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ABSTRACT Since the term ‘‘Fuzzy differential equations’’ (FDEs) emerged in the literature in 1978,
prevailing research effort has been dedicated not only to the development of the concepts concerning the
topic, but also to its potential applications. This paper presents a chronological survey on fuzzy differential
equations of integer and fractional orders. Attention is concentrated on the FDEs in which a definition of
fuzzy derivative of a fuzzy number-valued function has been taken into account. The chronological rationale
behind considering FDEs under each concept of fuzzy derivative is highlighted. The pros and cons of each
approach dealing with FDEs are also discussed. Moreover, some of the proposed FDEs applications and
methods for solving them are investigated. Finally, some of the future perspectives and challenges of fuzzy
differential equations are discussed based on our personal view point.

INDEX TERMS Fuzzy numbers, fuzzy derivatives, Hukuhra difference, granular differentiability, fuzzy
mathematics, fuzzy number-valued functions.

I. INTRODUCTION
The advent of fuzzy sets and fuzzy logic has had a signif-
icant impact on the evolution of many concepts and rela-
tionships in various fields of science. As a matter of fact,
one of the principle contributions of fuzzy logic referred
to as FL-generalization is the generalization of the defined
concepts and obtained relationships based on crisp sets to
those that are based on fuzzy sets. What is referred to as
fuzzy differential equations (FDEs) may be viewed as a case
of FL-generalization of differential equations. FDEs underlie
a branch of FL-generalization of mathematics which may
be called mathematics of fuzziness (or fuzzy mathematics).
A fuzzy differential equation is a differential equation in
which some coefficients and/or parameters and/or boundary
conditions are assumed to be a class of fuzzy sets. The class
of fuzzy sets is mainly regarded as the class of fuzzy numbers
consisting of sets that are normal, fuzzy convex, upper semi-
continuous and compactly supported fuzzy subsets of the real
numbers.

FDEs may be viewed as a type of uncertain differential
equations in which the uncertain values of parameters, coeffi-
cients, and/or boundary conditions are taken into account as
fuzzy numbers. A fuzzy number may be viewed as a result
of the granular precisiation of a precisiend that describes
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an imprecise value assigned to a variable. As such, a fuzzy
differential equation may be viewed as a differential equation
whose parameters, coefficients, and/or conditions are impre-
cise values precisiated as granular values. In this perspective,
a fuzzy differential equation may be also considered as a class
of granular differential equations.

As the granular precisiation of a precisiend is reduced to
the singular precisiation of the precisiend as gradually as
the uncertainty is reduced, a fuzzy differential equation is
reduced to a differential equation whose uncertain parame-
ters, coefficients, and/or conditions are treated as the degran-
ulation of the precisiends. In the context of FDEs, the result of
granular precisiation is of the type of possibility distribution.
Thus, a fuzzy differential equation may be also termed as a
possibilistic differential equation.

In this paper, our attention is confined on the sets of
research carried out in the context of FDEs where a definition
of fuzzy derivative has been considered. As such, in order to
make a clarified survey, the integer order FDEs and fractional
order FDEs are reviewed, chronologically, in two separate
sections, and then the proposed methods for solving FDEs
and potential applications of FDEs come in the other sections.
Moreover, in the last section, a discussion on the challenges
and future perspectives of FDEs, based on our personal view-
point, is provided.
Note 1: Hereafter, we denote the set of all real numbers

byR, the respective set of all type-1 and type-2 fuzzy numbers
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on R by E1 and E2, the well-known α-level sets of a fuzzy
set Ã by [Ã]α whose left and right end-points (or lower and
upper α-level cuts) are Aα and A

α
, respectively. In this paper

the meaning of a type-1 fuzzy function is associated with a
fuzzy number-valued function f̃ : (a, b) ⊆ R → E1, and
a type-2 fuzzy function with f̃ : (a, b) ⊆ R → E2. Unless
stated to the contrary, the meaning of a fuzzy function will be
understood to be the type-1 fuzzy function. The diameter (or
width of fuzziness) of a fuzzy function, f̃ mapping t → f̃ (t),
denoted by D(f̃ (t)) is defined as D(f̃ (t)) = f

α
(t)− f α(t).

II. FUZZY DIFFERENTIAL EQUATIONS
This section presents various approaches dealing with a def-
inition of a derivative of type-1 or type-2 fuzzy functions.
The most important part of history of FDEs is formed by
different definitions of fuzzy derivatives. As a matter of fact,
since the concept of derivative is the fundamental element of a
differential equation, the evolution of fuzzy derivatives plays
a key role in the evolution of FDEs. The fuzzy derivatives
may be classified as: integer order and fractional order fuzzy
derivatives. Integer order fuzzy derivatives are sub-classified
as integer order fuzzy derivatives of type-1 fuzzy functions
(or type-1 fuzzy derivatives), and integer order fuzzy deriva-
tives of type-2 fuzzy functions (or type-2 fuzzy derivatives).
Similarly, there are type-1 and type-2 fuzzy fractional deriva-
tives. It should be noted that corresponding to each class or
sub-class of fuzzy derivatives, FDEs may be classified. For
example, what may be referred to as type-1 fuzzy fractional
differential equations is associated with FDEs in which the
derivative is of the kind of type-1 fuzzy fractional derivatives.

A. INTEGER ORDER FUZZY DIFFERENTIAL EQUATIONS
Although the term fuzzy differential equations for the first
time emerged in the literature in 1978 [1], FDEs, as they
are known nowadays, was initiated in 1982 based on a def-
inition of a fuzzy derivative which may be called Dubois-
Prade derivative [2]. Thereafter, different definitions of fuzzy
derivatives were proposed among which were Hukuhara
derivative (or Puri–Ralescu derivative) presented in 1983 [3],
Goetschel-Voxman derivative in 1986 [4], Seikkala derivative
in 1987 [5], and Friedman-Ming-Kandel derivative intro-
duced in 1996 [6], respectively. In spite of the fact that
all these fuzzy derivatives have been presented in different
forms, it has been proved that they are equivalent provided
that the subjected fuzzy function lower and upper α-level cuts
are continuous functions, for more details see [7].

Among the mentioned fuzzy derivatives, Hukuhara and
Seikkala derivatives are more widely known. The difference
between the definitions of Hukuhara and Seikkala deriva-
tives is that Hukuhara derivative (H-derivative) is, in essence,
defined based on what is called Hukuhara difference (H-
difference) [8], but Seikkala derivative is defined based on
derivatives of the lower and upper α-level cuts of the fuzzy
function in question. The existence and uniqueness of the
solution for FDEs under H-derivative and Seikkala derivative
have been investigated in [5], [9].

