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ABSTRACT The aim of this paper is to compare selected iterative algorithms for inconsistency reduction
in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison
matrices of the order n = 4 and n = 8 with the initial inconsistency 0.10 < CR < 0.80 and entries
drawn from Saaty’s fundamental scale. Subsequently, we evaluate the algorithms’ performance with respect
to four measures that express the degree of original preference preservation. Our results indicate that no
algorithm outperforms all other algorithms with respect to every measure of preference preservation. The
Xu and Wei’s algorithm is the best with regard to the preservation of an original priority vector and the
ranking of objects, the Step-by-Step algorithm best preserves the original preferences expressed in the form
of a pairwise comparison matrix, and the algorithm of Szybowski keeps the most matrix entries unchanged

during inconsistency reduction.

INDEX TERMS Algorithm, consistency, inconsistency reduction, pairwise comparisons.

I. INTRODUCTION
Pairwise comparisons constitute an inherent part of many
popular and successful multiple-criteria decision-making
methods (MCDM), such as the AHP/ANP (the analytic hier-
archy/network process), PROMETHEE (Preference Rank-
ing Organization Method for Enrichment of Evaluations),
ELECTRE (Elimination Et Choice Translating Reality),
PAPRIKA (Potentially All Pairwise Rankings of all Pos-
sible Alternatives), or the BWM (the Best-Worst method),
see [14], [31], [41], [42], [43], and in the construction of [14],
[31], [41]-[43] and in the construction of 3D models, see [16],
for the end-to-end pairwise attentive adversarial spatiotempo-
ral network, or [17], where the pairwise discrimination loss
function is proposed to improve the feature discrimination of
the model.

One of the most often discussed properties of pairwise
comparisons is their cardinal or ordinal inconsistency. Human
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experts are rarely fully consistent in their judgements, which
is especially true for larger numbers of compared objects.

The inconsistency of pairwise comparisons is evaluated by
measures (functions) called inconsistency indices. Perhaps
the most well-known indices are Saaty’s consistency index
(CI) and consistency ratio (CR) [42], and Koczkodaj’s incon-
sistency index (KT) [22].

Since pairwise comparisons, or pairwise comparison
matrices, arising from solutions of real-world problems are
seldom consistent, a low degree of inconsistency is usually
tolerated. Saaty suggested in his analytic hierarchy process
that the inconsistency CR < 0.10 is acceptable. Similarly,
pairwise comparisons are deemed to be acceptably consistent
if KI < 0.33 (other thresholds of inconsistency also exist for
other indices).

When the inconsistency of pairwise comparisons is unac-
ceptably high, a decision-maker has two options: to ask an
expert to revise his/her judgements, or to find a pairwise
comparison matrix that is consistent enough while being as
close as possible to the original matrix expressing the expert’s
preferences.

62553


https://orcid.org/0000-0002-7965-0457
https://orcid.org/0000-0002-5822-3982
https://orcid.org/0000-0002-8887-4321
https://orcid.org/0000-0002-7909-6484
https://orcid.org/0000-0002-8658-0821
https://orcid.org/0000-0003-3547-2908

IEEE Access

J. Mazurek et al.: Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in PCs

In the latter case, many approaches or algorithms of incon-
sistency reduction have been proposed in the literature in
recent decades. Perhaps the first algorithm for inconsistency
reduction in pairwise comparisons was proposed in [19]
in 1996. The distance-based algorithm searched for the most
inconsistent triad (in terms of Koczkodaj’s inconsistency
index) and replaced it with a consistent one. Later, the same
idea was followed in [23]. In general, algorithms for inconsis-
tency reduction can be divided into two groups: iterative and
non-iterative. The former algorithms adjust one or more (or
all) matrix elements in each iteration so that the inconsistency
of the whole pairwise comparison (PC) matrix gradually
decreases, and stops when the level of inconsistency falls
below a given threshold. The algorithms of Cao et al. [11],
Kou et al. [25], Mazurek et al. [35], Szybowski [44], or Xu
and Wei [47] fall into this category. Non-iterative algorithms
are represented, for instance, by the INSITE algorithm by
Abel et al. [1] that applies a multiple-objective linear pro-
gramming method, or algorithms by Bozoki et al. [6], [7]
which are based on non-linear mixed-integer optimization.
Similarly, Negahban [36] proposed three mixed-integer non-
linear programming models for minimizing the sum of adjust-
ments, maximum adjustment, and the number of adjusted
elements. The approaches of Gao et al. [15] and Girsang [18]
applied a genetic ant algorithm for inconsistency reduction.
A segment tree approach was adopted by Zhang [49], while
the application of Gower plots were used by Li and Ma [30]
and orthogonal projections onto the space of consistent PC
matrices by Benitez et al. (see [3]-[5]). Other approaches and
algorithms can be found e.g. in [13], [27], [40], [45], [46],
or [48].

