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ABSTRACT To solve the problems related to the complex structures, multiple parts, and imperceptible
assembly quality of combines, this paper compares the performance of the empirical mode decomposition
(EMD), ensemble empirical mode decomposition (EEMD), complete ensemble empirical mode decompo-
sition (CEEMD), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and
information entropy features in the detection data of combine assembly quality, and proposes a vibration
detectionmethod of combine assembly quality detection based onmulti-entropy feature fusion and optimized
least squares support vector machine. Firstly, the vibration signals of the combine are decomposed by various
adaptive algorithms, and intrinsic modal function (IMF) components are obtained. Three entropy features are
extracted from the components of the modes. The features are visualized by t-distributed stochastic neighbor
embedding (t-SNE), and the performance of these entropy features in the combine assembly quality detection
is analyzed. Secondly, a feature extraction method based on information entropy fusion is proposed. The
optimized kernel principal component analysis (KPCA) is used to fuse and reduce the dimension of the
entropy features, and form the fusion features. Finally, the extracted features are imported into optimization
least squares support vector machine (LSSVM) model for training to judge the working state and assembly
quality problem type of combine. The results show that the accuracy of using the unfused entropy features
is 82.5%, the accuracy of the fused features is 87.9%. After WOA optimization, the accuracy of the final
classification reaches 92.1%, which is better than 89.6% by GA and 90.5% by PSO. It shows that the method
proposed in this paper can accurately identify combine problems with different conditions and can be applied
to combine assembly quality detection.

INDEX TERMS Combine harvesters, assembly quality detection, adaptive decomposition, feature
extraction.

I. INTRODUCTION
As important mechanical products in agricultural production,
combine harvesters have many parts and complex assembly
procedures. Most combine manufacturers in China judge the
assembly quality of combine based on artificial experience,
and lack of objective, efficient and rapid quality detection
methods. To improve the quality of combines and enhance
the automation of the agricultural machinery industry, a
quick assembly quality inspection of combines must be per-
formed to ensure their long-term, stable, and failure-free
operation [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehrdad Saif .

Combines are complex agricultural machines that mainly
comprise rotating mechanical parts. An accurate mathemat-
ical model for analyzing the assembly quality of an entire
combine cannot be easily established because the working
parts of the machine interact with one another [2]. Chen
Chen et al. [3] analyzed the relationship between the modal
frequency of an entire machine and the modal frequency of
its frame by establishing a 7-degree-of-freedom rigid body
vibration model for the main frame and detached frame of
a combine harvester and then experimentally verified the
accuracy of this model. Li Yaoming et al. [4] built a cal-
culation model based on classic transmission path theory,
identified the location of structural defects based on abnormal
excitation forces, and verified the results on a cleaning test
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bench. Chen et al. [5] identified the main excitation source
frequency of the header vibration and the natural frequency
of the header by performing time-frequency domain analysis
on themultiple vibration signals of the header. Zhang et al. [6]
used machine vision to detect the position error of large-span
hole groups and to improve the installation position accuracy
and then verified the superior accuracy and efficiency of this
technology compared with traditional measurement methods.
While these methods have achieved favorable results, they all
focus on a single component and cannot easily address the
interactions among multiple components.