A large number of studies conducted on FDEs, for instance
see [10]–[16], demonstrate that Hukuhara and Seikkala
derivatives, despite being equivalent, are more palatable defi-
nitions. However, the research results have revealed that these
derivatives suffer from a number of major limitations among
which the most serious is that the diameter of the fuzzy
function under study needs to be necessarily non-decreasing.
Such a limitation causes the obtained solution of an FDE,
in a great number of cases, to differ from what is realized
intuitively from the nature of the system or phenomenon
modeled by the FDE. As an illustration, the diameter of the
obtained solution of an FDE in the form of ˙̃x(t) = −x̃(t)
whose initial condition is a fuzzy number, increases as time
goes by. This is while we intuitively expect that the natural
behavior of such a differential equation show that x̃ decreases
as time passes. As a conclusion, considering such definitions
in an FDE necessitates that the fuzziness of the solution be
non-decreasing which imposes a great restriction on their real
case applications.

To overcome this issue, in 1990 [17] and then with more
details in 1997 [18], it was suggested that FDEs should be
considered as fuzzy differential inclusions. Almost simulta-
neously, an alternative approach based on the use of Zadeh’s
extension principle (ZEP) for dealing with FDEs was intro-
duced in 1999 [19]. Although these approaches have attracted
considerable attention and led to many remarkable studies on
FDEs, for instance see [20]–[30], they do not come with a
definition of fuzzy derivative. In plain words, the concept of
a fuzzy derivative is in effect lost in the proposed approaches.
Another effort made in order to overcome the issue coming
from applying Hukuhara (or equivalently Seikkala) deriva-
tive, was the presentation of the same-order and reverse-
order derivatives [31]–[34] that were made based on Seikkala
derivative. It should be underscored that this approach has a
close relationship with the ones presented for fuzzy deriva-
tives called generalized Hukuhara derivative and general-
ized Seikkala derivative which will be explained in the
sequel.

The year 2004 came with a point of departure for making
an evolution in dealing with FDEs by introducing the concept
of strongly generalized Hukuhara (SGH) derivative [35] that
was presented in a more comprehensive way in 2005 [36].
The structure of SGH-derivative, in general and under some
conditions, presents two forms of differentiability of a fuzzy
function which may be called the first form and the second
form of differentiability [37]. The first form coincides with
the Hukuhara derivative. But it is the second form of differen-
tiability, if it exists, that addresses the issue of non-decreasing
diameter of a differentiable fuzzy function. Simply put, if the
fuzzy function f̃ mapping t → f̃ (t) is SGH-differentiable
in the second form, then its diameter is non-increasing, i.e.
dD(f̃ (t))

dt ≤ 0.
Thus, solving the FDE ˙̃x(t) = −x̃(t) whose initial condi-

tion is a fuzzy number, in the sense of SGH derivative sec-
ond form, results in a solution which satisfies what is intu-
itively expected from the nature of the equation structure.
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This approach also comes with an interesting concept called
switching points which are the points in an interval where
the switch between the first form and the second form of
differentiability occurs. This concept has opened a gate to the
study of periodic behavior of some phenomena whose math-
ematical models may be considered as FDEs in which a defi-
nition of fuzzy derivative has been presented, for instance see
[38], [39]. The result concerning existence and uniqueness
of the solutions of an FDE under SGH-derivative given in
[36], [40] shows that a first order FDE, under some condi-
tions, has two solutionswhichmay be called the first form and
the second form solutions. The first and second forms solu-
tions are associated with the concepts of the first and second
forms of the differentiability.

Although SGH-derivative has made a turning point in the
analysis of FDEs and a considerable amount of research
on FDEs has been performed based on such a derivative,
e.g. see [41]–[49], it suffers from some shortcomings the
most important of which are as outlined below. First, since
SGH-derivative, in essence, has been introduced based on
Hukuhara difference, the existence of such derivative depends
on the existence of H-difference. Nonetheless, in most cases
the H-difference does not exist and the conditions for the
existence of such a difference would significantly restrict the
applicability of the SGH-derivative. Second, SGH-derivative
would be applied on the fuzzy functions with monotonic
diameters. More precisely, for taking the derivative of a fuzzy
function in the sense of the first form of differentiability,
the diameter of the fuzzy function needs to be necessarily
non-decreasing. Analogously, that the diameter of a fuzzy
function is non-increasing is one of the necessary conditions
of the differentiability of the fuzzy function in the second
form.

The concept ofπ -derivative is another alternative approach
that was introduced in 2009 [50]. In [51], it has been
stated that under the conditions of the Representation The-
orem [52], the π -derivative of a fuzzy function exists.
Moreover, the obtained solution of a fuzzy differential equa-
tion under the concept of π-derivative coincides with that
obtained under the concept of SGH-derivative, under certain
conditions, see more details in [51].

To overcome the limitations of SGH-derivative, gener-
alized Hukuhara (gH) derivative of a fuzzy function was
presented in 2013 [53]. The gH-derivative was defined
based on generalized Hukuhara difference (gH-difference)
[53], [54] which is a more general concept than H-difference.
Although the existence of gH-difference comes with less
restrictions in comparison with H-difference, it is possible
that the gH-difference of two fuzzy numbers does not exist,
see Example 16 in [53]. Accordingly, one fails to guarantee
the existence of gH-derivative of a fuzzy function. In spite
of this fact, gH-derivative addresses the second limitation of
SGH-derivative. That is, the diameter of a gH-differentiable
fuzzy function does not need to be monotonic. In addition,
the concept of switching points has been better clarified based
on gH-derivative, see Definition 38 in [53].

As a result, the investigation of FDEs under the con-
cept of gH-differentiability comes with much fewer restric-
tions in comparison with other concepts. This may be one
of the reasons that a large body of studies has been con-
ducted on gH-differentiability of a fuzzy function and FDEs
equipped with such a concept, e.g. see [55]–[69]. Concomi-
tantly, in order to address the issue of the existence of
gH-derivative of a fuzzy function, the concept of generalized
derivative (g-derivative) based on the generalized difference
(g-difference) was introduced in 2013 [53]. Although it had
been initially claimed that the g-difference of two fuzzy
numbers always exists, with a counter example presented
in 2015, it was shown that it is not the case. By a little
modification in the definition of g-difference, however, the
existence of such a difference of fuzzy numbers can be guar-
anteed, see more details in [70]. It is noteworthy that under
some conditions, g-differentiability, gH-differentiability and
SGH-differentiability become equivalent concepts, see The-
orem 41 in [53]. Note that on the basis of level-wise
gH-difference of two fuzzy numbers, the concept of level-
wise gH-derivative (LgH-derivative) has also been defined
in [53] and investigated further in [66], [67]. Although the
LgH-differentiability of a fuzzy function is a more gen-
eral concept than gH-differentiability and less general than
g-differentiability concept, the existence of LgH-derivative of
a fuzzy function is not guaranteed. Some remarkable results
regarding the differentiability of a fuzzy function in the sense
of gH-derivative and LgH-derivative have been presented in
[55], [64], [66], [67]. One of the points regarding the char-
acteristic of gH-derivative and LgH-derivative that should be
highlighted is that the existence of such derivatives for a fuzzy
function does not necessarily imply that the end-points of the
fuzzy function are differentiable, see Example 1 in [66], [67].