As for a numerical comparison of the aforementioned
methods, Cao et al. [11] compared their algorithm with the
algorithm of Xu and Wei via one matrix of the order n = 8.
Abel et al. [1] applied two PC matrices of the order n = 6 and
n = 8 for a comparison of five algorithms, including INSITE.
Girsang et al. [18] compared their algorithm with one other
method via one PC matrix of the order n = 4 and with two
other methods for a PC matrix of the order n = 8. Pereira and
Costa [39] provided the most extensive comparison so far,
with up to eight algorithms and one PC matrix of the order
n="7,n = 8 and n = 9 respectively.

However, a comparison of algorithms via two or three ad
hoc examples does not enable any general conclusions to be
drawn about the algorithms’ performance with respect to pre-
serving initial preferences or computational complexity (time
consumption). Further on, the examination of differences
among algorithms with respect to the degree of inconsistency
and the size of the initial PC matrix is completely missing
in the literature. This constitutes a large and serious gap in
the current knowledge regarding the problem of numerical
inconsistency reduction in pairwise comparisons.

The aim of the paper is to fill the aforementioned gap and
provide a numerical comparison of selected iterative algo-
rithms for inconsistent PC matrices of the order n = 4, repre-
senting ’small’ PC matrices, and n = &, representing ’large’
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PC matrices and also corresponding to the most common size
of PC matrices used for comparisons in the previous studies.
Iterative algorithms are more suitable for numerical simu-
lations since non-iterative algorithms are usually based on
the solution of non-linear programming problems, which are
NP hard (non-deterministic polynomial acceptable problems)
and therefore less suitable for modelling and simulation. In
our study, we generate a large sample of random inconsistent
PC matrices of a given order, and evaluate the algorithms’
performance in terms of the preservation of original prefer-
ences. Moreover, we divide randomly generated inconsistent
PC matrices into two categories: less inconsistent matrices
with 0.10 < CR < 0.30 and more inconsistent matrices
with 0.30 < CR < 0.80, and examine each case separately
since the behaviour of algorithms might differ with different
degrees of (input) matrix inconsistency.

The paper is organized as follows: Section II gives pre-
liminaries and notation of a pairwise comparison method,
in Section III measures of the preference preservation are
provided, in Section IV the algorithms for inconsistency
reduction applied in this study are briefly described, and
Section V is devoted to Monte Carlo simulations. Sections VI
Discussion and Section VII Conclusions close the article.

Il. PRELIMINARIES

A PC matrix is a square matrix A = (a;) of the order
n, where a;; € R expresses the preference (or impor-
tance) of an object i over another object j. In most cases,
the compared objects correspond to alternatives or criteriain a
multiple-criteria decision-making problem. A PC matrix con-
stitutes an input for the problem of finding objects’ weights
and/or their ranking.

Usually, it is assumed that a PC matrix satisfies the follow-
ing property:

Definition 1: A PC matrix A = (a;j) is said to be reciprocal
ifvi,jefl,....,n} : aq; = aiﬂ and A = (a;) is said to be
consistent if Vi, j, k € {1,...,n} 1 a - ajx - ar; = 1.

Since human judgments are subjective and imprecise,
a pairwise comparison matrix is often inconsistent. To eval-
uate the degree of this inconsistency, many inconsistency
indices have been proposed in the literature and their prop-
erties extensively studied, see e.g. [2], [8]-[10], [12], [24],
[28], [32]-[34], or [37].