With the recent rapid development of fault diagnosis tech-
nologies for rotating machinery systems, many fault fea-
ture extraction methods have emerged. These methods can
be classified into time-domain analysis, frequency-domain
analysis, time-frequency analysis, and adaptive signal pro-
cessing methods. Given the influence of various factors,
such as the complex mechanical structures and frictions
among components, vibration signals often show non-linear
and non-stationary characteristics [7]. Compared with tra-
ditional time-frequency domain and wavelet packet analy-
ses, the adaptive decomposition method is more intuitive
and adaptive given that no basis function needs to be
preset. Accordingly, this method has attracted wide usage
used in the field of fault diagnosis [8]–[10]. Empirical
mode decomposition (EMD) is a recursive mode decom-
position method that uses the extreme points of the origi-
nal signal to perform multiple envelope calculations. Given
that general vibration signals contain noise or intermittent
interference signals, the estimation error that arises dur-
ing envelope calculation is amplified by multiple recursive
decompositions, thereby leading to the modal aliasing of
the decomposition results [11]. To improve empirical mode
decomposition (EMD), ensemble empirical mode decompo-
sition (EEMD), complete ensemble empirical mode decom-
position (CEEMD) and complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) have been
proposed, and obtained a lot of applications [12]–[15].
Zhang et al. [16] used CEEMD and t-test to reconstruct the
time series of rainfall, reservoir water level and other inducing
factors into high-frequency components and low-frequency
components respectively. The ant colony optimization based
support vectormachine regressionwas used to predict TGRA.
Niu et al. [17] established a hybrid prediction model combin-
ing random forest (RF), improved grey ideal value approx-
imation (IGIVA), complementary ensemble empirical mode
decomposition (CEEMD), particle swarm optimization based
on dynamic inertia factor (DIFPSO) and back propagation
neural network (BPNN), and verified the effectiveness of the
hybrid model. Yao and Pan [18] proposed a new empirical
mode decomposition (EMD) method based on ECG signal
morphological structure adaptive noise algorithm. Based on
the characteristics of CEEMDAN, this method can eliminate
high-frequency interference and low-frequency baseline drift.
Cheng et al. [19] used EEMDmethod to identify the intrinsic
mode function of noise and signal, and removed the intrinsic

mode function with noise as the main component, which was
applied to the actual lidar signal and achieved good denoising
effect. However, the process characteristics of the original
signal cannot be reasonably expressed and reflected in signal
decomposition, resulting in low diagnostic accuracy.

Feature extraction is a key step in fault diagnosis and
directly affects the accuracy of classification [20]. At present,
Using information entropy for feature extraction has been
widely used in the field of mechanical fault diagno-
sis [21], [22]. Fei et al. [23] put forward wavelet correlation
characteristic scale entropymethod, used process power spec-
trum entropy (PPSE) and support vector machine (SVM) for
bearing fault diagnosis, which provided basis for improving
fault diagnosis accuracy of rotating machinery such as gas
turbine. Because the information entropy of the characteristic
signal will change in different frequency bands, the entropy
of each order IMF can be calculated as the fault feature to
determinewhether there is a fault [24]–[27]. At the same time,
different information entropy functions represent the charac-
teristics of the signal at a specific location, it is also important
to choose the appropriate entropy function. Min et al. [28]
and Gao et al. [29] extracted multiple entropy of each IMF
to form a feature set through adaptive decomposition, but did
not consider the dimension of the feature set, resulting in the
extracted information entropy feature can not fully reflect the
signal features. Therefore, it is urgent to propose an effective
method to solve the above problems, so as to improve the
effect of fault diagnosis.

Based on the assembly quality inspection process of com-
bine, this paper studies the feature extraction based on
multi-entropy fusion and the fault diagnosis method of com-
plex rotating machinery based on optimal least squares sup-
port vector machine. In order to study the adaptability of the
current methods in the field of rotating machinery fault diag-
nosis and recognition in the detection of combine assembly
quality, based on the above mentioned this paper collects the
data of combine assembly quality problems through exper-
iments, and decomposes the original data by using EMD,
EEMD, CEEMD, CEEMDAN. After feature extraction of
each IMF after decomposition by using energy entropy, fuzzy
entropy and permutation entropy, multi-entropy fusion fea-
ture set is constructed by KPCA. The performance of various
entropy features in combine assembly quality inspectionwere
compared. Finally, based on the analysis results, the assembly
quality detectionmodel of the optimized least squares support
vector machine combine harvester was established.