The development of the theory of FDEs has been
continued, based on integer order derivatives, by other
approaches on fuzzy derivatives, namely D̂-derivative [71],
H2-derivative [72], interactive derivative [73], the
gr-derivative [74], and so on that will be discussed in the
sequel. The year 2013 came with an approach for studying
FDEs in which the definition of a fuzzy derivative was drawn
from the fuzzification of the classical derivative operator by
the use of Zadeh’s extension principle [71]. There is a close
relationship between this approach and that introduced for
fuzzy differential inclusions, and under some hypotheses,
the results obtained by this approach are reduced to those
obtained by fuzzy differential inclusions, see [71], [75], [76]
for more details. Furthermore, under the conditions expressed
in Theorem 3.17 in [75], the D̂-derivative is equivalent to the
gH-derivative. Thus, it is possible that a first order FDE has
more than one solution based on the concept of D̂-derivative,
see Example 6.4 in [71].

In 2014, type-2 fuzzy differential equations (T2FDEs)
involving type-2 fuzzy functions and type-2 fuzzy numbers
were introduced, for the first time, in [72]. The concept of
H2-derivative has been presented for dealing with T2FDEs.
This derivative is in the form of SGH-derivative and is
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defined based on H-difference of type-2 fuzzy numbers, i.e.
H2-difference. The main reason for the presentation of
T2FDEs came from the fact that an exact form of a type-1
fuzzy number may not be always determined.

With the notions of the joint possibility distribution and the
interactive arithmetic operation considered, the interactive
derivative of a fuzzy function was introduced in 2017 [73].
In the interactive derivative, the difference, that is called inter-
active difference, has been defined based on the so-called sup-
J extension principle [77]. One of the reasons for the analysis
of FDEs using this approach has been stated due to the exis-
tence of possible interactivities (or dependencies) between
variables in a process. Recently, it has been proved that
H-derivative, gH-derivative, g-derivative and π -derivative are
particular cases of the interactive derivative, for more details
see [78]. Some of the research work elaborating on the
concept of interactive derivative and interactive arithmetic
operation can be found in [79]–[85].

The year 2018 came with a new approach for the analy-
sis of FDEs by introducing a new concept of fuzzy deriva-
tive that is called granular derivative (gr-derivative) [74].
The gr-derivative has been defined based on the notion of
gr-difference. The main difference between this approach
and the others is that it employs relative-distance-measure
fuzzy interval arithmetic (RDM-FIA) [86]–[88] to deal
with FDEs. A key concept in RDM-FIA is the horizon-
tal membership function (HMF) [89]–[91] based on which
operations on fuzzy numbers are defined. The main rea-
son why gr-derivative has been proposed is to overcome
drawbacks of the approaches - namely H-derivative, SGH-
derivative, gH-derivative, g-derivative, and π -derivative - that
employ fuzzy standard interval arithmetic (FSIA) to han-
dle FDEs. The drawbacks would be outlined as: the exis-
tence of the derivative, monotonic uncertainty, multiplicity of
solutions, doubling property, symmetric uncertainty around
zero problem (SUAZ problem) and unnatural behavior in
modeling (UBM) phenomenon, for more details see [74],
[92]–[97]. Some of the drawbacks will be explained briefly
in Section V. Further research work inspired by the concept
of gr-derivative can be found in [98]–[111]. It should be
underscored that solving a first order FDE under the concept
of the gr-derivative leads to just one solution.

In the same year, the notion of generalized Seikkala deriva-
tive (gS-derivative) was put forward in [112]. This notion
is, in essence, a combination of same-order and reverse-
order derivatives by the use of minimum and maximum
operators. Moreover, it has been proved that gS-derivative
is equivalent to SGH-derivative, see Theorem 3.1 in [112].
Inspired by quantum calculus and q-derivative, fuzzy gener-
alized Hukuhara q-derivative was proposed in 2019 [113] as
a combination of q-derivative and gH-difference. It should be
noted that based on such a derivative, a first order FDE, under
certain conditions, could have two solutions.

Table 1 in the Appendix shows some of the fuzzy deriva-
tives explained in this section.

B. FRACTIONAL ORDER FUZZY DIFFERENTIAL EQUATIONS
The idea for studying fuzzy differential equations of frac-
tional order was first presented in 2010 [114]. There
are different definitions of classical fractional derivatives,
namely in the sense of Riemann-Liouville, Caputo, Mod-
ified Riemann-Liouville, conformable fractional derivative,
Caputo-Fabrizio fractional derivative, to name but a few.
Possible combinations of such derivatives with the concepts
of fuzzy derivatives and/or fuzzy differences have resulted
in the introduction of different definitions of fuzzy frac-
tional derivatives based on which fuzzy fractional differential
equations (FFDEs) have been examined.

The Riemann-Liouville fuzzy fractional derivative in the
sense of H-derivative; and the existence and uniqueness of
the solution for a class of FFDEs with infinite delay were
presented in 2010 [115]. In 2011, the Riemann-Liouville
fuzzy fractional derivative in the sense of Seikkala derivative
was proposed in [116]; and the existence and uniqueness of
the solution for FFDEs with fuzzy initial conditions under
such a derivative have been shown in [116], [117].

A combination of Riemann-Liouville fuzzy fractional
derivative with SGH-derivative (Riemann-Liouville
H-derivative) was introduced in 2012 [118]. It is noteworthy
that although such a derivative has been denoted as Riemann-
Liouville H-derivative in the literature, the derivative has been
defined in the form of the SGH-derivative. Due to this fact,
similar to SGH-derivative, in general, Riemann-Liouville
H-derivative, under some conditions, presents two forms of
differentiability of a fuzzy function. Thus, an FFDE of order
β ∈ (0, 1) under such a derivativemay have two solutions, i.e.
a solution that comes from the first form of differentiability,
and the other from the second form of differentiability. The
existence and uniqueness of the solution for FFDEs using
Krasnoselskii-Krein-type condition and Nagumo-type con-
dition have been presented in [119], [120].