In our study, we use the consistency ratio CR proposed
by Saaty [42], [43], see below. As for the derivation of the
priority vector w (a vector of weights of compared objects),
we use the eigenvalue method (EV) proposed by Saaty [42].
In the EV method, the vector w is determined as the rescaled
principal eigenvector of A. Thus, assuming that Aw = A4, W

the priority vector w is given as
T
w=ylwi...owll,

where y is a scaling factor. Usually, it is assumed that:
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Definition 2: Saaty’s eigenvalue based consistency index
CI and consistency ratio CR of n x n reciprocal matrix
A = (ay) are defined as follows [43]:

)\max -

Ity = = M
CI(A

CR(A) = RE ) 2

where X,y is the principal eigenvalue of A and RI, is the
random consistency index, see [43].

The value A,qy > n, and Ay = n if and only if A is
consistent [43].

Since the algorithm of Mazurek et al. [35] implements
Koczkodaj’s inconsistency index and a notion of a triad incon-
sistency, here we provide the necessary notation.

Definition 3: Koczkodaj’s inconsistency index [22], KI(A),
of an n x n PC matrix A = (aj) is defined as

KI(A) = max{l — min {i M}
ik Akj aijj
lij,k € {1, n}} 3)
Definition 4: Let A = (a;) be a pairwise compari-

son matrix. A triad is every triple (aj, ajk, ai), where
ajj, aj, aix €A, i, j,keNandl <i<j<k=<n.

Remark 1: For a pairwise comparison matrix of the order
nn—1)n-—2)
n there are ——

triads, see e.g. [26].

Further, we define Koczkodaj’s inconsistency index for one
triad (TKI) as follows:

Definition 5: Let (ajj, aji, ajx) be a triad associated with a
pairwise comparison matrix A. A triad Koczkodaj’s inconsis-
tency index TKI is defined as follows:

TKI(ay, aj. ai) = 1 — min{ 2% &y (4
aik  ajj - Ajk

Definition 6 [35]: Let A = (a;;) be a pairwise comparison
matrix of the order n. Let T{(aj, ajx, air)} be the set of all
triads, i < j < k,Vi,j, k € {1,...,n}. Let TKI(aj;, aji, ajx)
denote Koczkodaj’s inconsistency of a triad (ajj, ajk, aik).
Further, let the set S(a;j) be a set of all triads containing aij,
clearly S(a;;) C T.

Then TEI (a;;) denotes the fotal element inconsistency of a
matrix element a;;:

TEI(ay) = Y TKI(ay, ap, ai), Vi.j. k, )
s
Definition 7 [35]: Let A = (a;;) be a pairwise comparison
matrix, then E(A) denotes the setof alla;; € A, i < j,Vi,j e
{1,...,n}.

Ill. MEASURES OF PREFERENCE PRESERVATION

It is generally agreed that, during the process of consistency
improvement, the experts’ original preferences should be pre-
served as much as possible. This section provides measures
of the preservation of preferences (expressed in the form of
pairwise comparisons) that are used in the numerical section
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of this study. Let us start with the definition of an algorithm
for inconsistency reduction.

Definition 8 [35]: Let A be a set of pairwise comparison
matrices of the order n, and let ;« denote a measure of incon-
sistency such that: £ : A — Ro4. Then an algorithm whose
main objective is to transform the PC matrix A € A with
u(A) = minto the matrix A’ € A so that u(A’) < u(A) and
(A < e, e > 0, is called an algorithm for inconsistency
reduction (AIR).

Various measures of preference preservation (pairwise
comparisons) have recently been proposed in the literature.
Xu and Wei [47] introduced two measures, § and o, where §
is the maximal difference between an element of an original
matrix and a modified matrix, and o is equal to the mean
quadratic distance between all elements of an original matrix
and a modified matrix. Pereira and Costa [39] proposed a new
measure called the total number of deviation points (TND).
Abel et al. [1] added several *measures of compromise’: the
number of judgement violations (NJV') which corresponds
to the number of matrix elements that were adjusted, total
judgement deviation (7JD) that is equal to the L distance of
an original matrix and a modified matrix, squared total judge-
ment deviation (S7JD), a variant of 7JD, and the number of
judgement reversals (NJR).

After elaboration of the aforementioned measures of pref-
erence preservation in the pairwise comparison framework,
we define the following measures of preference preservation
to be applied in the numerical section.

Definition 9: Let A = (a;j) be an inconsistent pairwise
comparison matrix of the order n, and let w = (w1, ..., wy)
be the priority vector associated with A. Let A" = (a;;) denote
a PC matrix derived from A = (a;) via an AIR, and let
w' = (W}, ..., w),) be a corresponding priority vector. Then

1 n
diw, W) =~ |wi = w] (6)

i=1

describes the average change in the priority vector after the
transformation from A to A’.