II. BASIC PRINCIPLES AND METHODS
A. BASIC PRINCIPLES OF CEEMDAN
CEEMDAN is based on EMD and EEMD. EMD method
is to decompose the original signal into a series of IMF
components from high frequency to low frequency and a
residual component [30]. Different IMF represents the single
component signal with different physical meaning in the orig-
inal signal. However, the mode aliasing phenomenon of EMD
method is more serious. EEMD method adds white noise to
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the original signal for many times and then decomposes it
by EMD. The IMF components obtained by EMD decom-
position for many times are averaged to get the final IMF
component. The principle of CEEMD is similar to EEMD,
which is to add two opposite white noise signals to the
original signal and then decompose them by EMD. Both
EEMDmethod and CEEMDmethod can effectively improve
the mode aliasing phenomenon of EMD method, but both
EEMD and CEEMD need to be integrated for many times to
eliminate the influence of adding white noise and reduce the
reconstruction error. The increase of the average number of
integration will lead to the increase of calculation and affect
the efficiency. CEEMDAN method adds white noise adap-
tively in each stage of EMD decomposition. No matter how
many times of integration average is, the reconstruction error
of this method is almost zero. Therefore, the CEEMDAN
method not only improves the mode aliasing phenomenon of
EMDmethod, but also solves the problem of large amount of
calculation of EEMD and CEEMD methods.

The implementation steps of CEEMDAN are as follows:
(1) Construct signal sequence Xn(t). Firstly, a white noise

signal sequence ωn(t) with standard deviation of ε is added
to the original signal X (t) as follows:

Xn(t) = X (t)+ ε0ωn(t), n = 1, 2, . . . ,K (1)

(2) EMD is used to decompose the noise signal sequence
Xn(t) to obtain the first-order IMF component sequence and
calculate the average component of the first-order IMF.

Imf 1(t) =
1
K

K∑
i=1

IMF i1(t) (2)

The residual after decomposition as follows:

r1(t) = X (t)− Imf 1(t) (3)

(3) On the basis of residuals, the residual signal r1(t) +
ε1EMD1 (ω

n(n)) is obtained by adding white noise. Then
EMD decomposition is carried out to obtain the second order
IMF component sequence. Then the second order IMF mean
component and residuals are calculated.

Imf 2(t) =
1
K

K∑
n=1

EMD1
(
r1(t)+ ε1EMD1

(
ωn(t)

))
(4)

r2(t) = r1(t)− Im f2(t) (5)

(4) Repeat the above decomposition process according to
the same rules. Calculate the k-th residual rk (t) and k + 1
IMF mean component Imf k+1(t), until the residuals rk (t)
satisfactory formula (8) or cannot be EMD decomposed.

rk (t) = rk−1(t)− Im fk (t) (6)

Imf k+1(t) =
1
K

K∑
n=1

EMD1

×
(
rk (t)+ εkEMDk

(
ωn(t)

))
(7)

T∑
t=0

|rk−1(t)− rk (t)|2

r2k−1(t)
≤ SDk (8)

where T represents the length of signal X (t), rk (t) represents
the residuals resulting from the k-th decomposition.

B. FEATURE EXTRACTION
When the vibration signal contains strong interference and
noise, the use of a single surface feature extraction method
can easily lead to the reduction of diagnosis accuracy [31].
In recent years, Entropy theory has been applied to mechan-
ical equipment fault diagnosis by many scholars in many
forms such as Fuzzy Entropy [32], Sample Entropy [33],
and Approximate Entropy [34]. The effectiveness of relevant
entropy has been verified to a certain extent [35]–[38]. In this
paper, a variety of entropy feature extraction algorithms are
used. After signal decomposition, energy entropy, permuta-
tion entropy and fuzzy entropy features are extracted. By opti-
mizing KPCA, features are fused and dimension reduced to
construct feature data set.

C. LSSVM
Support vector machine (SVM) is a relatively mature
machine learning theory that has been widely used in
mechanical, electrical, and other related fields. This machine
learning method is based on statistical VC dimension the-
ory and the structural risk minimization principle. SVM
has unique advantages in nonlinear mapping, including its
requirement for less training data and its limits over learning,
thereby making this method especially suitable for process-
ing small sample data [39]. Least squares support vector
machine (LSSVM) improves the inequality constraint of
SVM to equality constraint. It makes the calculation cost
lower and simplifies the calculation process of support vector
machine.