In 2012, fuzzy fractional differential equations under the
concept of Caputo’s derivative in combination with SGH-
derivative, i.e. Caputo-type H-derivative, were investigated in
two different representations in [121] and [122]. The exis-
tence and uniqueness theory of the solution for FFDEs under
such a derivative presented in [122] shows that an FFDE
of order β ∈ (0, 1), under some conditions, may have two
solutions corresponding to the first and second forms of the
Caputo-type H-derivative.

It should be underscored that there are some differences
between the Caputo’s derivative and Riemann-Liouville
derivative. What follows is two more important differences.
First, Caputo’s derivative of a constant function is zero
which is not the case with Riemann-Liouville derivative.
The second difference has to do with the initial condi-
tions of a fractional differential equation. A fractional dif-
ferential equation under the concept of Riemann-Liouville
derivative involves initial conditions of fractional order
that does not happen under the concept of Caputo’s
derivative.
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With a combination of Riemann-Liouville derivative and
Goetschel-Voxman derivative considered, the existence and
uniqueness of the solution for FFDEs were demonstrated
in 2013 [123]. Simultaneously, the Riemann-Liouville fuzzy
fractional derivative in the sense of H-derivative was defined
in [124]; and using Schauder fixed point theorem, the exis-
tence of the solution of an FFDE under such derivative was
investigated in [124], [125].

In 2014, type-2 fuzzy fractional differential equations
(T2FFDEs) under the concept of type-2 fuzzy fractional
derivatives were established in [126]. T2FFDEs are FFDEs
in which type-2 fuzzy numbers and type-2 fuzzy functions
are involved. Type-2 fuzzy fractional derivatives have been
defined in the form of Caputo’s and Riemann-Liouville
derivatives in a combination with H2-derivative, i.e. Caputo-
type H2-derivative and Riemann-Liouville H2-derivative.
These derivatives, in general, are in the form of SGH-
derivative, and due to this fact, the existence and uniqueness
theory of the solution for T2FFDEs given in [126] shows
that a T2FFDE of order β ∈ (0, 1) under such derivatives
may have two solutions which may be called the first form
and the second form solutions. In the same year, FFDEs
under the concept of generalized fuzzy Caputo derivative
(Caputo gH-derivative) with the existence and uniqueness
theory of their solutions by the use of Krasnoselskii-Krein
condition were presented in [127]. The Caputo gH-derivative
has been constituted by a combination of Caputo’s derivative
and gH -derivative. So far, extensive research has been carried
out on FFDEs based on thementioned fuzzy fractional deriva-
tives, for instance see [128]–[138]. Some of such results
presented in [139] are remarkable; only under specific con-
ditions, is an FFDE equivalent to a fractional fuzzy integral
equation, for more details see [139].

A combination of modified Riemann-Liouville deriva-
tive [140] and g-derivative for type-1 and type-2 fuzzy frac-
tional differential equations was introduced in 2016 [141].
The main reason for presenting the modified Riemann-
Liouville fuzzy fractional derivative comes from the fact that,
unlike the Caputo gH-derivative, it does not require that the
function in question be differentiable of higher order. As a
case in point, for the fractional derivative of order β ∈ (0, 1),
the modified Riemann-Liouville fuzzy fractional derivative
does not necessitate the function in question be first order dif-
ferentiable. In addition, unlike fuzzy fractional derivative in
the sense of Riemann-Liouville, the initial conditions appear
in the same way as they do in an integer order differential
equation.

FFDEs under the concept of Caputo-Fabrizio fractional
derivative in combination with SGH-derivative (Caputo-
Fabrizio SGH-derivative) were studied in 2018 [142]. The
main reason why such a derivative was introduced is that
the kernel in Caputo-Fabrizio fractional derivative, unlike
Riemann-Liouville and Caputo’s derivatives, is non-singular.
It should be also noted that the idea for applying Caputo-
Fabrizio fractional derivative on uncertain fractional differen-
tial equations where interval-valued functions are involved,

was first reported in [143]. At the same time, by com-
bining Riemann-Liouville and Caputo’s derivatives with
gr-derivative, i.e. granular Riemann-Liouville derivative and
granular Caputo derivative, granular fuzzy fractional deriva-
tives emerged in [94]. Granular fuzzy fractional integral has
also been presented in this work. The main reason for the
analysis of FFDEs under granular fuzzy fractional derivatives
is the fact that the investigation of FFDEs under the notions
of fuzzy fractional derivatives that are defined based on
SGH-derivative, gH-derivative and, in general, FSIA-based
approaches comes with some restrictions. Such restrictions
like multiplicity of solutions and UBM phenomenon can be
overcome by the use of granular fuzzy fractional derivatives
that are based on RDM-FIA approach. It has been also shown
that an FFDE of order β ∈ (0, 1) under the concept of
granular fuzzy fractional derivatives has only one solution.
Inspired by granular fuzzy fractional derivatives, granular
Riemann-Liouville q-fractional integral and granular Caputo
q-fractional derivative have been presented in [144] for the
investigation of FFDEs on a time scale.

Caputo-Katugampola gH-derivative and Riemann-
Liouville-Katugampola gH-derivative as generalizations of
Caputo gH-derivative and Riemann-Liouville H-derivative
by utilizing Katugampola concept [145] and gH-derivative
were introduced in 2019 [146]. The existence and unique-
ness of solutions for FFDEs under Caputo-Katugampola
gH-derivative by the use of successive approximations under
generalized Lipschitz condition have been shown in [146].
Specifically, similar to other definitions of fuzzy deriva-
tives established by gH-derivative or gH-difference, it has
been proved that, under some conditions, an FFDE of order
β ∈ (0, 1) has two solutions, i.e. solutions corresponding to
the first and second forms of differentiability.

By a combination of Caputo q-fractional derivative, that
is a fractional derivative coming from quantum calculus, and
gH-derivative, Caputo q-fractional gH-derivative was intro-
duced in 2019 [113] and the existence and uniqueness of
solutions for FFDEs were demonstrated by Krasnoselskii-
Krein-type conditions. Since this approach also underlies
FSIA-based approaches, solving an FFDE, under some con-
ditions, brings us more than one solution.

In 2020, the concept of Atangana-Baleanu gH-derivative
as a combination of Atangana-Baleanu fractional deriva-
tive [147] and gH-derivative was reported in [148]. One
of the reasons for proposing such a derivative has been
based on non-locality and non-singularity property of the
new kernel defined in Atangana-Baleanu fractional deriva-
tive. In the same year, by employing conformable frac-
tional derivative [149] and SGH-derivative, FFDEs have been
studied under the concept of conformable SGH-derivative
(or fuzzy conformable derivative) in [150], [151] and, almost
simultaneously, in [152]. It has been stated that, unlike
some other definitions of fractional derivatives, conformable
fractional derivative enables us to have a definition of the
differentiability of a function in the same way as the defi-
nition of a derivative comes from the limit of the function.
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FIGURE 1. A history of the evolution of FDEs.