Remark 2: For instance, d = 0.03 can be interpreted in
the way that each weight w; of a priority vector w changed by
3% on average.

The priority vector provides not only the weights of all
compared objects but also their ranking from the best (with
the highest weight) to the worst, (with the lowest weight),
possibly including ties. The next measure, Kendall’s fau dis-
tance [21], evaluates how much this ranking changes after the
transformation.

Definition 10: Let r1 and r, be two rankings (permutations)
of n objects. Then t(rq, rp) is equal to the least number of
swaps of two adjacent objects in the ranking r; necessary to
obtain the ranking 5.

The following definition of the measure D expressing a
distance of two matrices has a form of a standard L; matrix
norm.
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Definition 11: Let A = (a;) and A’ = (agj) be the original
matrix and an AIR transformed matrix, respectively. Then the
distance D between A and A’ is defined as follows:

WMﬂMMHZZmU @)

i=1 j=1

Notice, that D closely relates to 7JD of Abel et al. [1], since
b — 1jp.
n2

Definition 12: Let A = (a;) and A’ = (a;j) be the
original matrix and an AIR transformed matrix, respectively.
Then N = |a;j; ajj # agj, Vi, j| denotes the number of matrix
elements which were changed (adjusted) in the inconsistency
reduction.

The lower the values of d, Kendall’s tau, D and N, the bet-
ter the AIR preserves the original preferences.

IV. ITERATIVE ALGORITHMS FOR INCONSISTENCY
REDUCTION

In this section, we introduce selected iterative algorithms for
inconsistency reduction applied in the numerical section of
our study (in alphabetical order). In the literature, several
other iterative algorithms have been proposed, however, they
require the assistance of a decision maker in each iteration,
see e.g. [13], [19], or [20], a feature that makes them unsuit-
able for extensive simulations.

We use the consistency ratio CR (and the threshold value
CR = 0.10) for the evaluation of inconsistency of PC
matrices during inconsistency reduction procedures in accord
with previous studies, see [1], [11], [13], [25], [36], [39],
[40], or [47], though other inconsistency indices, such as
Koczkodaj’s inconsistency index KI, could be, in principle,
used as well.

A. CAO et al.’s ALGORITHM

Let A = (ajj) be an inconsistent n X n pairwise comparisons
matrix with an associated priority vector (an eigenvector
correspondlng to a principal rlght eigenvalue of A = (a;j))

= Wi, ...,wy). Let W = (—) and let D = (d;;) be a

positive reciprocal matrix such that A=W Q®D, where “®”
is the Hadamard product of two matrices. The matrix D is
called a deviation matrix. If the matrix A is consistent, then
dij = 1, Vi, j, and the corresponding matrix is denoted D1.

The AIR of Cao et al. [11] proceeds as follows:

Step 1: Let A©) = (") = (a;); CR* = 0.10; k = 0.

Step 2: Calculate the maximum eigenvalue A, (A®)

of A®  the corresponding priority vector w® =
W wi)T, and the deviation matrix D®) = (dig.k)) =
®
k
@/ i)

Step 3: Calculate CR(A®).

Step 4: If CR(A®) < CR*, go to Step 6. Otherwise
proceed.

Step 5: Let AK*D = [W(k)l]®D(k) where D®) =

yD® + (1 — y)D1. Let k=k+1and go to Step 2.

@) =
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Step 6: A® is a modified pairwise comparison matrix with
acceptable consistency, w¥) is a priority vector.

Step 7: Print the last value of A, w, CR(A) and k, and end.

In Step 5 only matrix elements above the main diagonal
(ajj, i > j) are modified via a corresponding formula, while
reciprocal elements are calculated as a;; = 1/a;;. We used
y = 0.5 and y = 0.98 for simulations, the same values that
were applied in the original paper.

B. KOU et al.’s ALGORITHM
Let A = (a;) be an inconsistent n X n pairwise comparison
matrix. Let k = 0.
The algorithm of Kou et al. [25] proceeds as follows:
Step 1: Form the matrix C = %Az ® AT, where “®”
denotes the Hadamard product and AT is the transpose of A.
Step 2: Setk = k + 1. Find k™ maximal ¢;; € C. )
Cij —

Step 3: Form a new matrix A’ such that agj ==
n—

'al.j»
and a;; = 1/aj;.