Suppose that the sample training dataset is:

T = {(x1, y1) , · · · , (xn, yn)} ∈ (X × Y )n (9)

where xi ∈ X = Rn, yi ∈ Y = {1, · · · ,M}, i = 1, · · · , n.
To solve the linear non-separable classification prob-

lem, SVM performs mapping to transform sample x into a
high-dimensional space and then classifies the transformed
sample in a high-dimensional space, that is, 8 : Rn → H .
By using K

(
xi, xj

)
to replace the inner product of the high-

dimensional feature space, the optimization problem can be
transformed into

minω,b J (ω, ξ ) =
1
2
ωTω +

1
2
f

n∑
i=1

ξ2i (10)

s.t. yi
[
ωTϕ (xi)+ b

]
= 1− ξi (11)

where ω is the weight coefficient vector; b is the offset; f is
the regularization factor; ξi is the relaxation variable; J is the
objective function; ϕ (xi) is the kernel function, which maps
the sample set from the input space to the high-dimensional
feature space.
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The Lagrange function is constructed as follows:

L(ω, b, ξ, α) = J (ω, ξ )

−

n∑
i=1

αi

{
yi
[
ωTϕ (xi)+ b

]
− 1+ ξi

}
(12)

where αi is a Lagrangian operator and the optimization con-
dition is:

∂L (ω, b, ξi, αi)
∂ω

= 0⇒ ω =

l∑
i=1

αiyiϕ (xi)

∂L (ω, b, ξi, αi)
∂b

= 0⇒ 0 =
l∑
i=1

αiyi

∂L (ω, b, ξi, αi)
∂ξi

= 0⇒ αi = f ξi
∂L (ω, b, ξi, αi)

∂αi
= 0⇒ yi

(
ωTϕ (xi)+ b

)
− 1+ ξi = 0

(13)

By eliminating ξi and ω, we can get the following results:[
0 lT

l K + f −1I

] [
b
α

]
=

[
0
y

]
(14)

where I is the identity matrix and K is the kernel function
matrix.

Then the classification decision function of LS-SVM is as
follows:

f (x) = sgn

[
n∑
i=1

αiK (x, xi)+ b

]
(15)

By introducing different inner product kernel functions K
into the above formula, different least squares support vector
machines with different kernel can be formed.

To solve the multi-classification problem in this paper,
construct the cyclic model of least squares support vector
machine as shown in Figure 1. Multi-objective classification
is achieved by cyclically decomposing multi-objective data
into multiple binary classification problems.

FIGURE 1. Flow chart of the multi-classification LSSVM.

III. ASSEMBLY QUALITY INSPECTION PROCESS
This article uses vibration signals to detect the assembly
quality of combined harvesters. Through a decomposition of
the vibration signals from the main parts of a combine under
random excitation, the energy entropy, permutation entropy
and fuzzy entropy of each modal component is obtained as
an eigenvector. The optimized LSSVM is then trained and
tested after feature dimension reduction and fusion by kernel
principal component analysis (KPCA). The implementation
process is shown in Figure 3.

The test was performed on September 2019 at the Vehicle
Laboratory of the School of Vehicle and Traffic Engineer-
ing of the Henan University of Science and Technology.
The Zhongshou 4LZ-9A2 rice-wheat combine harvester was
used as the combine harvester model in the experiment. The
acceleration sensor was used to measure the vibration signal.
The sampling frequency was set to 2 kHz. The actual indus-
trial site was simulated and restored under an engine speed
of 780 r/min. The data were collected at the measuring points
which located at the front bearing seat of the disengaging
drum under the cab of the combine as shown in Figure 2.

FIGURE 2. Positions of the measuring points on the test harvester.

Three types of problems were injected into the whole
machine, namely, the eccentric assembly of the header agi-
tator, two non-tensioned quality defects in the assembly of
the fan pulley, and a combination of the two aforemen-
tioned problems. The effectiveness of the proposed method
was then verified according to the data obtained under
four states, namely, the normal state, fault 1, fault 2, and
fault 3 states.

The specific steps of the assembly quality inspection pro-
cess are described as follows:

(1) Obtain the experimental data of the combine under
various conditions.

(2) According to the defined sample length, the vibration
signals in each state are separately decomposed to obtain
several modal components.

(3) Select the first m modal components with the main
information to calculate the energy entropy, permutation
entropy and fuzzy entropy.

(4) Construct the multi-entropy feature vector and use the
KPCA to fusion the entropy features vector. Compare the
performance of various entropy using in combine assembly
quality detection.
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FIGURE 3. Flow chart of the assembly quality inspection.