The characterization theorem, and existence and uniqueness
of solutions for FFDEs under the concept of fuzzy con-
formable differentiability have been also given in [151].

Fig. 1 illustrates the chronological evolution of FDEs based
on various definitions of fuzzy derivatives.

III. SOLUTION METHODS OF FDEs
In this section, out of a large number of methods proposed
for obtaining the solutions of FDEs, a few are mentioned.
Almost all the methods have translated an FDE to a system

of crisp differential equations by the aid of a characterization
theorem corresponding to each fuzzy derivative.

The most well-known and important characterization theo-
rem is what has been given in [153]. This theorem states that,
under some certain hypotheses, a first order fuzzy initial value
problem (FIVP) under Hukuhara differentiability concept is
equivalent to a system of two crisp first order differential
equations characterizing the FIVP level-wise. In an analo-
gous way, under some conditions, a first order FIVP under
the concept of SGH-derivative is equivalent level-wise to
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two systems of crisp first order differential equations. Each
system including two crisp differential equations character-
izing the FIVP level-wise corresponds to one of the forms
of differentiability in the sense of SGH-derivative, i.e. the
first and second forms of differentiability, see [40] and The-
orem 9.11 in [154]. Thus, almost all the proposed methods
for solving FDEs have been drawn from those proposed for
obtaining the solutions of crisp differential equations. This
is one of the reasons for the existence of a huge volume
of literature in which a wide variety of methods have been
proposed for solving FDEs. The differences between the
characteristics of such methods, i.e. accuracy, convergence,
and etc., correspond to those explained well in the litera-
ture concerning numerical or analytical solution methods of
ordinary or partial differential equations. This is one of the
reasons that comparison between such methods is excluded
in this section.

It is expedient to remark that translating a first order FDE
to a system of first order differential equations corresponds
to the approaches in which the FDE is taken into account
under the concepts related to H-derivative, SGH-derivative,
gH-derivative, π -derivative, etc. However, the approaches
in which an FDE deals with the concept of gr-derivative
(or D̂-derivative under some hypotheses), translate a first
order FDE to a first order differential equation.

The proposed methods for solving FDEs are categorized
based on each concept of differentiability under which FDEs
have been considered. Moreover, solving an FDE, here,
is to be understood as solving a fuzzy initial value problem,
or fuzzy boundary value problem. In the following, some of
the solution methods are mentioned, first for integer order
FDEs and then for fractional order FDEs.

Runge-Kutta method [155], Taylor method [156], Nys-
trom method [157], artificial neural network [158], and
F-transform [159] have been proposed for solving FDEs
under the concept of H-differentiability; and under Seikkala-
differentiability, the Runge-Kutta method has been pre-
sented in [160]. There have been many papers dedicated
to finding solutions of FDEs under the concept of SGH-
derivative among which are Runge-Kutta method [161],
[162], reproducing kernel theory [163], extended Runge-
Kutta [164], Euler method [165], differential transform
method [166], fuzzy Sumudu transforms [167], [168],
diameter-based method of a fuzzy function [169], fuzzy
Fourier transform [170], Picard method [171], Laplace
transform [172], [173], quasi-level-wise-system [174], and
shooting method [175]. In addition, the variation of constant
formula for a linear first order fuzzy differential equation
with crisp coefficients and fuzzy initial condition has been
introduced in [176], [177].

Since gH-derivative of a fuzzy function under the assump-
tion of a set of finite switching points is equivalent to SGH-
derivative of the fuzzy function, the proposed methods for
finding the solutions of FDEs equipped with SGH-derivative
concept can also be utilized for FDEs where the derivative
is taken into account as gH-derivative. Moreover, almost

all the effort made to solve FDEs under SGH-derivative or
gH-derivative is restricted to finding solutions corresponding
to the first form and the second form of differentiability, i.e.
two solutions for a first order FDE are obtained. One of the
reasons might be the fact that determining switching points,
if they exist, is not an easy task and becomes complex for
a first order nonlinear FDE and even more complicated for
higher order FDEs. Indeed, there are a few reports in which
a unique solution has been obtained for the problem under
study, for instance see [38], [39], [178]. It should be noted that
obtaining the solution of an FDE, if it exists, does not depend
on determining switching points on condition that the concept
of gr-derivative (or D̂-derivative under some hypotheses) is
employed, for example see [98].

Since in the recent years, fuzzy fractional calculus has
attracted much attention and its development is continuing.
Plenty of methods for solving fuzzy fractional differential
equations have been proposed that some of which are as
follows.

Although solving FFDEs under the concept of Riemann-
Liouville H-derivative has been investigated by some pro-
posedmethods such as fuzzy Laplace transformmethod [118]
and Mittag-Leffler functions [179], Caputo H-derivative and
Caputo gH-derivative have been more palatable concepts of
fuzzy fractional derivatives that have triggered much research
work. Hence, by the consideration of such fuzzy fractional
derivatives, some of themethods dedicated to obtain solutions
of FFDEs are modified fractional Euler method [121], spline
collocation method [180], Chebyshev polynomials [181],
differential transform method [182], spectral method
[183], [184], residual power series [185], perturbation-
iteration algorithm [186].

Under the concept of Caputo-type H2-derivative,
approximate solutions of type-2 fuzzy fractional differential
equations have been obtained using the predictor-evaluate-
corrector-evaluate (PECE) method in [126]. By presenting
an approximation of the granular fuzzy fractional inte-
gral and the granular Caputo fuzzy fractional derivative,
an approximate solution for FFDEs under the concept of gr-
Caputo fuzzy fractional derivative has been given in [94].
Finally, FFDEs under the concept of conformable SGH-
derivative have been solved by the aid of Taylor series
expansion in [150] and reproducing kernel Hilbert space
method in [151].

IV. APPLICATIONS OF FDEs
This section presents some of the proposed applications
of FDEs in various fields of science. The point that to
be highlighted is that in spite of so many proposals, there
is no report on the real experiments of the applications
of FDEs. One of the important applications of FDEs pro-
posed in recent years has fallen in the scope of the con-
trol theory. In this regard, optimal control of a fuzzy linear
dynamical system based on gH-differentiability and SGH-
differentiability has been studied in [178], [187], [188]. The
design of an optimal feedback control for regulating a fuzzy
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linear dynamical system with a proposed application on a
Boeing 747 was presented in [93] where FDEs were con-
sidered under the concept of gr-differentiability. In addition,
in [92], the problem of fuzzy time optimal control by the use
of gr-differentiability has been investigated. A deep analysis
of the stability of fuzzy linear dynamical systems under the
notion of gr-differentiability has been reported in [102]. The
performance criteria of second-order fuzzy linear dynamical
systems and fuzzy tracking control of fuzzy linear dynam-
ical systems under the concept of gr-differentiability have
been investigated, respectively, in [95], [101]. By the aid of
gr-Caputo derivative concept, the fuzzy fractional quadratic
regulator problemwas studied in [94] where a fuzzy feedback
control was designed. For further study about the applications
of FDEs of fractional order in optimal control and controlla-
bility refer to [189].