Step 4: Calculate CR(A").

Step 5: If CR(A’) < CR*, print the last value of A, w

CR(A") and k, and end. Otherwise go to Step 2.

C. MAZUREK et al.’s ALGORITHM

The Step-by-step algorithm, see [35], was slightly modified:
Koczkodaj’s inconsistency index was substituted by Saaty’s
CR index. The variables TKI and TEI are explained in Defi-
nitions 5 and 6.

Let A = (a;j) be an inconsistent n X n pairwise comparison
matrix, let £(A) be the set from Definition 7, and let k& be the
number of iterations.

The SBS algorithm [35] proceeds as follows:

Step 1: Let A = (a;); CR* = 0.10; N = 1,k = 0.

Step 2: Set k = k + 1. Calculate CR(A). If CR(A) < CR*,
go to Step 9. Otherwise proceed.

Step 3: Calculate TKI for all triads in A, and TEI for all
ajj € E.

Step4: If N = M + 1, print A consistent enough
matrix could not be found”, A and CR(A). Otherwise, find
apq € E with the N maximal value of TEI.

Step 5: If apy > 1, set r = p,s = q, otherwise set r =
q, s = p. Form a matrix A" such that a,, = a, + 1, and

= 1/a,, keep other matrix elements unchanged.

Step 6: Calculate CR(A"). If CR(A’) < CR(A) , set N =1,
A = A’ and proceed to Step 3. Otherwise, go to Step 7.

Step 7: Form a matrix A” such that a — 1, and

= 1/d],, keep other matrix elements unchanged.

Step 8: Calculate CR(A”).If CR(A") < CR(A) , setN = 1,
A = A” and proceed to Step 3. Otherwise, set N = N + 1 and
go to Step 4.

Step 9: Print the last value of A, w, CR(A) and k and end.

= dys

D. SZYBOWSKI's ALGORITHM
Let A = (a;) be an inconsistent n X n pairwise comparison
matrix, let CR* = 0.10; N = 1, and k = 0.
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The algorithm of Szybowski [44] proceeds as follows:
Step 1: Set k = k + 1. Calculate CR(A). If CR(A) < CR*,
go to Step 5. Otherwise proceed.

Step 2: Calculate w and ¢;; = |ln(aljﬁ)| for all i, j.
W
Step 3: Find e,, = max{e;}. ’
Step 4: Set ap;, = —P, keep other matrix elements
W

unchanged, and go to Step 1j.
Step 5: Print the last value of A, w, CR(A) and k and end.
Note: In the original formulation of the algorithm, the geo-
metric consistency index GCI was used instead of CR.

E. XU AND WEI's ALGORITHM
Let A = (a;j) be an inconsistent n x n pairwise comparison
matrix, let k£ be the number of iterations, and let 0 < A < 1.

The Xu and Wei’s algorithm proceeds as follows [47]:

Step 1: Let A©) = (a}") = (a;); CR* = 0.10; k = 0.

Step 2: Calculate the maximal eigenvalue Ayuq(A®)) of
A® and the normalized principal right eigenvector w*) =
w0 T,

Step 3: Calculate the consistency index, CI® =
(Amax(A®) — n)/(n — 1) and the consistency ratio CR®) =
CI® /RI, where RI is given in [43].

Step 4: If CR® < CR*, then go to Step 6. Otherwise,
continue to the next step.
Step 5: Let A%+D
e
WP

Let k = k + 1 and return to Step 2.

Step 6: Print the last value of A, w, CR(A) and k.

Step 7: End.

We used . = 0.5 and A = 0.9 for simulations, the same
values that were applied in the original paper.

(k+1) (k+1)
(a; "), where a;

(k))k(

(a,‘j )l_k-

V. MONTE CARLO SIMULATIONS

At the beginning, we randomly generated a large num-
ber (more than 10,000 cases) of PC matrices of the order
n = {4, 8} with CR > 0.10, where matrix entries were drawn
from Saaty’s fundamental scale to examine the distribution
of the consistency ratio CR. We found that in the case of
n = 4, the mode was in the interval (0.20, 0.30), the median
was 0.86 and the arithmetic mean (by definition of CR) equal
to 1. In the case of n = §, the arithmetic mean, mode and
median were all close to 1. Since pairwise comparisons are
usually provided by someone with suitable knowledge (called
an ’expert’), it can be safely assumed that the expert’s pref-
erences would be less inconsistent than random preferences.
That is why we set the upper limit for inconsistency in our
study at CR = 0.80. To distinguish between less inconsistent
and more inconsistent matrices, we used the mode value
CR = 0.30 forn = 4.