(5) LSSVM is used as a classifier to classify various assem-
bly quality problems. A variety of optimization algorithms
are compared and analyzed.

IV. EXPERIMENT AND ANALYSIS
Taking parts of 4 kinds data signals as an example, the number
of signal points was set to 10000 points, and the time-domain
waveform and spectrum of the signal are shown in Figure 4.
The obvious characteristic frequency of the problem cannot
be seen from the figure, thereby highlighting the difficulty
of identifying the assembly quality problem of combine har-
vesters via conventional spectrum analysis.

FIGURE 4. Waveform and frequency spectrum of vibration signals from 4
kinds of state.

As shown in Table 1, the data set is constructed from the
extracted data of questions 1, 2, 3 and normal vibration. There
are 200 groups of four kinds of data, and each group has
10000 data signal points. In each assembly quality problem
data set, 70% of them are selected for model training and 30%
for testing. In order to verify the effectiveness of the adaptive
algorithm, EMD, EEMD, CEEMD, CEEMDANwere used to
process the signal, and the decomposed signal was analyzed.
Since the fault information is mainly stored in the previous

TABLE 1. Label and order of test set samples.

IMF components, after decomposing each signal, the energy
entropy, fuzzy entropy and permutation entropy of the first
10 IMF are calculated respectively, and the optimized KPCA
is used to construct the fusion feature set. t-SNE is used to
reduce the dimension visually, and the two-dimensional scat-
ter map of each adaptive algorithm after fusion of multiple
entropy features is drawn. LSSVM is used for training and
testing. The LSSVM use RBF kernel function, set default
parameters gamma = 2 and sigma = 2.

A. ANALYSIS OF SIGNAL DECOMPOSITION RESULTS
Fig. 5, 6 shows the reduced dimension visualization of t-SNE
with multiple entropy features after EMD EEMD decom-
position and the confusion matrix diagram of classification
results with unoptimized LSSVM. Where sub-graph a is the
result before normalization of all data, b is the result after nor-
malization. From the t-SNE diagram, it can be seen that the
clustering effect of EMD and EEMD data is improved after
normalization, especially in normal state and Fault 2, but the
overall effect is not obvious, Fault 1 and Fault 3 are obviously
difficult to distinguish. According to the confusion matrix,
after EMDdecomposition, the classification accuracy of class
A and C is higher, and 16% of class B is classified into A.
There were serious misclassification in class D, and the accu-
racy rate was the lowest, 83% of which were classified into
class B. After normalization, the classification effect of the
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FIGURE 5. T-SNE dimension reduction of multiple entropy features and
confusion matrix of classification results by EMD.

FIGURE 6. T-SNE dimension reduction of multiple entropy features and
confusion matrix of classification results by EEMD.

three types of problem signals is not significantly improved,
and there is still confusion between normal signals and
problem signals. After EEMD decomposition, the classifica-
tion accuracy of class A and C is still high, which indicates
that the collected data itself has large discrimination and low
performance requirements for the algorithm. However, there
are still many misclassifications between class B and D, but
the confusion between normal signals and problem signals

has been improved to a certain extent. It can be considered
that normalization is helpful for dimensionality reduction,
but the improvement of LSSVM classification effect is
limited.

Fig. 7, 8 shows the reduced dimension visualization
of t-SNE with multiple entropy features after CEEMD
CEEMDAN decomposition and the confusion matrix dia-
gram of classification results with unoptimized LSSVM.
Compared with figure 5 and figure 6, it can be seen that
the clustering effect between different states is significantly
improved, especially that it is still difficult to distinguish
between normal state and fault 2. After using CEEMDAN
to decompose, the clustering effect is obviously better than
the other three algorithms. According to the results of con-
fusion matrix, the classification accuracy of class A and C
is still high. Using CEEMD to decompose, there are still
many misclassifications in class B, of which 28% are clas-
sified as A and 66% as D. Using CEEMDAN decomposition,
the classification effect of class B and D is improved, and
the misclassification is basically the confusion of the two
kinds of problems. In general, the feature set constructed
by CEEMDAN decomposition and normalization has the
best comprehensive performance on the data used in this
paper.