Indeed, the applications of FDEs are not limited to the
theory of control, but they have been proposed in study-
ing biomathematics [190], diabetes mellitus [191], [192],
cerebrospinal fluid pressure [126], hydrologic process [193],
water movement in a horizontal column [194], epidemic
model [195], population growth model [82], [98], Newton’s
law of cooling [72], electric circuits [72], [196], and the
brain tumor [197]. Moreover, some of the other proposed
applications of FDEs can be found in [198] for a predator-
prey model, in [56] for production inventory model, in [72]
for an economical investment, and in [199] for oil palm frond.
For further applications of FDEs refer to [200]–[202].
Note 2: Since by the aid of a definition of first order

derivative of a fuzzy function the higher order deriva-
tives of the fuzzy function can be determined, higher order
FDEs under various notions of fuzzy derivatives have been
examined in the literature, for instance see [203]–[206].
Moreover, fuzzy partial differential equations (FPDEs) under
some concepts of fuzzy derivatives explained in Section II-A
have been investigated in many studies, e.g. see [207]–[209].
The higher order FDEs and FPDEs have been excluded
in this survey. Furthermore, there are some other types of
uncertain differential equations such as random fuzzy dif-
ferential equations [210]–[212], fuzzy integro differential
equations [213], [214], and fuzzy fractional integro differen-
tial equations [215], [216] which have not been included in
this paper.
Note 3: Interval-valued differential equations may be

viewed as a special case of fuzzy differential equations where
the uncertainty is considered as an interval in which each
member has a full grade of membership to the interval. Such
a differential equations have been dealt with in the literature,
for instance see [217]–[219]. Although some sections of the
present paper - particularly some of the challenges presented
in next section - might well be stated for the cases dealing
with interval-valued differential equations, such a differen-
tial equations have not been pronounced explicitly in this
paper.

V. CONCLUSION
This paper has presented a brief survey on the evolution of
fuzzy differential equations. The particular attention has been
given to FDEs in which a definition of fuzzy derivative of
fuzzy number-valued functions has been considered. Through
a selective list of papers, the historical motivations and cur-
rent research progress of FDEs have been outlined. Great
advances on both fundamental aspects and applications of
FDEs have been made with a multitude of available publi-
cations on the topic. Nonetheless, some issues still remain
challenging which provide opportunities for further research
on FDEs in the future. What follows presents our personal
perspectives on the issues and FDEs.

A. CHALLENGES OF FUZZY DIFFERENTIAL EQUATIONS
The challenges given in here are substantially associated with
FSIA-based approaches and those which are based on or
equivalent with concepts of H-derivative, SGH-derivative,
gH-derivative, and g-derivative. Thus, the challenges have
also to do with π -derivative, Caputo-type H-derivative,
Caputo gH-derivative, gH-q derivative, Caputo-q fractional
derivative, Atangana-Baleanu gH-derivative, conformable
SGH-derivative, Caputo-Katugampola gH-derivative,
Riemann-Liouville H-derivative and etc.

1. Even though a large body of research dedicated to
FDEs are those in which the fuzzy derivative is a member
of Hukuhara derivatives family such as H-derivative, SGH-
derivative, gH-derivative, Caputo H-derivative, and etc.,
the existence and obtaining the solution of FDEs under such
concepts of derivatives are challengeable. As a matter of fact,
in dealing with FDEs, in almost all cases, FDEs are solved
based on the characterization theorem which helps find the
solutions related to the first and second form of the differ-
entiability. These solutions correspond to the cases where
the diameter of fuzzy function is non-decreasing and non-
increasing, respectively. In some papers, it has been stated
that having more than one solution enables us to choose from
a set of solutions. Such solutions whose fuzziness is mono-
tonic may be acceptable in very special cases of linear first
order FDEs; however, in a general setting, for the analysis
or prediction of behavior of a phenomenon or a dynamical
system, a unique solution is needed based onwhich a decision
is made. It should be understood that by the ‘‘unique solu-
tion’’ we mean a single fuzzy solution whose diameter is not
necessarily monotonic. As an illustration, assume a model of
DC electrical motor with some uncertain parameters. Addi-
tionally, suppose that the goal is to investigate the position
of the shaft, i.e. x̃. The simplest model of such dynamical
system, formally, would be shown as follows

ã
...
x̃ (t)+ b̃ ¨̃x(t)+ c̃ ˙̃x(t) = d̃ Ṽ (1)

where the coefficients ã, b̃, c̃ and d̃ are assumed to be fuzzy
numbers and Ṽ denotes the input voltage. To achieve the goal,
the FDE shown in (1) needs to be solved. Considering the
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coefficients as fuzzy numbers means that an elastic constraint
on the values that may be assigned to each coefficient has
been taken into account. The elastic constraint equates to
the possibility distribution corresponding to each coefficient.
Thus, each coefficient in the application assumes a single
value with a degree of possibility. As a result, in the real case,
the shaft of the electrical motor is in a determined unique
position with a degree of possibility. Therefore, unquestion-
ably, the electrical motor, as a dynamical system, shows a
unique behavior once the coefficients are assigned a value.
Hence, a unique solution of the FDE must be obtained by
employing an approach to show the possible positions of the
shaft. Consequently, any approach that brings us more than
one solution to ‘‘choose’’ from is fundamentally challenge-
able and might be in contrast with what happens in the reality.
In other words, in the context of the solutions of FDEs, we are
not allowed to choose what happens in the reality, but we
need to show what possibly happens in the reality which
is in essence unique. It should be noted that the electrical
motor is the simplest example of a dynamical system, a little
more complex system may be chaotic systems or nonlinear
systemswith unknown uncertain control inputs. Furthermore,
since the behavior of a phenomenon in the presence of uncer-
tainty depends, in essence, on its natural intrinsic properties
and dynamics, any attempt to necessarily obtain a solution
with predetermined uncertainty form might lead to a con-
trast with the natural behavior of the phenomenon. Thus,
the first and second forms of the solutions which necessi-
tate the monotonicity of the fuzziness might not be solely
applicable for the analysis of natural behavior of phenomena.
One of the alternative approaches adopted in a few papers
is to find switching points and presenting a solution made
of the first and second forms of solutions, for instance see
Example 4.1. in [38], [39]. Nevertheless, such an alternative
needs a complex computation process even for the cases in
the form of linear FDEs and becomes even more complex
for the nonlinear FDEs such that one may fail to obtain
the unique solution. It should be also noted that the unique
solution must be differentiable in the sense of the concept
of differentiability under study, e.g. gH-differentiability, for
any intended time interval, and not just for a particular time
interval. This is one of the reasons that the existence of a
solution to FDEs based on the family of Hukuhara derivatives
is challengeable. Indeed, there are also some other challenges
that will be discussed in the sequel. What should be remarked
is that applying the concepts of gr-derivative or D̂-derivative
may be suitable alternatives to overcome the issue or at least
alleviate it.