After this preparation phase, we randomly generated large
samples (over 10,000 cases) of PC matrices of the order
n = 4 and n = 8 for actual simulations via the same
procedure. Subsequently, we filtered out PC matrices with
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TABLE 1. AIR performance, average values for n = 4 and initial
0.10 < CR < 0.30, 630 matrices (the best values are in bold).

Algorithm d D tau k N
Caoetal. (y = 0.98) [11] 0.582 | 4.74 | 0.024 | 16.02 12
Caoetal. II (y = 0.50) [11] | 0.568 | 7.94 | 0.027 1 12

Kou et al. [25] 5.86 | 1097 | 0.57 1 2
Mazurek et al. [35] 2.33 394 | 0.132 | 469 | 3.29
Szybowski [44] 3.22 534 | 0.185 | 124 | 247

Xu and Wei (A = 0.5) [47] 0212 | 7.96 | 0.008 1 12
Xuand Wei Il (A = 0.9) [47] | 0.217 | 5.20 | 0.008 | 3.60 12

TABLE 2. AIR performance, average values for n = 4 and initial
0.30 < CR < 0.80, 1193 matrices (the best values are in bold).

Algorithm d D tau k N
Caoetal. [11] 2.132 | 11.67 | 0.191 | 35.50 12
Caoetal. II [11] 1.552 | 14.44 | 0.147 | 1.64 12
Kou et al. [25] - - - - -
Mazurek et al. [35] | 5.341 | 8.74 | 0.595 | 8.89 | 4.62
Szybowski [44] 5.827 | 997 | 0.638 | 2.19 | 3.84
Xu and Wei [47] 0.567 | 14.47 | 0.039 1.65 12
Xuand Wei Il [47] | 0.723 | 12.12 | 0.049 | 7.60 12

TABLE 3. AIR performance, average values for n = 8 and initial
0.10 < CR < 0.30, 491 matrices (the best values are in bold).

Algorithm d D tau k N
Caoetal. [11] 0.818 | 37.27 | 0.727 | 21.3 56
Caoetal. II'[11] 0.629 | 47.83 | 0.529 1 56

Mazurek et al. [35] 1.780 | 29.25 | 1.610 | 23.4 | 17.13
Szybowski [44] 2.357 | 31.18 | 2.218 4.8 8.78
Xu and Wei [47] 0.241 | 48.38 | 0.188 1 56

Xuand Wei IT [47] | 0.289 | 39.73 | 0.216 | 4.73 56

0.10 < CR < 0.80. Then, each and every PC matrix was
used as an input for all selected algorithms for inconsistency
reduction. The algorithms stopped when the consistency ratio
CR of a modified matrix decreased below the 0.10 threshold.
The output consisted of a final modified matrix, maximal
eigenvalue and a priority vector w. Finally, the measures of
preference preservation, d, D, N, and tau, were evaluated for
each modified matrix.

Simulation results — the AIR performance with respect to
matrix size and an initial matrix inconsistency — are provided
in Tables 1-4. The numbers in tables’ captions express how
many matrices from the original set of 10,000 generated PC
matrices fell into aforementioned CR intervals (according to
Lerch and Mudford [29] these numbers are sufficient).

The Kou et al.’s algorithm failed to find a consistent
enough matrix in 3% of cases for n = 4 and 0.10 < CR <
0.30, and in 45% of cases for n = 4 and 0.30 < CR < 0.80.
In the case of n = 8, the algorithm failed in more than 60%
of cases. That is why we report its results only for n = 4 and
0.10 < CR < 0.30 (read more on the Kou et al. algorithm in
Discussion).

VI. DISCUSSION

During simulations, we found that the Kou et al. [25]
algorithm did not work properly when the main procedure
described in Section IV.B was performed more than once.
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TABLE 4. AIR performance, average values for n = 8 and initial
0.30 < CR < 0.80, 4082 matrices (the best values are in bold).