FIGURE 7. T-SNE dimension reduction of multiple entropy features and
confusion matrix of classification results by CEEMD.

B. FUSION ENTROPY FEATURE EXTRACTION
In order to evaluate the performance of the entropy fea-
tures, CEEMDAN is used to decompose and normalize the
data. Permutation entropy, energy entropy, and fuzzy entropy
are extracted. LSSVM is used for training and testing. The
parameters of LSSVM are the same as the previous paper.
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FIGURE 8. T-SNE dimension reduction of multiple entropy features and
confusion matrix of classification results by CEEMDAN.

As shown in Figure 9, the confusion matrix of the test results
of different entropy features is shown.

Permutation entropy is mainly used to evaluate the peri-
odicity and randomness of data. In Figure 9, sub-graph a is
the confusion matrix of LSSVM classification results after
permutation entropy decomposition. It can be seen that the
overall classification effect is poor, but the misclassifica-
tion situation is not balanced in the four labels. Permutation
entropy features of class A and B are closer and easier to
be confused, while C and D are more likely to be confused,
indicating that the generation of related problems has great
influence on the periodicity of signal data. Although per-
mutation entropy cannot accurately distinguish the problem
signals, it has a certain value for the signal classification of
combine assembly quality problems collected in this paper.
Energy entropy can reflect the distribution of signal energy
in each component. Sub-graph b in Figure 8 is the LSSVM
classification result after energy entropy decomposition, and
the overall classification accuracy reaches 75%. It can be seen
that class A, C and D have better classification effect, while B
has all misclassification, indicating that energy entropy fea-
tures, as a global feature, has good performance, but it is easy
to ignore the information brought by weak changes. Fuzzy
entropy mainly reflects the degree of confusion between the
front and back parts of the data. Sub-graph c in Figure 8 is
the classification result of LSSVM using fuzzy entropy fea-
tures. It can be seen that the overall classification situation
is relatively simple, and the degree of confusion is low. All
class A and D are correctly classified, while B and C were
wrongly classified as D. It shows that fuzzy entropy futures,
can effectively distinguish normal signals from problem

FIGURE 9. Confusion matrix of different entropy classification effect.

signals, but the performance of distinguishing between prob-
lems is poor.

In order to improve the performance of features, the above
three entropy features are combined to form a new 30 dimen-
sional comprehensive feature set. The three entropy features
are fused by KPCA to construct a complementary fusion
feature set with the same dimension as a single entropy. After
all samples decomposed by CEEMDAN, themultiple entropy
extracted from the first 13th IMF respectively, then the fusion
feature set obtained by the KPCA. In order to verify the
effect of KPCA and ensure the same dimension of feature
set before and after decomposition, the principal component
score is set to 13. The choice of kernel function and parameter
σ of KPCA affect the performance directly. Grid search
tool from scikit-learn is used to optimize the KPCA. The
results show that when sigmoid kernel function is selected
and parameter σ is 0.05, the classification effect is the best.
As shown in Figure 9, Sub-graph d is the LSSVM classifica-
tion effect of feature set composed of multiple entropy, and
Sub-graph e is the LSSVM classification result after KPCA
fusion optimized by multiple entropy. It can be seen that the
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classification performance of a simple feature set with multi-
ple entropy features is better than that of subgraphs a, b and c,
but the feature dimension is increased to 39, and the confusion
between B and D is still very obvious. The fusion features
optimized by KPCA not only reduce the dimension of feature
information, but also retain the advantages of the multiple
entropy. It has high accuracy in distinguishing class A and
class C, especially for class B and class D, the performance
has been significantly improved.

C. OPTIMIZED LSSVM
In order to further improve the performance of LSSVM
classifier, the genetic algorithm (GA), particle swarm opti-
mization (PSO) and whale optimization algorithm (WOA)
are used to optimize LSSVM, then the results are analyzed.
In LSSVM, the regularization parameter Gama can affect
the model complexity and empirical risk, which is too large
to cause over fitting, and too small to cause poor results;
the kernel function parameter Sigma determines the linear
mapping model, which is directly related to the classification
results. Therefore, the Gama and Sigma are selected for opti-
mization. The process of the three optimization can be shown
in Figure 10.