2. Determining the first form solution of a first order FDE
equates to solving a system of two differential equations.
This is also the case with the second form solution. Hence,
for obtaining the solution of a first order FDE, a system
of four differential equations is to be solved. Specifically,
for each order of the derivative, there are two alternatives
of differentiability, i.e. the first form of differentiability and

the second form of differentiability, to each of which an FDE
is associated. This fact raises a challenge for higher order
FDEs. For the higher order FDEs, a set of all the combina-
tions of differentiability alternatives needs to be considered.
As an illustration, let us assume the third order FDE shown
in (1). In this case, there is a set of 8 or 23 alternatives to
each of which an FDE is associated. To solve each FDE,
the solution of a system of two differential equations is to
be obtained. Thus, totally, 16 differential equations are to be
solved. Subsequently, we need to examine each solution to
recognize which one (or ones) would satisfy the concept of
differentiability taken into account in the FDE from which
the solution has been obtained. Obviously, in this perspective,
an nth order FDE may have maximum 2n solutions. This
feature that belongs to the family of generalized Hukuhara
derivatives may be called multiplicity of solutions property.
Due to this fact, based on the earlier explanations about the
unique solution, the analysis of even the simplest dynamical
systems on the basis of the family of Hukuhara derivatives
is challengeable. It should be stressed that in the sequel,
we show that an nth order FDE may have even more than
2n solutions.
3. In order to find solutions of FDEs under a concept of

fuzzy derivative by the use of the characterization theorem,
one needs to determine the lower and upper α-level cuts of
functions in question involved in the FDEs. Whereas char-
acterizing such α-level cuts in simple cases such as linear
FDEs may be feasible, it becomes a complicated task for a
general setting such as nonlinear FDEs including unknown
functions. As an illustration, consider the following simple
problem:

 ˙̃x(t)˙̃y(t)
˙̃z(t)

 =
 x̃(t)ỹ(t)
ỹ(t)z̃(t)+ ãx̃(t)
b̃z̃(t)+ ũ(t)

 (2)

where the initial conditions and coefficients are assumed
to be fuzzy numbers. Suppose that the goal is to find the
fuzzy control function ũ(t) under a certain criterion. Under
the concept of the first form of differentiability, system of
FDEs (2) is translated into the following system of differential
equations:



ẋα(t)

ẋ
α
(t)

ẏα(t)

ẏ
α
(t)

żα(t)

ż
α
(t)


=



[
x̃(t)ỹ(t)

]α
[
x̃(t)ỹ(t)

]α[
ỹ(t)z̃(t)+ ãx̃(t)

]α
[
ỹ(t)z̃(t)+ ãx̃(t)

]α[
b̃z̃(t)+ ũ(t)

]α
[
b̃z̃(t)+ ũ(t)

]α


(3)
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where based on FSIA we have

[
x̃(t)ỹ(t)

]α
= min

{
xα(t)yα(t), xα(t)yα(t),

xα(t)yα(t), xα(t)yα(t)
}

[
x̃(t)ỹ(t)

]α
= max

{
xα(t)yα(t), xα(t)yα(t),

xα(t)yα(t), xα(t)yα(t)
}

[
ỹz̃(t)+ ãx̃(t)

]α
= min

{
yα(t)zα(t), yα(t)zα(t),

yα(t)zα(t), yα(t)zα(t)
}

+min
{
aαxα(t), aαxα(t),

aαxα(t), aαxα(t)
}

[
ỹz̃(t)+ ãx̃(t)

]α
= max

{
yα(t)zα(t), yα(t)zα(t),

yα(t)zα(t), yα(t)zα(t)
}

+max
{
aαxα(t), aαxα(t),

aαxα(t), aαxα(t)
}

[
b̃z̃(t)+ ũ(t)

]α
= min{b

α
zα(t), b

α
zα(t),

bαzα(t), bαzα(t)
}
+ uα(t)[

b̃z̃(t)+ ũ(t)
]α
= max{b

α
zα(t), b

α
zα(t),

bαzα(t), bαzα(t)
}
+ uα(t)

(4)

Due to the fact that, x̃(t), ỹ(t), z̃(t), and ũ(t), as a whole, are
unknown fuzzy functions, determining the expressions in the
right hand side of relation (3) as explicit terms may not be
possible, as a whole. Thus, finding the solutions of even such
simple problems might involve a complicated task whose
feasibility is reduced by an increase in the number of uncer-
tain parameters or functions involved in the problem. This is
another challenge that emerges when the family of Hukuhara
derivatives, or FSIA-based approaches, are employed to find
the solutions of FDEs.

4. Unnatural behavior in modelling (UBM) phenomenon
is the other challenge concerning the FSIA-based approaches
including the family of Hukuhara derivatives. The UBM phe-
nomenon is a phenomenon representing that different guises
of a same structure of a system model may show different
behaviors of the system. As an illustration, let us consider the
model of the DC electrical motor which can be presented in
different forms among which are:

ã
...
x̃ (t)+ b̃ ¨̃x(t)+ c̃ ˙̃x(t) = d̃ Ṽ (5)

ã
...
x̃ (t)+ b̃ ¨̃x(t) = d̃ Ṽ − c̃ ˙̃x(t) (6)

ã
...
x̃ (t)+ c̃ ˙̃x(t) = d̃ Ṽ − b̃ ¨̃x(t) (7)

b̃ ¨̃x(t)+ c̃ ˙̃x(t) = d̃ Ṽ − ã
...
x̃ (t) (8)

ã
...
x̃ (t) = d̃ Ṽ − b̃ ¨̃x(t)− c̃ ˙̃x(t) (9)

ã
...
x̃ (t)− d̃ Ṽ = −b̃ ¨̃x(t)− c̃ ˙̃x(t) (10)

ã
...
x̃ (t)− d̃ Ṽ + b̃ ¨̃x(t) = −c̃ ˙̃x(t) (11)

ã
...
x̃ (t)− d̃ Ṽ + c̃ ˙̃x(t) = −b̃ ¨̃x(t) (12)

Unquestionably, all the FDEs shown above have the same
structure and correspond to the same system. However,
solving FDEs (5) to (12) under each concept of Hukuhara
derivatives family, e.g. SGH-derivative and gH-derivative,
may result in different solutions. Specifically, such FSIA-
based approaches are unable to recognize the structure of the
model, and are heavily dependent on the guises of the model.
As explained before, based on FSIA-based approaches, each
nth order FDE may have up to 2n solutions. The dependency
on the different forms of a same model causes the obtained
solutions of the model of a system of nth order to exceed 2n.
It should be underscored that approaches corresponding to
gr-derivative (and D̂-derivative under some hypotheses) are
not sensitive to different forms of a model and can accord-
ingly recognize the structure of the model.

