU (Fellow, IEEE) received the
degree from Wuhan University, China, in 1990,
and the master’s degree in pattern recognition
and intelligent control and the Ph.D. degree in
electrical engineering from the Huazhong Univer-
sity of Science and Technology (HUST), China,
in 1993 and 1996, respectively. He is currently a
Professor with Shanghai University and the Head
of the Shanghai Institute for Advanced Commu-
nication and Data Science (SICS). He was the

Center Director and the Intel Principal Investigator of the Intel Collaborative
Research Institute for Mobile Networking and Computing (ICRI-MNC),
prior to December 2016 when he joined Shanghai University. Before joining
Intel in September 2013, he was a Research Director and a Principal Scientist
with the Communication Technologies Laboratory, Huawei Technologies.
Among his responsibilities at Huawei, he founded and directed the Huawei’s
Green Radio Research Program, Green Radio Excellence in Architecture
and Technologies (GREAT). He was also the Chief Scientist and a PI for
the China National 863 Project on End-to-End Energy Efficient Networks.
He was a one of the co-founders of the Green Touch Consortium together
with Bell Labs and a Co-Chair of the Technical Committee for three terms
in this international consortium. Prior to joining Huawei in 2008, he was
with Sharp Laboratories of America, as a Senior Research Scientist. Before
that, he conducted research as a Research Fellow with The City College of
New York, Michigan State University, and Tsinghua University. He has pub-
lished over 100 peer-reviewed research articles in top international confer-
ences and journals. One of his most referenced articles has over 1400 Google
Scholar citations, in which the findings were among the major triggers
for the research and standardization of the IEEE 802.11S. He has over
20 U.S. patents granted. Some of these technologies have been adopted in
international standards, including the IEEE 802.11, 3GPP LTE, and DLNA.
His current research interests include wireless communication systems and
machine learning. He was elevated to IEEE Fellow in 2015 for contributions
to the improvement of wireless networks efficiency. He was awarded the
National Innovation Leadership Talent by the China Government in 2013.
He is also the Winner of the 2017 Award for Advances in Communication
from the IEEE Communications Society.

61382 VOLUME 9, 2021