FIGURE 10. Flow chart of optimization algorithm.

The range of Gama and Sigma of LSSVM is set to [0,50].
Initialization the WOA Hyperparameters, set the number of
population n = 100, the maximum number of iterations
tmax = 20, logarithmic spiral constant b = 0.5, random num-
ber I = 0.8. The population size and the maximum number
of iterations of PSO and GA are set to the same value, the rest

FIGURE 11. LSSVM optimized fitness curve and confusion matrix.

parameters adopt the default. The best classification accuracy
of the data set on the least squares support vector machine is
taken as the fitness function for optimization. The population
is randomly generated in the solution space, and the fitness
value of each individual is calculated, and the optimal fitness
position is taken as the prey position. Update the parameters
and the whale position information according to the rules,
get the optimal position and record it. Determine whether the
maximum number of iterations is reached. If the conditions
are met, output the optimal value and the optimal individual
position, otherwise continue to search. After optimization, the
WOA optimization parameters are Gama= 5.5, Sigma= 1.9,
GA optimization parameters are Gama= 3.2, Sigma= 1.35,
and PSO optimization parameters are Gama = 4.78, Sigma
= 1.51. The optimized parameters are brought into LSSVM
model, and the results as follows after training and testing.

Table 2 shows the classification results of LSSVM opti-
mized by different data sets. It can be seen that the overall
classification accuracy of single entropy is poor. After inte-
grating multiple entropy, the accuracy is improved due to
the improvement of data dimension. After using the fusion
entropy feature, the overall classification effect is better
than others, especially after WOA optimization, the accuracy
reaches the highest.
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TABLE 2. Comparison of classification accuracy of different feature
extraction methods.

Figure 12 shows the fitness curve and classification test
confusion matrix of LSSVM model optimized by GA, PSO
and WOA. In the LSSVM model test results after WOA
optimization, the classification accuracy of class A, B and C
is more than 95%, and the classification accuracy of class B
is 4% higher than that of unoptimized, and 6% higher than
that of GA and PSO optimization. The classification accuracy
of class D is 8% higher than that of unoptimized and 3%
higher than that of GA optimization. In general, the final
classification accuracy of WOA is 92.1%, which is better
than the GA 89.6%, PSO 90.5%, and unoptimized 87.9%.
It can be seen that the fault diagnosis model of WOA opti-
mized LSSVM based on CEEMDAN decomposition and
multi-entropy KPCA fusion features proposed in this paper
can accurately identify the faults of combine in different
states, and can be applied to the assembly quality detection
of combine.

It can be seen from the fitness curve in Figure 11 that the
WOA optimization iterative process is smoother than that of
GA and PSO, which indicates that the WOA search process
has strong target pertinence, large domain search range and
better optimization effect. As shown in Table 3, for the data
sets and optimization problems in this paper, the optimization
time of WOA and GA is 206 seconds and 200 seconds
respectively, which is much shorter than that of PSO’s 464
seconds, reflecting the characteristics of WOA, such as fast
convergence speed, simple execution process, less solving
parameters and low computational complexity. In general,
WOA, as a new heuristic optimization algorithm, has better
comprehensive performance than GA and PSO in the case of
the same number of population and iterations. Especially for
the data set and LSSVM in this paper, the optimization effect
and performance is the best.

TABLE 3. Running time of the optimization.

V. CONCLUSION
(1) Analysis the performance of adaptive decomposition
algorithm in combine assembly quality detection. According
to the strong noise characteristics of combine vibration signal,
CEEMDAN can extract useful assembly quality problem
features more accurately.

(2) Based on the decomposition of CEEMDAN, the per-
formance of Permutation entropy, Fuzzy entropy and Energy
entropy in combine assembly quality detection is analyzed.
By optimizing KPCA, a variety of entropy fusion feature sets
are constructed, and the results show that this method has
the best performance in the detection of combine assembly
quality.

(3) By optimizing LSSVM, the accuracy of combine
assembly quality detection method is further improved, espe-
cially the classification accuracy after using WOA optimiza-
tion and the multiple entropy fusion feature set proposed in
this paper to train LSSVM, which has a certain practical
significance for the follow-up research.
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