5. The other challenge arising in dealing with FDEs based
on FSIA-based approaches corresponds to what may be
called the zero form. The zero form of a system model is a
form of the model structure in which all the constants and
functions involved in the structure take place in one side of
the equation and only zero remains in the other side. The
zero form is similar to the homogeneous form of differential
or algebraic equations. As an illustration, the zero forms
of the model of the DC electrical motor are expressed as
follows:

ã
...
x̃ (t)+ b̃ ¨̃x(t)+ c̃ ˙̃x(t)− d̃ Ṽ = 0 (13)

d̃ Ṽ − ã
...
x̃ (t)− b̃ ¨̃x(t)− c̃ ˙̃x(t) = 0 (14)

Although FSIA-based approaches (i.e. SGH-derivative,
gH-derivative, g-derivative, etc.) are sensitive to different
guises of a same structure of a system model and they may
yield different solutions, they are unable to give a solu-
tion to the zero forms. Specifically, one fails to obtain a
fuzzy solution for the FDEs (13) and (14) based on any
concept belonging to Hukuhara derivatives family. However,
it is possible to obtain the solution based on gr-derivative
and the solution is the same as those obtained from
FDEs 5 to 12.

6. Assume k̃ is a fuzzy number and x̃(t) is a fuzzy func-
tion. Let (f (x̃(t)) and g (x̃(t)) be two possibly different
functions of x̃(t). Then, on the basis of H-derivative, SGH-
derivative, gH-derivative, g-derivative, or any concept that
has been defined based on (or equivalent with) such deriva-
tives, the following two FDEs, in a general setting, are not
equivalent:

˙̃x(t) = k̃ (f (x̃(t))+ g (x̃(t))) (15)
˙̃x(t) = k̃ f (x̃(t))+ k̃g (x̃(t)) (16)

where the initial condition is a fuzzy number. In other
words, the factorization cannot be applied in fuzzy differen-
tial equations if the FSIA-based approaches (i.e. H-derivative,
SGH-derivative, gH-derivative, g-derivative, or any concept
that has been defined based on (or equivalent with) such
derivatives) are employed.
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TABLE 1. Some of the fuzzy derivatives.

B. FUTURE PERSPECTIVES OF FUZZY
DIFFERENTIAL EQUATIONS
Although addressing each challenge expressed in the preced-
ing section has the potential to be considered as future studies,
future perspectives of FDEs, in a broad outlook, are outlined
as follows.

1. In order to overcome some of the challenges concern-
ing FSIA-based approaches including Hukuhara derivatives
family, new theories are to be put forward with the capacity
to solve FDEs and tackle their corresponding problems in a
practical and direct way. The direct way means one is able
to solve the intended problems, e.g. finding the solutions
of FDEs, solving an optimal control problem, etc., without
using the characterization theorem. The practical way refers
to the way through which a solution to the problem may be
characterized in the sense of the unique solution, that is the
solution whose diameter is not necessarily monotonic.

2. In order to justify the effectiveness and applicabil-
ity of each approach dealing with FDEs, e.g. the fam-
ily of Hukuhara derivatives, gr-derivative, D̂-derivative and
interactive derivative, some models of real cases should be

examined rigorously by such approaches and the results must
be compared with what happens in the reality.

3. The solution of an FDE is a fuzzy function whose value
in any point of its domain expresses a fuzzy number. These
fuzzy numbers, from a point of view, equate to the possibility
distributions of the values of fuzzy function. Specifically, they
convey information about the possibility degrees of the values
of the fuzzy function which may be expressed as linguistic
values. The question arising here is: How valuable or appli-
cable such information is in the real cases? As an illustration,
let us consider a model of cerebrospinal fluid (CSF) pressure
that is a medical disorder. The model may be considered as

˙̃p(t) =
−k
r
p̃2(t)+ k

(
If (t)+

pd
r

)
p̃(t), p̃(t0) ∈ E1 (17)

where p̃(t) denotes the CSF pressure and the initial condition
is assumed to be a fuzzy number. By solving the FDE (17),
the CSF pressure might be predictable at any time. The
value of pressure, at any time, is a fuzzy number which
may be expressed as a linguistic value, e.g. about 157 at
t = 3. Although in this way the prediction of CSF pressure
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is explainable, the decision maker might only consider the
support of the solutions. One of the reasons is that the values
even with the smallest degree of possibility are possible.
Therefore, they are important, and these values take place in
the closest neighborhood of the supports. Thus, what often
occurs is that the decision makers might only pay attention
to the minimum and maximum values of the fuzzy numbers
which are in fact the supports. Simply put, the decision mak-
ers treat the solution as if it is the solution of an interval valued
differential equation. In these situations, the obtained possi-
bility distributions may not be as productive as they should.
Employing the so-called Z-differential equations [220] can
prove the effectiveness and applicability of possibility dis-
tributions obtained through solving FDEs. The Z-differential
equations (ZDE) have been established based on Z-numbers,
Z+-numbers, and Z-number-valued functions that play the
similar role of fuzzy numbers and fuzzy number-valued func-
tions in FDEs. The concept of Z-differential equations is
more general than FDEs. Based on the conceptual unity pre-
sented in [220], it has been demonstrated that a Z-differential
equation may be expressed as a bimodal differential equa-
tion combining an FDE with a random differential equation.
In this setting, the solutions of FDEs in the form of possibility
distributions play a pivotal role in presenting explainable
information in the form of linguistic value coming with the
concepts of acceptable time, acceptable information area,
and most importantly the sureness. Informally, in the case
of CSF pressure, one may be able to express how sure they
are that the pressure is about 157 at t = 3. Consequently,
employing and extending the advanced obtained results of
FDEs in the setting of ZDEs might be the other perspective
of FDEs.

APPENDIX
See Table 1.
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