Algorithm d D tau k N
Caoetal. [11] 1.980 | 62.47 | 2.764 | 36.30 56
Caoetal. II [11] 1.426 | 76.03 | 2.049 | 1.77 56
Mazurek et al. [35] | 3.198 | 49.52 | 3.762 | 41.92 | 24.94

Szybowski [44] 3.659 | 49.18 | 4.048 | 8.18 | 16.18
Xu and Wei [47] 0.581 | 76.79 | 0.665 | 1.75 56
Xuand Wei I [47] | 0.727 | 65.03 | 0.798 | 7.70 56

Distribution of d (n =4, 0.10 < CR < 0.30)

14

12

10 °
=
S 8 .
H
6 :
4
2 e
0 i il %II
Algorithms

B XUand Wei B Xuand Weill B Caoetal
W Szybowski

M Caoetalll

B Mazurek et al M Kou et al

FIGURE 1. Distribution of d (%), n = 4, 0.10 < CR < 0.30.

Distribution of D (n =4, 0.10 < CR < 0.30)

C el

Algorithms
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In such a case, the algorithm diverged. As a consequence,
the algorithm failed in over 60% of cases for n = 8, making
the comparison with other algorithms infeasible. It is worth
noting that, in the original paper [25], proof of the algorithm’s
convergence is missing. The likely cause of the divergence is
that, after the modification of the most inconsistent element
in the first iteration, the matrix C is not updated. To fix the
problem, we suggest updating the matrix C in each iteration.

As could be expected, inconsistency reduction of larger
matrices (n = 8) and/or more inconsistent matrices (0.30 <
CR < 0.80) led to larger values, hence the lower preservation
of initial preferences, of the variables d, D and fau, see
also Figures 1-8. These matrices also required iterations of
more algorithms, and in the case of the Szybowski’s and
Mazurek et al.’s algorithms also a larger number of adjusted
elements (algorithms of Xu and Wei, Cao et al. and Kou et al.
are designed to modify all non-diagonal elements). From a
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computational point of view, the Cao et al. Il and Xu and Wei
algorithms displayed the fastest convergence.

As for the impact of parameter values in the Cao ef al.’s
and Xu and Wei’s algorithms respectively, in the case of the
Cao et al.’s algorithm and y = 0.98, matrix modifications
were more refined, which required more steps to achieve
the threshold inconsistency than the case with y = 0.50.
The same observation applies to the Xu and Wei’s algorithm,
the case with A = 0.90 proceeded by smaller steps in more
iterations.

The ANOVA (analysis of variance) test confirmed that the
differences in the mean values of d, D and tau for all algo-
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rithms (with the exception of the Kou et al.’s algorithm) were
statistically significant at least at the p = 10710 level. As for
the algorithms’ similarities, the Xu and Wei’s and Cao ef al.’s
algorithms were highly correlated in the variable D, with the
maximal Pearson correlation coefficient o = 0.973 forn = 4
and 0.10 < CR < 0.30. On the other hand, the Szybowski’s
algorithm correlated most of all with the Mazurek et al.’s
algorithm, specifically in the variable D, with the maximal
Pearson correlation coefficient o = 0.909 for n = 8 and
0.30 < CR < 0.80.

The algorithms’ outputs were processed with the accuracy
of four decimal places. The majority of the programming
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was performed in Python, the rest in R and C#. All the data,
algorithms and a technical report can be found at a free access
GitHub repository [50].

VII. CONCLUSION
The aim of this paper was to perform Monte Carlo simulations
to compare selected iterative algorithms for inconsistency
reduction with respect to the preservation of original pref-
erences in the pairwise comparison framework. Our results
indicate that no algorithm outperformed all other algorithms
with respect to every measure of original preference preser-
vation. The Xu and Wei’s algorithm was the best algorithm
with regard to the preservation of a priority vector and the
ranking of objects. The algorithm of Mazurek et al.’s was the
best algorithm with respect to the preservation of preferences
expressed by entries of the original PC matrix, while the algo-
rithm of Szybowski’s kept the most matrix entries unchanged
during inconsistency reduction. Therefore, the choice of the
most suitable AIR depends on the decision maker’s needs.
The Kou et al. ’salgorithm appeared to be divergent in most
cases, hence it could not be compared with other algorithms.
Further research may focus on the comparison of
non-iterative algorithms for inconsistency reduction, or may
aim towards the framework of interval, fuzzy or fuzzy hesitant
pairwise comparisons.
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